1
|
Luz BTS, Rebelo JS, Monteiro F, Dionisio F. What Is the Impact of Antibiotic Resistance Determinants on the Bacterial Death Rate? Antibiotics (Basel) 2025; 14:201. [PMID: 40001444 PMCID: PMC11851504 DOI: 10.3390/antibiotics14020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Objectives: Antibiotic-resistant bacteria are widespread, with resistance arising from chromosomal mutations and resistance genes located in the chromosome or in mobile genetic elements. While resistance determinants often reduce bacterial growth rates, their influence on bacterial death under bactericidal antibiotics remains poorly understood. When bacteria are exposed to bactericidal antibiotics to which they are susceptible, they typically undergo a two-phase decline: a fast initial exponentially decaying phase, followed by a persistent slow-decaying phase. This study examined how resistance determinants affect death rates during both phases. Methods: We analyzed the death rates of ampicillin-exposed Escherichia coli populations of strains sensitive to ampicillin but resistant to nalidixic acid, rifampicin, or both, and bacteria carrying the conjugative plasmids RN3 or R702. Results: Single mutants resistant to nalidixic acid or rifampicin decayed faster than sensitive cells during the early phase, whereas the double-resistant mutant exhibited prolonged survival. These contrasting impacts suggest epistatic interactions between both chromosomal mutations. Persistent-phase death rates for chromosomal mutants did not differ significantly from wild-type cells. In contrast, plasmid-carrying bacteria displayed distinct dynamics: R702 plasmid-bearing cells showed higher persistent-phase death rates than plasmid-free cells, while RN3 plasmid-bearing cells exhibited lower rates. Conclusions: Bactericidal antibiotics may kill bacteria resistant to other antibiotics more effectively than wild-type cells. Moreover, epistasis may occur when different resistance determinants occur in the same cell, impacting the bactericidal potential of the antibiotic of choice. These results have significant implications for optimizing bacterial eradication protocols in clinical settings, as well as in animal health and industrial food safety management.
Collapse
Affiliation(s)
| | | | - Francisca Monteiro
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (B.T.S.L.); (J.S.R.)
| | - Francisco Dionisio
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (B.T.S.L.); (J.S.R.)
| |
Collapse
|
2
|
State of Knowledge on the Acquisition, Diversity, Interspecies Attribution and Spread of Antimicrobial Resistance between Humans, Animals and the Environment: A Systematic Review. Antibiotics (Basel) 2022; 12:antibiotics12010073. [PMID: 36671275 PMCID: PMC9854550 DOI: 10.3390/antibiotics12010073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Resistance to antibiotics is considered one of the most urgent global public health concerns. It has considerable impacts on health and the economy, being responsible for the failure to treat infectious diseases, higher morbidity and mortality rates, and rising health costs. In spite of the joint research efforts between different humans, animals and the environment, the key directions and dynamics of the spread of antimicrobial resistance (AMR) still remain unclear. The aim of this systematic review is to examine the current knowledge of AMR acquisition, diversity and the interspecies spread of disease between humans, animals and the environment. Using a systematic literature review, based on a One Health approach, we examined articles investigating AMR bacteria acquisition, diversity, and the interspecies spread between humans, animals and the environment. Water was the environmental sector most often represented. Samples were derived from 51 defined animal species and/or their products A large majority of studies investigated clinical samples of the human population. A large variety of 15 different bacteria genera in three phyla (Proteobacteria, Firmicutes and Actinobacteria) were investigated. The majority of the publications compared the prevalence of pheno- and/or genotypic antibiotic resistance within the different compartments. There is evidence for a certain host or compartment specificity, regarding the occurrence of ARGs/AMR bacteria. This could indicate the rather limited AMR spread between different compartments. Altogether, there remains a very fragmented and incomplete understanding of AMR acquisition, diversity, and the interspecies spread between humans, animals and the environment. Stringent One Health epidemiological study designs are necessary for elucidating the principal routes and dynamics of the spread of AMR bacteria between humans, animals and the environment. This knowledge is an important prerequisite to develop effective public health measures to tackle the alarming AMR situation.
