1
|
Munson E, Burbick CR, Lawhon SD, Krueger T, Ruiz-Reyes E. Valid and accepted novel bacterial taxa isolated from non-domestic animals and taxonomic revisions published in 2023. J Clin Microbiol 2024; 62:e0104224. [PMID: 39352133 PMCID: PMC11481486 DOI: 10.1128/jcm.01042-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2024] Open
Abstract
Continued investigation into the bacteria associated with non-domestic animals provides important information for recognizing normal flora, assessing the health status of these unique species of animals, and identifying new or emerging pathogens of concern. In this summary of novel taxa and taxonomic revisions, considerable additions have been made toward understanding fecal and mucosal flora in multiple wild animal species. In addition, novel pathogenic bacteria are discussed, including multiple Chlamydia spp. causing disease in a hawk and crocodile, two Corynebacterium spp. causing oral lesions in penguins and a lesser-known genus, Mergibacter within Family Pasteurellaceae, causing disease in multiple wild bird species. Finally, a few revisions to bacteria isolated from normal non-domestic animal body sites are mentioned.
Collapse
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Trinity Krueger
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elena Ruiz-Reyes
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Vorimore F, Aaziz R, Al Qaysi L, Wernery U, Borel N, Sachse K, Laroucau K. Detection of a novel genotype of Chlamydia buteonis in falcons from the Emirates. Vet Microbiol 2024; 291:110027. [PMID: 38430716 DOI: 10.1016/j.vetmic.2024.110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
Chlamydiaceae are a family of obligate intracellular bacterial pathogens that affect both humans and animals. Recently, a new species named Chlamydia (C.) buteonis was isolated from hawks. In this study, we aimed to investigate the prevalence of Chlamydiaceae in 60 falcons that underwent a routine health check at a specialized clinic in Dubai, United Arab Emirates. Using real-time PCR, we analyzed cloacal and tracheal swabs from these birds and found that 39 of them tested positive for Chlamydiaceae. Subsequent real-time PCR assays specific for C. psittaci, C. abortus, C. avium, and C. gallinacea yielded negative results, while testing positive for C. buteonis. Analysis of ompA and MLST sequences indicated a highly conserved group of strains within this set of samples, but with sequences distinct from the C. buteonis RSHA reference strains and other C. buteonis strains isolated from hawks in the United States. Two strains were further isolated by cell culture and sequenced using whole-genome sequencing, confirming the clustering of these falcon strains within the C. buteonis species, but in a separate clade from the previously identified hawk strains. We also developed a SNP-based PCR-HRM assay to distinguish between these different genotypes. Overall, our findings suggest a high prevalence of C. buteonis in falcons in Dubai and highlight the importance of monitoring this pathogen in birds of prey.
Collapse
Affiliation(s)
- F Vorimore
- Anses, Animal Health Laboratory, Bacterial Zoonoses Unit, Maisons-Alfort, France; Anses, Identhypath, Maisons-Alfort, France
| | - R Aaziz
- Anses, Identhypath, Maisons-Alfort, France
| | - L Al Qaysi
- Lehbab Clinic, Dubai, United Arab Emirates
| | | | - N Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - K Sachse
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University, Jena, Germany
| | - K Laroucau
- Anses, Animal Health Laboratory, Bacterial Zoonoses Unit, Maisons-Alfort, France.
| |
Collapse
|
3
|
Bansal K, Saroha T, Patil PP, Kumar S, Kumar S, Singhal L, Gautam V, Patil PB. Evolutionary trends of carbapenem-resistant and susceptible Acinetobacter baumannii isolates in a major tertiary care setting from North India. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 117:105542. [PMID: 38122920 DOI: 10.1016/j.meegid.2023.105542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Emergence of carbapenem-resistant A. baumannii (CRAB) is a global, ongoing healthcare concern. CRAB is among the topmost priority pathogens, with various studies focusing on its global population structure and resistant allelic profiles. However, carbapenem-susceptible A. baumannii (CSAB) isolates are often overlooked due to their sensitivity to beta-lactams, which can provide important insights into origin of CRAB lineages and isolates. In the present study, we report genomic investigation of CRAB and CSAB coexisting in Indian hospital setting. MLST based population structure and phylogenomics suggest they mainly follow distinct evolutionary routes forming two phylogroups. PG-I exclusively for a successful clone (ST2) of CRAB and PG-II comprises diversified CSAB isolates except PG3373, which is CRAB. Additionally, there are few CRAB isolates not belonging to PG-I and sharing clonal relationship with CSAB isolates indicating role of genome plasticity towards extensive drug resistance in the nosocomial environment. Further, genealogical analysis depicts prominent role of recombination in emergence and evolution of a major CRAB lineage. Further, CRAB isolates are enriched in resistomes as compared to CSAB isolates, which were encoded on the genomic island. Such comparative genomic insights will aid in our understanding and localized management of rapidly evolving pandrug resistant nosocomial pathogens.
Collapse
Affiliation(s)
- Kanika Bansal
- CSIR- Institute of Microbial Technology, Chandigarh- 160036, India
| | - Tanu Saroha
- CSIR- Institute of Microbial Technology, Chandigarh- 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Prashant P Patil
- CSIR- Institute of Microbial Technology, Chandigarh- 160036, India
| | - Sanjeet Kumar
- CSIR- Institute of Microbial Technology, Chandigarh- 160036, India
| | - Sunil Kumar
- Postgraduate Institute of Medical Education and Research, Chandigarh- 160012, India; Department of Microbiology, Graphic Era Deemed to be University, Dehradun, Uttarakhand- 248002, India
| | - Lipika Singhal
- Government Medical College & Hospital, Chandigarh- 160047, India
| | - Vikas Gautam
- Postgraduate Institute of Medical Education and Research, Chandigarh- 160012, India.
| | - Prabhu B Patil
- CSIR- Institute of Microbial Technology, Chandigarh- 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
4
|
Wolff BJ, Gaines A, Conley AB, Norris E, Rishishwar L, Chande AT, Yang E, Diaz MH, Winchell JM. Multiplex Real-time PCR Assay for the Detection of all Chlamydia Species and Simultaneous Differentiation of C. psittaci and C. pneumoniae in Human Clinical Specimens. Ann Lab Med 2023; 43:375-380. [PMID: 36843406 PMCID: PMC9989537 DOI: 10.3343/alm.2023.43.4.375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 01/10/2023] [Indexed: 02/28/2023] Open
Abstract
We developed and assessed the performance of a new multiplex real-time PCR assay for the detection of all Chlamydia species and simultaneous differentiation of Chlamydia psittaci and Chlamydia pneumoniae-two important human respiratory pathogens-in human clinical specimens. Next-generation sequencing was used to identify unique targets to design real-time PCR assays targeting all Chlamydia species, C. psittaci, and C. pneumoniae. To validate the assay, we used a panel of 49 culture isolates comprising seven C. psittaci genotypes, eight C. pneumoniae isolates, seven other Chlamydia species, and 22 near-neighbor bacterial and viral isolates, along with 22 specimens from external quality assessment (EQA) panels and 34 nasopharyngeal and oropharyngeal swabs and cerebrospinal fluid, stool, and sputum specimens previously identified as positive or negative for C. psittaci or C. pneumoniae. The assays were 100% specific, with limits of detection of 7.64- 9.02 fg/μL. The assay results matched with historical assay results for all specimens, except for one owing to the increased sensitivity of the new C. psittaci assay; the results of the EQA specimens were 100% accurate. This assay may improve the timely and accurate clinical diagnosis of Chlamydia infections and provide a greater understanding of the burden of disease caused by these agents.
Collapse
Affiliation(s)
- Bernard J Wolff
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anna Gaines
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
| | | | - Emily Norris
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
| | - Lavanya Rishishwar
- Applied Bioinformatics Laboratory, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aroon T Chande
- Applied Bioinformatics Laboratory, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eungi Yang
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maureen H Diaz
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jonas M Winchell
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
5
|
Xie G, Hu Q, Cao X, Wu W, Dai P, Guo W, Wang O, Wei L, Ren R, Li Y. Clinical identification and microbiota analysis of Chlamydia psittaci- and Chlamydia abortus- pneumonia by metagenomic next-generation sequencing. Front Cell Infect Microbiol 2023; 13:1157540. [PMID: 37434780 PMCID: PMC10331293 DOI: 10.3389/fcimb.2023.1157540] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/29/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Recently, the incidence of chlamydial pneumonia caused by rare pathogens such as C. psittaci or C. abortus has shown a significant upward trend. The non-specific clinical manifestations and the limitations of traditional pathogen identification methods determine that chlamydial pneumonia is likely to be poorly diagnosed or even misdiagnosed, and may further result in delayed treatment or unnecessary antibiotic use. mNGS's non-preference and high sensitivity give us the opportunity to obtain more sensitive detection results than traditional methods for rare pathogens such as C. psittaci or C. abortus. Methods In the present study, we investigated both the pathogenic profile characteristics and the lower respiratory tract microbiota of pneumonia patients with different chlamydial infection patterns using mNGS. Results More co-infecting pathogens were found to be detectable in clinical samples from patients infected with C. psittaci compared to C. abortus, suggesting that patients infected with C. psittaci may have a higher risk of mixed infection, which in turn leads to more severe clinical symptoms and a longer disease course cycle. Further, we also used mNGS data to analyze for the first time the characteristic differences in the lower respiratory tract microbiota of patients with and without chlamydial pneumonia, the impact of the pattern of Chlamydia infection on the lower respiratory tract microbiota, and the clinical relevance of these characteristics. Significantly different profiles of lower respiratory tract microbiota and microecological diversity were found among different clinical subgroups, and in particular, mixed infections with C. psittaci and C. abortus resulted in lower lung microbiota diversity, suggesting that chlamydial infections shape the unique lung microbiota pathology, while mixed infections with different Chlamydia may have important effects on the composition and diversity of the lung microbiota. Discussion The present study provides possible evidences supporting the close correlation between chlamydial infection, altered microbial diversity in patients' lungs and clinical parameters associated with infection or inflammation in patients, which also provides a new research direction to better understand the pathogenic mechanisms of pulmonary infections caused by Chlamydia.
Collapse
Affiliation(s)
- Gongxun Xie
- Department of Pathology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Qing Hu
- Department of Pathology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Xuefang Cao
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Wenjie Wu
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Penghui Dai
- Department of Pathology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Wei Guo
- Department of Pathology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Ouxi Wang
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Liang Wei
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Ruotong Ren
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
- Foshan Branch, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanchun Li
- Department of Pathology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
6
|
Luu LDW, Kasimov V, Phillips S, Myers GSA, Jelocnik M. Genome organization and genomics in Chlamydia: whole genome sequencing increases understanding of chlamydial virulence, evolution, and phylogeny. Front Cell Infect Microbiol 2023; 13:1178736. [PMID: 37287464 PMCID: PMC10242142 DOI: 10.3389/fcimb.2023.1178736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
The genus Chlamydia contains important obligate intracellular bacterial pathogens to humans and animals, including C. trachomatis and C. pneumoniae. Since 1998, when the first Chlamydia genome was published, our understanding of how these microbes interact, evolved and adapted to different intracellular host environments has been transformed due to the expansion of chlamydial genomes. This review explores the current state of knowledge in Chlamydia genomics and how whole genome sequencing has revolutionised our understanding of Chlamydia virulence, evolution, and phylogeny over the past two and a half decades. This review will also highlight developments in multi-omics and other approaches that have complemented whole genome sequencing to advance knowledge of Chlamydia pathogenesis and future directions for chlamydial genomics.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Vasilli Kasimov
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Samuel Phillips
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Garry S. A. Myers
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Martina Jelocnik
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
7
|
Are ELISA and PCR Discrepancies in the Identification of Chlamydia pneumoniae Caused by the Presence of " Chlamydia-Related Bacteria"? Microorganisms 2023; 11:microorganisms11010187. [PMID: 36677479 PMCID: PMC9865915 DOI: 10.3390/microorganisms11010187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Chlamydia are Gram-negative, intracellular pathogens colonizing the epithelial mucosa. They cause primarily atypical pneumonia and have recently been associated with chronic diseases. Diagnostics rely almost exclusively on serological methods; PCR tests are used rarely because in patients with positive ELISA, it is nearly impossible to identify chlamydial DNA. To understand this issue, we elaborated a reliable and sensitive nested PCR method (panNPCR) for identifying all Chlamydiales species, not only in sputa, but also in clotted blood. Sequencing of the PCR product revealed that 41% of positive sputa samples and 66% of positive blood samples were not infected by Chlamydia but with "Chlamydia-related bacteria" such as Rhabdochlamydia sp., Parachlamydia sp., Protochlamydia sp., Neochlamydia sp., Mesochlamydia elodeae and lacustris, Piscichlamydia salmonis, and Estrella lausannensis. Consequently, we propose that there might be more than four human pathogenic Chlamydia species. We did not find any clear correlation between increased levels of antibodies and the presence of their DNA. Chlamydialles DNA was found in sputa samples from individuals positive for IgG or IgA but not in blood samples. Thus, elevated IgG and IgA levels are not reliable markers of chronic infection, and the presence of persistent forms should be proved by panNPCR. Apparently, the differences between ELISA and DNA amplification results have three main methodological reasons. The first one is the threshold occurrence of chlamydial genetic material in sputum and blood. The second one is the fact that a significant part of the samples can have DNA with sequences different from those of other species of the order Chlamydiales. The third one is the high background characteristic for ELISA, the absence of paired sera, and the vague interpretation of the gray zone.