Collapse
|
3
|
Okeke ES, Chukwudozie KI, Nyaruaba R, Ita RE, Oladipo A, Ejeromedoghene O, Atakpa EO, Agu CV, Okoye CO. Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69241-69274. [PMID: 35969340 PMCID: PMC9376131 DOI: 10.1007/s11356-022-22319-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/27/2022] [Indexed: 05/13/2023]
Abstract
Aquaculture has emerged as one of the world's fastest-growing food industries in recent years, helping food security and boosting global economic status. The indiscriminate disposal of untreated or improperly managed waste and effluents from different sources including production plants, food processing sectors, and healthcare sectors release various contaminants such as bioactive compounds and unmetabolized antibiotics, and antibiotic-resistant organisms into the environment. These emerging contaminants (ECs), especially antibiotics, have the potential to pollute the environment, particularly the aquatic ecosystem due to their widespread use in aquaculture, leading to various toxicological effects on aquatic organisms as well as long-term persistence in the environment. However, various forms of nanotechnology-based technologies are now being explored to assist other remediation technologies to boost productivity, efficiency, and sustainability. In this review, we critically highlighted several ecofriendly nanotechnological methods including nanodrug and vaccine delivery, nanoformulations, and nanosensor for their antimicrobial effects in aquaculture and aquatic organisms, potential public health risks associated with nanoparticles, and their mitigation measures for sustainable management.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 41000, Enugu State, Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, 41000, Enugu State, Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
| | - Kingsley Ikechukwu Chukwudozie
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
- Department of Clinical Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Raphael Nyaruaba
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Center for Biosafety Megascience, Wuhan Institute of Virology, CAS, Wuhan, China
| | - Richard Ekeng Ita
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Ritman University, Ikot Ekpene, Akwa Ibom State, Nigeria
| | - Abiodun Oladipo
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Onome Ejeromedoghene
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189, People's Republic of China
| | - Edidiong Okokon Atakpa
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
- Department of Animal & Environmental Biology, University of Uyo, Uyo, 1017, Akwa Ibom State, Nigeria
| | | | - Charles Obinwanne Okoye
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya.
- Department of Zoology & Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria.
- School of Environment & Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, China.
- Key Laboratory of Intelligent Agricultural Machinery Equipment, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Cohen Y, Hershberg R. Rapid Adaptation Often Occurs through Mutations to the Most Highly Conserved Positions of the RNA Polymerase Core Enzyme. Genome Biol Evol 2022; 14:evac105. [PMID: 35876137 PMCID: PMC9459352 DOI: 10.1093/gbe/evac105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations to the genes encoding the RNA polymerase core enzyme (RNAPC) and additional housekeeping regulatory genes were found to be involved in adaptation, in the context of numerous evolutionary experiments, in which bacteria were exposed to diverse selective pressures. This provides a conundrum, as the housekeeping genes that were so often mutated in response to these diverse selective pressures tend to be among the genes that are most conserved in their sequences across the bacterial phylogeny. In order to further examine this apparent discrepancy, we characterized the precise positions of the RNAPC involved in adaptation to a large variety of selective pressures. We found that RNAPC lab adaptations tended to occur at positions displaying traits associated with higher selective constraint. Specifically, compared to other RNAPC positions, positions involved in adaptation tended to be more conserved in their sequences within bacteria, were more often located within defined protein domains, and were located closer to the complex's active site. Higher sequence conservation was also found for resource exhaustion adaptations occurring within additional housekeeping genes. Combined, our results demonstrate that the positions that change most readily in response to well-defined selective pressures exerted in lab environments are often also those that evolve most slowly in nature.
Collapse
Affiliation(s)
- Yasmin Cohen
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
5
|
Brinkac L, Voorhies A, Gomez A, Nelson KE. The Threat of Antimicrobial Resistance on the Human Microbiome. MICROBIAL ECOLOGY 2017; 74:1001-1008. [PMID: 28492988 PMCID: PMC5654679 DOI: 10.1007/s00248-017-0985-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/18/2017] [Indexed: 05/22/2023]
Abstract
Ubiquitous in nature, antimicrobial resistance (AMR) has existed long before the golden age of antimicrobials. While antimicrobial agents are beneficial to combat infection, their widespread use contributes to the increase in and emergence of novel resistant microbes in virtually all environmental niches. The human microbiome is an important reservoir of AMR with initial exposure occurring in early life. Once seeded with AMR, commensal organisms may be key contributors to the dissemination of resistance due to the interconnectedness of microbial communities. When acquired by pathogens however, AMR becomes a serious public health threat worldwide. Our ability to combat the threat of emerging resistance relies on accurate AMR detection methods and the development of therapeutics that function despite the presence of antimicrobial resistance.