Collapse
|
8
|
Chlamydia abortus Isolation and Identification in Aborted Ovine Fetus in Mari El Republic of Russia. Pathogens 2022; 11:pathogens11121408. [PMID: 36558742 PMCID: PMC9784139 DOI: 10.3390/pathogens11121408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Reproductive disorders, presumably caused by Chlamydia abortus, are common among the ovine population of the Mari El Republic, Russia. C. abortus infection was determined by serologic testing or isolation and detection of the organism by PCR and direct immunofluorescence in tissue samples. Rams, ewes, and lambs (10 individuals each) were randomly chosen for serological testing by the complement fixation test and 7 of 30 (23%) animals tested were positive. Tissue samples were collected from ewes and aborted fetuses for isolation by inoculating chicken embryo yolk sacs (n = 41). The same samples were analyzed by PCR using commercial and in-house PCR kits and by direct immunofluorescence. C. abortus was detected in 58.5% of samples using PCR and in 60.9% of the samples by direct immunofluorescence. Five Chlamydia isolates were cultured in egg yolk sacs and adapted for growth in cell cultures. Phylogenetic analysis showed no substantial difference between Russian isolates and those from other parts of the world. The results of the study further demonstrate the usefulness of PCR for detection of C. abortus as a faster, simpler, and more reliable approach in comparison to culturing the organism and underscoring the necessity of screening for chlamydiosis as a cause of ovine abortion.
Collapse
|
9
|
Marti H, Suchland RJ, Rockey DD. The Impact of Lateral Gene Transfer in Chlamydia. Front Cell Infect Microbiol 2022; 12:861899. [PMID: 35321311 PMCID: PMC8936141 DOI: 10.3389/fcimb.2022.861899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
Lateral gene transfer (LGT) facilitates many processes in bacterial ecology and pathogenesis, especially regarding pathogen evolution and the spread of antibiotic resistance across species. The obligate intracellular chlamydiae, which cause a range of diseases in humans and animals, were historically thought to be highly deficient in this process. However, research over the past few decades has demonstrated that this was not the case. The first reports of homologous recombination in the Chlamydiaceae family were published in the early 1990s. Later, the advent of whole-genome sequencing uncovered clear evidence for LGT in the evolution of the Chlamydiaceae, although the acquisition of tetracycline resistance in Chlamydia (C.) suis is the only recent instance of interphylum LGT. In contrast, genome and in vitro studies have shown that intraspecies DNA exchange occurs frequently and can even cross species barriers between closely related chlamydiae, such as between C. trachomatis, C. muridarum, and C. suis. Additionally, whole-genome analysis led to the identification of various DNA repair and recombination systems in C. trachomatis, but the exact machinery of DNA uptake and homologous recombination in the chlamydiae has yet to be fully elucidated. Here, we reviewed the current state of knowledge concerning LGT in Chlamydia by focusing on the effect of homologous recombination on the chlamydial genome, the recombination machinery, and its potential as a genetic tool for Chlamydia.
Collapse
Affiliation(s)
- Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
- *Correspondence: Hanna Marti,
| | - Robert J. Suchland
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Daniel D. Rockey
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
10
|
Barati S, Bakhtiari NM, Shokoohizadeh L, Ghorbanpoor M, Momtaz H. Genotyping of Chlamydia abortus using multiple loci variable number of tandem repeats analysis technique. BMC Vet Res 2022; 18:54. [PMID: 35073930 PMCID: PMC8785486 DOI: 10.1186/s12917-022-03142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background The correlation between various factors (geographical region, clinical incidence, and host type) and the genomic heterogeneity has been shown in several bacterial strains including Chlamydia abortus. Methods The aim of this study was to survey the predominant types of C. abortus strains isolated from ruminants in Iran by the multiple loci variable number of tandem repeats (VNTR) analysis (MLVA) method. C. abortus infection was evaluated in a total of 117 aborted fetuses by real-time PCR. The isolation was done via the inoculation of the positive samples in chicken embryo and the L929 cell line. Genotyping was carried out by MLVA typing technique. Results Forty samples (34.2%) were detected with C. abortus infection; however, chlamydial infection in ruminants of Charmahal/Bakhtiari (3 bovines and 35 sheep) was higher than that of Khuzestan (2 sheep). All MLVA types (MT1-MT8) were detected in the collected samples from Charmahal/Bakhtiari but only 2 types (MT1 and MT3) were reported in samples from Khuzestan. The main MT type was MT1 (32% of aborted fetuses). Although in this study only 9 cow samples were investigated, they possessed similar clusters to those obtained from sheep (MT1 and MT6). Variation of type in sheep samples (MT1 to MT8) was more than that of bovine samples (MT1, and MT6). Conclusion By this research revealed that C.abortus was responsible for a significant percentage of ruminant abortion in two studied regions. The main MT type was MT1 (32% of aborted fetuses) and also 7 different genotypes were involved in infections. So it is concluded that diversity in C.abortus genotyping is high in two regions.
Collapse
|
11
|
White RT, Legione AR, Taylor-Brown A, Fernandez CM, Higgins DP, Timms P, Jelocnik M. Completing the Genome Sequence of Chlamydia pecorum Strains MC/MarsBar and DBDeUG: New Insights into This Enigmatic Koala ( Phascolarctos cinereus) Pathogen. Pathogens 2021; 10:1543. [PMID: 34959498 PMCID: PMC8703710 DOI: 10.3390/pathogens10121543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
Chlamydia pecorum, an obligate intracellular pathogen, causes significant morbidity and mortality in livestock and the koala (Phascolarctos cinereus). A variety of C. pecorum gene-centric molecular studies have revealed important observations about infection dynamics and genetic diversity in both koala and livestock hosts. In contrast to a variety of C. pecorum molecular studies, to date, only four complete and 16 draft genomes have been published. Of those, only five draft genomes are from koalas. Here, using whole-genome sequencing and a comparative genomics approach, we describe the first two complete C. pecorum genomes collected from diseased koalas. A de novo assembly of DBDeUG_2018 and MC/MarsBar_2018 resolved the chromosomes and chlamydial plasmids each as single, circular contigs. Robust phylogenomic analyses indicate biogeographical separation between strains from northern and southern koala populations, and between strains infecting koala and livestock hosts. Comparative genomics between koala strains identified new, unique, and shared loci that accumulate single-nucleotide polymorphisms and separate between northern and southern, and within northern koala strains. Furthermore, we predicted novel type III secretion system effectors. This investigation constitutes a comprehensive genome-wide comparison between C. pecorum from koalas and provides improvements to annotations of a C. pecorum reference genome. These findings lay the foundations for identifying and understanding host specificity and adaptation behind chlamydial infections affecting koalas.
Collapse
Affiliation(s)
- Rhys T. White
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
| | - Alistair R. Legione
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Alyce Taylor-Brown
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Cristina M. Fernandez
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (C.M.F.); (D.P.H.)
| | - Damien P. Higgins
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (C.M.F.); (D.P.H.)
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
| | - Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
| |
Collapse
|
12
|
Stalder S, Marti H, Borel N, Vogler BR, Pesch T, Prähauser B, Wencel P, Laroucau K, Albini S. Falcons From the United Arab Emirates Infected With Chlamydia psittaci/ C abortus Intermediates Specified as Chlamydia buteonis by Polymerase Chain Reaction. J Avian Med Surg 2021; 35:333-340. [PMID: 34677032 DOI: 10.1647/20-00050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chlamydiaceae are obligate intracellular bacteria with a broad host range. Several studies have found chlamydial species that are genetically intermediate between Chlamydia psittaci and Chlamydia abortus in various avian species. One of these intermediate Chlamydia species, found in a red-shouldered hawk (Buteo lineatus), was recently classified as a new species Chlamydia buteonis. This newly described Chlamydia species has, so far, only been reported in hawks exhibiting clinical signs of conjunctivitis, dyspnea, and diarrhea. In the present study, fecal samples of 5 gyrfalcons (Falco rusticolus), 3 gyr/peregrine falcon hybrids (Falco rusticolus × Falco peregrinus), and 15 falcons of unknown species presented to falcon clinics on the Arabian Peninsula were shipped to the Vetsuisse Faculty, University of Zurich (Zurich, Switzerland), for examination for the presence of Chlamydiaceae. A step-wise diagnostic approach was performed to identify the chlamydial species involved. Chlamydiaceae were detected in 21/23 falcons by a family-specific real-time quantitative PCR (qPCR). Further identification with a 23S ribosomal RNA-based microarray assay and 16S conventional PCR and sequencing yielded inconclusive results, indicating the presence of an intermediate Chlamydia species. Because none of the falcons tested positive for Chlamydia psittaci by specific qPCR, all 23 samples were subjected to a Chlamydia buteonis-specific qPCR, which was positive in 16/23 samples. Detailed information regarding clinical history was available for 8 falcons admitted to a falcon clinic in Dubai, United Arab Emirates. Six of those birds that were presented to the clinic because of loss of performance and poor general condition, including vomiting and diarrhea, were positive for C buteonis. In 2 birds without clinical disease signs admitted for a routine health examination, 1 was positive for C buteonis, and 1 was negative. It is yet unknown whether Chlamydia buteonis causes disease in birds, but the findings in this study indicate that Chlamydia buteonis may be an infectious pathogen in falcon species.
Collapse
Affiliation(s)
- Sandro Stalder
- National Reference Center for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland,
| | - Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Barbara Renate Vogler
- National Reference Center for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Theresa Pesch
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Barbara Prähauser
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Peter Wencel
- Al Aseefa Falcon Hospital, Nad Al Sheba, Dubai, United Arab Emirates
| | - Karine Laroucau
- Bacterial Zoonoses Unit, Animal Health Laboratory, University Paris-Est, Anses, 94706 Maisons-Alfort Cedex, France
| | - Sarah Albini
- National Reference Center for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
13
|
Reliable and Sensitive Nested PCR for the Detection of Chlamydia in Sputum. Microorganisms 2021; 9:microorganisms9050935. [PMID: 33925646 PMCID: PMC8145989 DOI: 10.3390/microorganisms9050935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022] Open
Abstract
Chlamydia are Gram-negative, intracellular pathogens colonizing epithelial mucosa. They cause primarily atypical pneumonia and have recently been associated with chronic diseases. Diagnostics relies almost exclusively on serological methods; PCR tests are used rarely because in patients with positive ELISA, it is nearly impossible to identify chlamydial DNA. This paradox is associated with DNA degradation in sputum samples, low abundance, and low sensitivity of PCR systems. In a newly designed and validated “nested” PCR (NPCR) assay, it was possible to amplify DNA of Chlamydia known to infect humans in 31% samples. The reliability of the assay was confirmed by DNA sequencing, and all PCR products belonged exclusively to the Chlamydiales, mainly recognized as Chlamydia pneumoniae. Three samples were related to Ca. Rhabdochlamydia porcellionis and Ca. Renichlamydia lutjani, which infect arthropods. In one case, samples were taken from sick individual, indicating the potential as a human pathogen.
Collapse
|
14
|
Longbottom D, Livingstone M, Ribeca P, Beeckman DSA, van der Ende A, Pannekoek Y, Vanrompay D. Whole genome de novo sequencing and comparative genomic analyses suggests that Chlamydia psittaci strain 84/2334 should be reclassified as Chlamydia abortus species. BMC Genomics 2021; 22:159. [PMID: 33676404 PMCID: PMC7937271 DOI: 10.1186/s12864-021-07477-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chlamydia abortus and Chlamydia psittaci are important pathogens of livestock and avian species, respectively. While C. abortus is recognized as descended from C. psittaci species, there is emerging evidence of strains that are intermediary between the two species, suggesting they are recent evolutionary ancestors of C. abortus. Such strains include C. psittaci strain 84/2334 that was isolated from a parrot. Our aim was to classify this strain by sequencing its genome and explore its evolutionary relationship to both C. abortus and C. psittaci. RESULTS In this study, methods based on multi-locus sequence typing (MLST) of seven housekeeping genes and on typing of five species discriminant proteins showed that strain 84/2334 clustered with C. abortus species. Furthermore, whole genome de novo sequencing of the strain revealed greater similarity to C. abortus in terms of GC content, while 16S rRNA and whole genome phylogenetic analysis, as well as network and recombination analysis showed that the strain clusters more closely with C. abortus strains. The analysis also suggested a closer evolutionary relationship between this strain and the major C. abortus clade, than to two other intermediary avian C. abortus strains or C. psittaci strains. Molecular analyses of genes (polymorphic membrane protein and transmembrane head protein genes) and loci (plasticity zone), found in key virulence-associated regions that exhibit greatest diversity within and between chlamydial species, reveal greater diversity than present in sequenced C. abortus genomes as well as similar features to both C. abortus and C. psittaci species. The strain also possesses an extrachromosomal plasmid, as found in most C. psittaci species but absent from all sequenced classical C. abortus strains. CONCLUSION Overall, the results show that C. psittaci strain 84/2334 clusters very closely with C. abortus strains, and are consistent with the strain being a recent C. abortus ancestral species. This suggests that the strain should be reclassified as C. abortus. Furthermore, the identification of a C. abortus strain bearing an extra-chromosomal plasmid has implications for plasmid-based transformation studies to investigate gene function as well as providing a potential route for the development of a next generation vaccine to protect livestock from C. abortus infection.
Collapse
Affiliation(s)
- David Longbottom
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK.
| | - Morag Livingstone
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| | - Paolo Ribeca
- Biomathematics and Statistics Scotland, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Delphine Sylvie Anne Beeckman
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium.,Current address: BASF Belgium Coordination Center CommV - Innovation Center Gent, Ghent, Belgium
| | - Arie van der Ende
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Yvonne Pannekoek
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Daisy Vanrompay
- Department of Animal Science and Aquatic Ecology, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| |
Collapse
|
15
|
Hölzer M, Barf LM, Lamkiewicz K, Vorimore F, Lataretu M, Favaroni A, Schnee C, Laroucau K, Marz M, Sachse K. Comparative Genome Analysis of 33 Chlamydia Strains Reveals Characteristic Features of Chlamydia Psittaci and Closely Related Species. Pathogens 2020; 9:E899. [PMID: 33126635 PMCID: PMC7694038 DOI: 10.3390/pathogens9110899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
To identify genome-based features characteristic of the avian and human pathogen Chlamydia(C.) psittaci and related chlamydiae, we analyzed whole-genome sequences of 33 strains belonging to 12 species. Using a novel genome analysis tool termed Roary ILP Bacterial Annotation Pipeline (RIBAP), this panel of strains was shown to share a large core genome comprising 784 genes and representing approximately 80% of individual genomes. Analyzing the most variable genomic sites, we identified a set of features of C. psittaci that in its entirety is characteristic of this species: (i) a relatively short plasticity zone of less than 30,000 nt without a tryptophan operon (also in C. abortus, C. avium, C. gallinacea, C. pneumoniae), (ii) a characteristic set of of Inc proteins comprising IncA, B, C, V, X, Y (with homologs in C. abortus, C. caviae and C. felis as closest relatives), (iii) a 502-aa SinC protein, the largest among Chlamydia spp., and (iv) an elevated number of Pmp proteins of subtype G (14 in C. psittaci, 14 in Cand. C. ibidis). In combination with future functional studies, the common and distinctive criteria revealed in this study provide important clues for understanding the complexity of host-specific behavior of individual Chlamydia spp.