Collapse
Affiliation(s)
- Lauren Brinkac
- J. Craig Venter Institute|, Rockville, MD, 20850, USA.
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, 4000, South Africa.
| | | | - Andres Gomez
- J. Craig Venter Institute|, Rockville, MD, 20850, USA
| | - Karen E Nelson
- J. Craig Venter Institute|, Rockville, MD, 20850, USA
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, 4000, South Africa
| |
Collapse
|
6
|
Avrani S, Bolotin E, Katz S, Hershberg R. Rapid Genetic Adaptation during the First Four Months of Survival under Resource Exhaustion. Mol Biol Evol 2017; 34:1758-1769. [PMID: 28369614 PMCID: PMC5455981 DOI: 10.1093/molbev/msx118] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Many bacteria, including the model bacterium Escherichia coli can survive for years within spent media, following resource exhaustion. We carried out evolutionary experiments, followed by whole genome sequencing of hundreds of evolved clones to study the dynamics by which E. coli adapts during the first 4 months of survival under resource exhaustion. Our results reveal that bacteria evolving under resource exhaustion are subject to intense selection, manifesting in rapid mutation accumulation, enrichment in functional mutation categories and extremely convergent adaptation. In the most striking example of convergent adaptation, we found that across five independent populations adaptation to conditions of resource exhaustion occurs through mutations to the three same specific positions of the RNA polymerase core enzyme. Mutations to these three sites are strongly antagonistically pleiotropic, in that they sharply reduce exponential growth rates in fresh media. Such antagonistically pleiotropic mutations, combined with the accumulation of additional mutations, severely reduce the ability of bacteria surviving under resource exhaustion to grow exponentially in fresh media. We further demonstrate that the three positions at which these resource exhaustion mutations occur are conserved for the ancestral E. coli allele, across bacterial phyla, with the exception of nonculturable bacteria that carry the resource exhaustion allele at one of these positions, at very high frequencies. Finally, our results demonstrate that adaptation to resource exhaustion is not limited by mutational input and that bacteria are able to rapidly adapt under resource exhaustion in a temporally precise manner through allele frequency fluctuations.
Collapse
Affiliation(s)
- Sarit Avrani
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Evolutionary and Environmental Biology, The Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Evgeni Bolotin
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sophia Katz
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
|
8
|
Li J, Xie S, Ahmed S, Wang F, Gu Y, Zhang C, Chai X, Wu Y, Cai J, Cheng G. Antimicrobial Activity and Resistance: Influencing Factors. Front Pharmacol 2017; 8:364. [PMID: 28659799 PMCID: PMC5468421 DOI: 10.3389/fphar.2017.00364] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/26/2017] [Indexed: 01/09/2023] Open
Abstract
Rational use of antibiotic is the key approach to improve the antibiotic performance and tackling of the antimicrobial resistance. The efficacy of antimicrobials are influenced by many factors: (1) bacterial status (susceptibility and resistance, tolerance, persistence, biofilm) and inoculum size; (2) antimicrobial concentrations [mutant selection window (MSW) and sub-inhibitory concentration]; (3) host factors (serum effect and impact on gut micro-biota). Additional understandings regarding the linkage between antimicrobial usages, bacterial status and host response offers us new insights and encourage the struggle for the designing of antimicrobial treatment regimens that reaching better clinical outcome and minimizing the emergence of resistance at the same time.