Collapse
Affiliation(s)
- Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; (M.H.); (L.-M.B.); (K.L.); (M.L.); (M.M.)
| | - Lisa-Marie Barf
- RNA Bioinformatics and High-Throughput Analysis, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; (M.H.); (L.-M.B.); (K.L.); (M.L.); (M.M.)
| | - Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; (M.H.); (L.-M.B.); (K.L.); (M.L.); (M.M.)
| | - Fabien Vorimore
- Animal Health Laboratory, Bacterial Zoonoses Unit, University Paris-Est, Anses, 94706 Maisons-Alfort, France; (F.V.); (K.L.)
| | - Marie Lataretu
- RNA Bioinformatics and High-Throughput Analysis, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; (M.H.); (L.-M.B.); (K.L.); (M.L.); (M.M.)
| | - Alison Favaroni
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), 07743 Jena, Germany; (A.F.); (C.S.)
| | - Christiane Schnee
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), 07743 Jena, Germany; (A.F.); (C.S.)
| | - Karine Laroucau
- Animal Health Laboratory, Bacterial Zoonoses Unit, University Paris-Est, Anses, 94706 Maisons-Alfort, France; (F.V.); (K.L.)
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; (M.H.); (L.-M.B.); (K.L.); (M.L.); (M.M.)
| | - Konrad Sachse
- RNA Bioinformatics and High-Throughput Analysis, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; (M.H.); (L.-M.B.); (K.L.); (M.L.); (M.M.)
| |
Collapse
|
16
|
Occurrence of Chlamydiaceae in Raptors and Crows in Switzerland. Pathogens 2020; 9:pathogens9090724. [PMID: 32887370 PMCID: PMC7558692 DOI: 10.3390/pathogens9090724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 12/26/2022] Open
Abstract
Bacteria of the family Chlamydiaceae are globally disseminated and able to infect many bird species. So far, 11 species of Chlamydia have been detected in wild birds, and several studies found chlamydial strains classified as genetically intermediate between Chlamydia (C.) psittaci and C.abortus. Recently, a group of these intermediate strains was shown to form a separate species, i.e., C.buteonis. In the present study, 1128 samples from 341 raptors of 16 bird species and 253 corvids representing six species were examined using a stepwise diagnostic approach. Chlamydiaceae DNA was detected in 23.7% of the corvids and 5.9% of the raptors. In corvids, the most frequently detected Chlamydia species was C.psittaci of outer membrane protein A (ompA) genotype 1V, which is known to have a host preference for corvids. The most frequently detected ompA genotype in raptors was M56. Furthermore, one of the raptors harbored C.psittaci 1V, and two others carried genotype A. C.buteonis was not detected in the bird population investigated, so it remains unknown whether this species occurs in Switzerland. The infection rate of Chlamydiaceae in corvids was high compared to rates reported in other wild bird species, but neither Chlamydiaceae-positive corvids nor raptors showed overt signs of disease. Since the Chlamydiaceae of both, raptors and crows were identified as C.psittaci and all C.psittaci genotypes are considered to be zoonotic, it can be suggested that raptors and crows pose a potential hazard to the health of their handlers.
Collapse
|
17
|
Origin of OXA-23 Variant OXA-239 from a Recently Emerged Lineage of Acinetobacter baumannii International Clone V. mSphere 2020; 5:5/1/e00801-19. [PMID: 31915222 PMCID: PMC6952199 DOI: 10.1128/msphere.00801-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A. baumannii is a major cause of nosocomial infections all over the world. Although many isolates from developed countries have been studied in terms of their genome sequence, isolates from Latin America have been much less studied. In this study, using a population genomics approach considering the whole genomes of 148 isolates, we describe the recent emergence of the lineage ST758 endemic to Latin America and the inception of the OXA-239 carbapenemase. Our study highlights the urgent need to investigate recently emerged lineages of this species in Latin America and elsewhere, as these might harbor novel antibiotic resistance genes. Over the last few decades, carbapenemase-producing Acinetobacter baumannii has become a major cause of nosocomial infections all over the world. However, the genome identity of lineages of this species in Latin America has not been studied as much as in developed countries. Here, through a population genomics approach considering the whole genomes of 148 isolates (almost 40 from Mexico and Honduras), we describe the recent emergence of the lineage sequence type 758 (ST758), which belongs to the international clone V and has spread out to Canada, Mexico, Honduras, and Colombia. Notably, this lineage was found to coexist with other A. baumannii lineages in hospitals in Mexico and Honduras. Isolates from this lineage show considerable variation in antibiotic resistance profiles, but most of them are resistant to carbapenems. Moreover, we found a variety of acquired oxacillinase (OXA) families within this lineage and tracked the very recent inception, and subsequent horizontal transmission, of the OXA-239 carbapenemase. This work highlights the urgent need to investigate recently emerged lineages of this species in Latin America and elsewhere, as these might harbor novel antibiotic resistance genes. IMPORTANCEA. baumannii is a major cause of nosocomial infections all over the world. Although many isolates from developed countries have been studied in terms of their genome sequence, isolates from Latin America have been much less studied. In this study, using a population genomics approach considering the whole genomes of 148 isolates, we describe the recent emergence of the lineage ST758 endemic to Latin America and the inception of the OXA-239 carbapenemase. Our study highlights the urgent need to investigate recently emerged lineages of this species in Latin America and elsewhere, as these might harbor novel antibiotic resistance genes.
Collapse
|
18
|
Mishra S, Rastogi YP, Jabin S, Kaur P, Amir M, Khatun S. A deep learning ensemble for function prediction of hypothetical proteins from pathogenic bacterial species. Comput Biol Chem 2019; 83:107147. [PMID: 31698160 DOI: 10.1016/j.compbiolchem.2019.107147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 01/06/2023]
Abstract
Protein function prediction is a crucial task in the post-genomics era due to their diverse irreplaceable roles in a biological system. Traditional methods involved cost-intensive and time-consuming molecular biology techniques but they proved to be ineffective after the outburst of sequencing data through the advent of cost-effective and advanced sequencing techniques. To manage the pace of annotation with that of data generation, there is a shift to computational approaches which are based on homology, sequence and structure-based features, protein-protein interaction networks, phylogenetic profiles, and physicochemical properties, etc. A combination of these features has proven to be promising for protein function prediction in terms of improving prediction accuracy. In the present work, we have employed a combination of features based on sequence, physicochemical property, subsequence and annotation features with a total of 9890 features extracted and/or calculated for 171,212 reviewed prokaryotic proteins of 9 bacterial phyla from UniProtKB, to train a supervised deep learning ensemble model with the aim to categorize a bacterial hypothetical/unreviewed protein's function into 1739 GO terms as functional classes. The proposed system being fully dedicated to bacterial organisms is a novel attempt amongst various existing machine learning based protein function prediction systems based on mixed organisms. Experimental results demonstrate the success of the proposed deep learning ensemble model based on deep neural network method with F1 measure of 0.7912 on the prepared Test dataset 1 of reviewed proteins.
Collapse
Affiliation(s)
- Sarthak Mishra
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, Delhi, India
| | - Yash Pratap Rastogi
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, Delhi, India
| | - Suraiya Jabin
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, Delhi, India.
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, 110 029, Delhi, India
| | - Mohammad Amir
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, Delhi, India
| | - Shabnam Khatun
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, Delhi, India
| |
Collapse
|
19
|
Chlamydia buteonis, a new Chlamydia species isolated from a red-shouldered hawk. Syst Appl Microbiol 2019; 42:125997. [PMID: 31257045 DOI: 10.1016/j.syapm.2019.06.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/27/2019] [Accepted: 06/01/2019] [Indexed: 11/23/2022]
Abstract
Chlamydiaceae are obligate intracellular bacterial pathogens for humans and animals. A recent study highlighted that a Chlamydiaceae intermediary between C. psittaci and C. abortus can infect hawks. Here, an isolate was obtained upon passage of cloacal and conjunctival sac material collected from a female hatch-year red-shouldered hawk (Buteo lineatus) in cultured cells. The diseased bird, one of 12 birds housed in a rehabilitation center, developed conjunctivitis and later died. Swabs from both sites tested positive for Chlamydia using the QuickVue Chlamydia test. The isolate, named RSHA, tested negative in qPCR assays specific for C. psittaci and C. abortus, respectively. Analysis of the 16S rRNA, 23S rRNA and whole genome sequences as well as MLST, ANIb and TETRA values reveal that C. psittaci and C. abortus are the closest relatives of RSHA. However, the overall results strongly suggest a phylogenetic intermediate position between these two species. Therefore, we propose the introduction of a new species designated Chlamydia buteonis with RSHAT as the type strain.
Collapse
|
20
|
Graña-Miraglia L, Arreguín-Pérez C, López-Leal G, Muñoz A, Pérez-Oseguera A, Miranda-Miranda E, Cossío-Bayúgar R, Castillo-Ramírez S. Phylogenomics picks out the par excellence markers for species phylogeny in the genus Staphylococcus. PeerJ 2018; 6:e5839. [PMID: 30386709 PMCID: PMC6203942 DOI: 10.7717/peerj.5839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022] Open
Abstract
Although genome sequencing has become a very promising approach to conduct microbial taxonomy, few labs have the resources to afford this especially when dealing with data sets of hundreds to thousands of isolates. The goal of this study was to identify the most adequate loci for inferring the phylogeny of the species within the genus Staphylococcus; with the idea that those who cannot afford whole genome sequencing can use these loci to carry out species assignation confidently. We retrieved 177 orthologous groups (OGs) by using a genome-based phylogeny and an average nucleotide identity analysis. The top 26 OGs showed topologies similar to the species tree and the concatenation of them yielded a topology almost identical to that of the species tree. Furthermore, a phylogeny of just the top seven OGs could be used for species assignment. We sequenced four staphylococcus isolates to test the 26 OGs and found that these OGs were far superior to commonly used markers for this genus. On the whole, our procedure allowed identification of the most adequate markers for inferring the phylogeny within the genus Staphylococcus. We anticipate that this approach will be employed for the identification of the most suitable markers for other bacterial genera and can be very helpful to sort out poorly classified genera.
Collapse
Affiliation(s)
- Lucia Graña-Miraglia
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - César Arreguín-Pérez
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec, Morelos, Mexico
| | - Gamaliel López-Leal
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alan Muñoz
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Angeles Pérez-Oseguera
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Estefan Miranda-Miranda
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec, Morelos, Mexico
| | - Raquel Cossío-Bayúgar
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec, Morelos, Mexico
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
21
|
Wen Y, Chen Y, Li L, Xu M, Tan Y, Li Y, Wang C, Chen Q, Kuang X, Wu Y. Localization and characterization of a putative cysteine desulfurase in Chlamydia psittaci. J Cell Biochem 2018; 120:4409-4422. [PMID: 30260037 DOI: 10.1002/jcb.27727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022]
Abstract
Chlamydia psittaci is an obligate intracellular pathogen with a biphasic developmental life cycle. It is auxotrophic for a variety of essential metabolites and obtains amino acids from eukaryotic host cells. Chlamydia can develop inside host cells within chlamydial inclusions. A pathway secreting proteins from inclusions into the host cellular cytoplasm is the type III secretion system (T3SS). The T3SS is universal among several Gram-negative bacteria. Here, we show that CPSIT_0959 of C. psittaci is expressed midcycle and secreted into the infected cellular cytoplasm via the T3SS. Recombinant CPSIT_0959 possesses cysteine desulfurase and PLP-binding activity, which removes sulfur from cysteine to produce alanine, and helps chlamydial replication. Our study shows that CPSIT_0959 improve the infectivity of offspring elementary bodies and seems to promote the replication by its product. This phenomenon has inhibited by the PLP-dependent enzymes inhibitor. Moreover, CPSIT_0959 increased expression of Bim and tBid, and decreased the mitochondrial membrane potential of host mitochondria to induce apoptosis in the latecycle for release of offspring. These results demonstrate that CPSIT_0959 has cysteine desulfurase and PLP-binding activity and is likely to contribute to apoptosis of the infected cells via a mitochondria-mediated pathway to improve the infectivity of progeny.
Collapse
Affiliation(s)
- Yating Wen
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Yanbo Chen
- Department of Clinical Laboratory, Jiangmen Wuyi Traditional Chinese Medicine Hospital, Jiangmen, China
| | - Li Li
- Toxicology Laboratory, Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Man Xu
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Yuan Tan
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Yumeng Li
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Qian Chen
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Xingxing Kuang
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| |
Collapse
|
22
|
Borel N, Polkinghorne A, Pospischil A. A Review on Chlamydial Diseases in Animals: Still a Challenge for Pathologists? Vet Pathol 2018; 55:374-390. [PMID: 29310550 DOI: 10.1177/0300985817751218] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chlamydiae have a worldwide distribution causing a wide range of diseases in human hosts, livestock, and companion animals as well as in wildlife and exotic species. Moreover, they can persist in their hosts as asymptomatic infections for extended periods of time. The introduction of molecular techniques has revolutionized the Chlamydia field by expanding the host range of known chlamydial species but also by discovering new species and even new families of bacteria in the broader order Chlamydiales. The wide range of hosts, diseases, and tissues affected by chlamydiae complicate the diagnosis such that standard diagnostic approaches for these bacteria are rare. Bacteria of the Chlamydiales order are small and their inclusions are difficult to detect by standard microscopy. With the exception of avian and ovine chlamydiosis, macroscopic and/or histologic changes might not be pathognomic or indicative for a chlamydial infection or even not present at all. Moreover, detection of chlamydial DNA in specimens in the absence of other methods or related pathological lesions questions the significance of such findings. The pathogenic potential of the majority of recently identified Chlamydia-related bacteria remains largely unknown and awaits investigation through experimental or natural infection models including histomorphological characterization of associated lesions. This review aims to summarize the historical background and the most important developments in the field of animal chlamydial research in the past 5 years with a special focus on pathology. It will summarize the current nomenclature, present critical thoughts about diagnostics, and give an update on chlamydial infections in domesticated animals such as livestock, companion animals and birds, as well as free-ranging and captive wild animals such as reptiles, fish, and marsupials.