Collapse
Affiliation(s)
- Jun Li
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China.,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for The Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| | - Shuyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China.,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for The Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| | - Saeed Ahmed
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China.,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for The Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| | - Funan Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China.,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for The Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| | - Yufeng Gu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China.,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for The Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| | - Chaonan Zhang
- Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Ximan Chai
- Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Yalan Wu
- Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Jinxia Cai
- Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China.,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for The Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China.,Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
9
|
Su JQ, Cui L, Chen QL, An XL, Zhu YG. Application of genomic technologies to measure and monitor antibiotic resistance in animals. Ann N Y Acad Sci 2016; 1388:121-135. [DOI: 10.1111/nyas.13296] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/04/2016] [Accepted: 10/18/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Qing-Lin Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Xin-Li An
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
10
|
Willmann M, Peter S. Translational metagenomics and the human resistome: confronting the menace of the new millennium. J Mol Med (Berl) 2016; 95:41-51. [PMID: 27766372 PMCID: PMC5225160 DOI: 10.1007/s00109-016-1478-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/19/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022]
Abstract
The increasing threat of antimicrobial resistance poses one of the greatest challenges to modern medicine. The collection of all antimicrobial resistance genes carried by various microorganisms in the human body is called the human resistome and represents the source of resistance in pathogens that can eventually cause life-threatening and untreatable infections. A deep understanding of the human resistome and its multilateral interaction with various environments is necessary for developing proper measures that can efficiently reduce the spread of resistance. However, the human resistome and its evolution still remain, for the most part, a mystery to researchers. Metagenomics, particularly in combination with next-generation-sequencing technology, provides a powerful methodological approach for studying the human microbiome as well as the pathogenome, the virolume and especially the resistome. We summarize below current knowledge on how the human resistome is shaped and discuss how metagenomics can be employed to improve our understanding of these complex processes, particularly as regards a rapid translation of new findings into clinical diagnostics, infection control and public health.
Collapse
Affiliation(s)
- Matthias Willmann
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076, Tuebingen, Germany. .,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany.
| | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076, Tuebingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Becattini S, Taur Y, Pamer EG. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease. Trends Mol Med 2016; 22:458-478. [PMID: 27178527 DOI: 10.1016/j.molmed.2016.04.003] [Citation(s) in RCA: 551] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/12/2022]
Abstract
The gut microbiota is a key player in many physiological and pathological processes occurring in humans. Recent investigations suggest that the efficacy of some clinical approaches depends on the action of commensal bacteria. Antibiotics are invaluable weapons to fight infectious diseases. However, by altering the composition and functions of the microbiota, they can also produce long-lasting deleterious effects for the host. The emergence of multidrug-resistant pathogens raises concerns about the common, and at times inappropriate, use of antimicrobial agents. Here we review the most recently discovered connections between host pathophysiology, microbiota, and antibiotics highlighting technological platforms, mechanistic insights, and clinical strategies to enhance resistance to diseases by preserving the beneficial functions of the microbiota.
Collapse
Affiliation(s)
- Simone Becattini
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ying Taur
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric G Pamer
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
12
|
Francino MP. Antibiotics and the Human Gut Microbiome: Dysbioses and Accumulation of Resistances. Front Microbiol 2016; 6:1543. [PMID: 26793178 PMCID: PMC4709861 DOI: 10.3389/fmicb.2015.01543] [Citation(s) in RCA: 483] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022] Open
Abstract
The human microbiome is overly exposed to antibiotics, due, not only to their medical use, but also to their utilization in farm animals and crops. Microbiome composition can be rapidly altered by exposure to antibiotics, with potential immediate effects on health, for instance through the selection of resistant opportunistic pathogens that can cause acute disease. Microbiome alterations induced by antibiotics can also indirectly affect health in the long-term. The mutualistic microbes in the human body interact with many physiological processes, and participate in the regulation of immune and metabolic homeostasis. Therefore, antibiotic exposure can alter many basic physiological equilibria, promoting long-term disease. In addition, excessive antibiotic use fosters bacterial resistance, and the overly exposed human microbiome has become a significant reservoir of resistance genes, contributing to the increasing difficulty in controlling bacterial infections. Here, the complex relationships between antibiotics and the human microbiome are reviewed, with focus on the intestinal microbiota, addressing (1) the effects of antibiotic use on the composition and function of the gut microbiota, (2) the impact of antibiotic-induced microbiota alterations on immunity, metabolism, and health, and (3) the role of the gut microbiota as a reservoir of antibiotic resistances.
Collapse
Affiliation(s)
- M P Francino
- Unitat Mixta d'Investigació en Genòmica i Salut, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública/Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValènciaValència, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
| |
Collapse
|