Collapse
Affiliation(s)
- Nicole Borel
- 1 Department of Pathobiology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Adam Polkinghorne
- 2 Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Andreas Pospischil
- 1 Department of Pathobiology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Graña-Miraglia L, Lozano LF, Velázquez C, Volkow-Fernández P, Pérez-Oseguera Á, Cevallos MA, Castillo-Ramírez S. Rapid Gene Turnover as a Significant Source of Genetic Variation in a Recently Seeded Population of a Healthcare-Associated Pathogen. Front Microbiol 2017; 8:1817. [PMID: 28979253 PMCID: PMC5611417 DOI: 10.3389/fmicb.2017.01817] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022] Open
Abstract
Genome sequencing has been useful to gain an understanding of bacterial evolution. It has been used for studying the phylogeography and/or the impact of mutation and recombination on bacterial populations. However, it has rarely been used to study gene turnover at microevolutionary scales. Here, we sequenced Mexican strains of the human pathogen Acinetobacter baumannii sampled from the same locale over a 3 year period to obtain insights into the microevolutionary dynamics of gene content variability. We found that the Mexican A. baumannii population was recently founded and has been emerging due to a rapid clonal expansion. Furthermore, we noticed that on average the Mexican strains differed from each other by over 300 genes and, notably, this gene content variation has accrued more frequently and faster than the accumulation of mutations. Moreover, due to its rapid pace, gene content variation reflects the phylogeny only at very short periods of time. Additionally, we found that the external branches of the phylogeny had almost 100 more genes than the internal branches. All in all, these results show that rapid gene turnover has been of paramount importance in producing genetic variation within this population and demonstrate the utility of genome sequencing to study alternative forms of genetic variation.
Collapse
Affiliation(s)
- Lucía Graña-Miraglia
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Luis F Lozano
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Consuelo Velázquez
- Departamento de Enfermedades Infecciosas, Instituto Nacional de CancerologíaMexico, Mexico
| | | | - Ángeles Pérez-Oseguera
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Miguel A Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| |
Collapse
|
24
|
Seth-Smith HMB, Busó LS, Livingstone M, Sait M, Harris SR, Aitchison KD, Vretou E, Siarkou VI, Laroucau K, Sachse K, Longbottom D, Thomson NR. European Chlamydia abortus livestock isolate genomes reveal unusual stability and limited diversity, reflected in geographical signatures. BMC Genomics 2017; 18:344. [PMID: 28472926 PMCID: PMC5415952 DOI: 10.1186/s12864-017-3657-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/24/2017] [Indexed: 11/15/2022] Open
Abstract
Background Chlamydia abortus (formerly Chlamydophila abortus) is an economically important livestock pathogen, causing ovine enzootic abortion (OEA), and can also cause zoonotic infections in humans affecting pregnancy outcome. Large-scale genomic studies on other chlamydial species are giving insights into the biology of these organisms but have not yet been performed on C. abortus. Our aim was to investigate a broad collection of European isolates of C. abortus, using next generation sequencing methods, looking at diversity, geographic distribution and genome dynamics. Results Whole genome sequencing was performed on our collection of 57 C. abortus isolates originating primarily from the UK, Germany, France and Greece, but also from Tunisia, Namibia and the USA. Phylogenetic analysis of a total of 64 genomes shows a deep structural division within the C. abortus species with a major clade displaying limited diversity, in addition to a branch carrying two more distantly related Greek isolates, LLG and POS. Within the major clade, seven further phylogenetic groups can be identified, demonstrating geographical associations. The number of variable nucleotide positions across the sampled isolates is significantly lower than those published for C. trachomatis and C. psittaci. No recombination was identified within C. abortus, and no plasmid was found. Analysis of pseudogenes showed lineage specific loss of some functions, notably with several Pmp and TMH/Inc proteins predicted to be inactivated in many of the isolates studied. Conclusions The diversity within C. abortus appears to be much lower compared to other species within the genus. There are strong geographical signatures within the phylogeny, indicating clonal expansion within areas of limited livestock transport. No recombination has been identified within this species, showing that different species of Chlamydia may demonstrate different evolutionary dynamics, and that the genome of C. abortus is highly stable. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3657-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- H M B Seth-Smith
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.,Current Address: Universitätsspital Basel, 4031, Basel, Switzerland.,Current Address: Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Leonor Sánchez Busó
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - M Livingstone
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| | - M Sait
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK.,Current Address: Microbiological Diagnostic Unit, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - S R Harris
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - K D Aitchison
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| | - Evangelia Vretou
- Retired: Formerly Laboratory of Biotechnology, Department of Microbiology, Hellenic Pasteur Institute, Athens, 115 21, Greece
| | - V I Siarkou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - K Laroucau
- Anses, Animal Health Laboratory, Bacterial Zoonoses Unit, University Paris-Est, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France
| | - K Sachse
- Friedrich-Loeffler-Institute (Federal Research Institute for Animal Health), Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743, Jena, Germany.,Current Address: RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich-Schiller-Universität, Leutragraben 1, 07743, Jena, Germany
| | - D Longbottom
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, EH26 0PZ, UK
| | - N R Thomson
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
25
|
Marti H, Kim H, Joseph SJ, Dojiri S, Read TD, Dean D. Tet(C) Gene Transfer between Chlamydia suis Strains Occurs by Homologous Recombination after Co-infection: Implications for Spread of Tetracycline-Resistance among Chlamydiaceae. Front Microbiol 2017; 8:156. [PMID: 28223970 PMCID: PMC5293829 DOI: 10.3389/fmicb.2017.00156] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
Chlamydia suis is a swine pathogen that has also recently been found to cause zoonotic infections of the human eye, pharynx, and gastrointestinal tract. Many strains contain a tetracycline class C gene [tet(C)] cassette that confers tetracycline resistance. The cassette was likely originally acquired by horizontal gene transfer from a Gram-negative donor after the introduction of tetracycline into animal feed in the 1950s. Various research groups have described the capacity for different Chlamydia species to exchange DNA by homologous recombination. Since over 90% of C. suis strains are tetracycline resistant, they represent a potential source for antibiotic-resistance spread within and between Chlamydiaceae species. Here, we examined the genetics of tet(C)-transfer among C. suis strains. Tetracycline-sensitive C. suis strain S45 was simultaneously or sequentially co-infected with tetracycline-resistant C. suis strains in McCoy cells. Potential recombinants were clonally purified by a harvest assay derived from the classic plaque assay. C. suis strain Rogers132, lacking transposases IS200 and IS605, was the most efficient donor, producing two unique recombinants detected in three of the 56 (5.4%) clones screened. Recombinants were found to have a minimal inhibitory concentration (MIC) of 8-16 μg/mL for tetracycline. Resistance remained stable over 10 passages as long as recombinants were initially grown in tetracycline at twice the MIC of S45 (0.032 μg/mL). Genomic analysis revealed that tet(C) had integrated into the S45 genome by homologous recombination at two unique sites depending on the recombinant: a 55 kb exchange between nrqF and pckG, and a 175 kb exchange between kdsA and cysQ. Neither site was associated with inverted repeats or motifs associated with recombination hotspots. Our findings show that cassette transfer into S45 has low frequency, does not require IS200/IS605 transposases, is stable if initially grown in tetracycline, and results in multiple genomic configurations. We provide a model for stable cassette transfer to better understand the capability for cassette acquisition by Chlamydiaceae species that infect humans, a matter of public health importance.
Collapse
Affiliation(s)
- Hanna Marti
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, Oakland CA, USA
| | - Hoyon Kim
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, Oakland CA, USA
| | - Sandeep J Joseph
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, AtlantaGA, USA; Department of Human Genetics, Emory University School of Medicine, AtlantaGA, USA
| | - Stacey Dojiri
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, Oakland CA, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, AtlantaGA, USA; Department of Human Genetics, Emory University School of Medicine, AtlantaGA, USA
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, OaklandCA, USA; Joint Graduate Program in Bioengineering, University of California, San Francisco, San FranciscoCA, USA; Joint Graduate Program in Bioengineering, University of California, Berkeley, BerkeleyCA, USA; Departments of Medicine and Pediatrics, University of California, San Francisco, San FranciscoCA, USA
| |
Collapse
|
26
|
Joseph SJ, Marti H, Didelot X, Read TD, Dean D. Tetracycline Selective Pressure and Homologous Recombination Shape the Evolution of Chlamydia suis: A Recently Identified Zoonotic Pathogen. Genome Biol Evol 2016; 8:2613-23. [PMID: 27576537 PMCID: PMC5010913 DOI: 10.1093/gbe/evw182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2016] [Indexed: 12/22/2022] Open
Abstract
Species closely related to the human pathogen Chlamydia trachomatis (Ct) have recently been found to cause zoonotic infections, posing a public health threat especially in the case of tetracycline resistant Chlamydia suis (Cs) strains. These strains acquired a tet(C)-containing cassette via horizontal gene transfer (HGT). Genomes of 11 Cs strains from various tissues were sequenced to reconstruct evolutionary pathway(s) for tet(C) HGT. Cs had the highest recombination rate of Chlamydia species studied to date. Admixture occurred among Cs strains and with Chlamydia muridarum but not with Ct Although in vitro tet(C) cassette exchange with Ct has been documented, in vivo evidence may require examining human samples from Ct and Cs co-infected sites. Molecular-clock dating indicated that ancestral clades of resistant Cs strains predated the 1947 discovery of tetracycline, which was subsequently used in animal feed. The cassette likely spread throughout Cs strains by homologous recombination after acquisition from an external source, and our analysis suggests Betaproteobacteria as the origin. Selective pressure from tetracycline may be responsible for recent bottlenecks in Cs populations. Since tetracycline is an important antibiotic for treating Ct, zoonotic infections at mutual sites of infection indicate the possibility for cassette transfer and major public health repercussions.
Collapse
Affiliation(s)
- Sandeep J Joseph
- Department of Medicine, Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hanna Marti
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom
| | - Timothy D Read
- Department of Medicine, Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA Joint Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA
| |
Collapse
|
27
|
Australian human and parrot Chlamydia psittaci strains cluster within the highly virulent 6BC clade of this important zoonotic pathogen. Sci Rep 2016; 6:30019. [PMID: 27488134 PMCID: PMC4973220 DOI: 10.1038/srep30019] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/27/2016] [Indexed: 12/02/2022] Open
Abstract
Chlamydia psittaci is an avian pathogen and zoonotic agent of atypical pneumonia. The most pathogenic C. psittaci strains cluster into the 6BC clade, predicted to have recently emerged globally. Exposure to infected parrots is a risk factor with limited evidence also of an indirect exposure risk. Genome sequencing was performed on six Australian human and a single avian C. psittaci strain isolated over a 9 year period. Only one of the five human patients had explicit psittacine contact. Genomics analyses revealed that the Australian C. psittaci strains are remarkably similar, clustering tightly within the C. psittaci 6BC clade suggested to have been disseminated by South America parrot importation. Molecular clock analysis using the newly sequenced C. psittaci genomes predicted the emergence of the 6BC clade occurring approximately 2,000 years ago. These findings reveal the potential for an Australian natural reservoir of C. psittaci 6BC strains. These strains can also be isolated from seriously ill patients without explicit psittacine contact. The apparent recent and global spread of C. psittaci 6BC strains raises important questions over how this happened. Further studies may reveal whether the dissemination of this important zoonotic pathogen is linked to Australian parrot importation rather than parrots from elsewhere.
Collapse
|
28
|
López-Leal G, Cevallos MA, Castillo-Ramírez S. Evolution of a Sigma Factor: An All-In-One of Gene Duplication, Horizontal Gene Transfer, Purifying Selection, and Promoter Differentiation. Front Microbiol 2016; 7:581. [PMID: 27199915 PMCID: PMC4843759 DOI: 10.3389/fmicb.2016.00581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/08/2016] [Indexed: 01/11/2023] Open
Abstract
Sigma factors are an essential part of bacterial gene regulation and have been extensively studied as far as their molecular mechanisms and protein structure are concerned. However, their molecular evolution, especially for the alternative sigma factors, is poorly understood. Here, we analyze the evolutionary forces that have shaped the rpoH sigma factors within the alphaproteobacteria. We found that an ancient duplication gave rise to two major groups of rpoH sigma factors and that after this event horizontal gene transfer (HGT) occurred in rpoH1 group. We also noted that purifying selection has differentially affected distinct parts of the gene; singularly, the gene segment that encodes the region 4.2, which interacts with the −35 motif of the RpoH-dependent genes, has been under relaxed purifying selection. Furthermore, these two major groups are clearly differentiated from one another regarding their promoter selectivity, as rpoH1 is under the transcriptional control of σ70 and σ32, whereas rpoH2 is under the transcriptional control of σ24. Our results suggest a scenario in which HGT, gene loss, variable purifying selection and clear promoter specialization occurred after the ancestral duplication event. More generally, our study offers insights into the molecular evolution of alternative sigma factors and highlights the importance of analyzing not only the coding regions but also the promoter regions.
Collapse
Affiliation(s)
- Gamaliel López-Leal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Miguel A Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| |
Collapse
|