1
|
Hartley GA, Okhovat M, Hoyt SJ, Fuller E, Pauloski N, Alexandre N, Alexandrov I, Drennan R, Dubocanin D, Gilbert DM, Mao Y, McCann C, Neph S, Ryabov F, Sasaki T, Storer JM, Svendsen D, Troy W, Wells J, Core L, Stergachis A, Carbone L, O’Neill RJ. Centromeric transposable elements and epigenetic status drive karyotypic variation in the eastern hoolock gibbon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610280. [PMID: 39257810 PMCID: PMC11384015 DOI: 10.1101/2024.08.29.610280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Great apes have maintained a stable karyotype with few large-scale rearrangements; in contrast, gibbons have undergone a high rate of chromosomal rearrangements coincident with rapid centromere turnover. Here we characterize assembled centromeres in the Eastern hoolock gibbon, Hoolock leuconedys (HLE), finding a diverse group of transposable elements (TEs) that differ from the canonical alpha satellites found across centromeres of other apes. We find that HLE centromeres contain a CpG methylation centromere dip region, providing evidence this epigenetic feature is conserved in the absence of satellite arrays; nevertheless, we report a variety of atypical centromeric features, including protein-coding genes and mismatched replication timing. Further, large structural variations define HLE centromeres and distinguish them from other gibbons. Combined with differentially methylated TEs, topologically associated domain boundaries, and segmental duplications at chromosomal breakpoints, we propose that a "perfect storm" of multiple genomic attributes with propensities for chromosome instability shaped gibbon centromere evolution.
Collapse
Affiliation(s)
- Gabrielle A. Hartley
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Savannah J. Hoyt
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Emily Fuller
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nicole Pauloski
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nicolas Alexandre
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Ivan Alexandrov
- Department of Anatomy and Anthropology and Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Israel
| | - Ryan Drennan
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Danilo Dubocanin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - David M. Gilbert
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Yizi Mao
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Christine McCann
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Shane Neph
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Fedor Ryabov
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, CA, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Jessica M. Storer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Derek Svendsen
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | | - Jackson Wells
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Leighton Core
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Andrew Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
- Division of Genetics, Oregon National Primate Research Center, Portland, OR, USA
| | - Rachel J. O’Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| |
Collapse
|
2
|
Brannan EO, Hartley GA, O’Neill RJ. Mechanisms of Rapid Karyotype Evolution in Mammals. Genes (Basel) 2023; 15:62. [PMID: 38254952 PMCID: PMC10815390 DOI: 10.3390/genes15010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Chromosome reshuffling events are often a foundational mechanism by which speciation can occur, giving rise to highly derivative karyotypes even amongst closely related species. Yet, the features that distinguish lineages prone to such rapid chromosome evolution from those that maintain stable karyotypes across evolutionary time are still to be defined. In this review, we summarize lineages prone to rapid karyotypic evolution in the context of Simpson's rates of evolution-tachytelic, horotelic, and bradytelic-and outline the mechanisms proposed to contribute to chromosome rearrangements, their fixation, and their potential impact on speciation events. Furthermore, we discuss relevant genomic features that underpin chromosome variation, including patterns of fusions/fissions, centromere positioning, and epigenetic marks such as DNA methylation. Finally, in the era of telomere-to-telomere genomics, we discuss the value of gapless genome resources to the future of research focused on the plasticity of highly rearranged karyotypes.
Collapse
Affiliation(s)
- Emry O. Brannan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
| | - Gabrielle A. Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
| | - Rachel J. O’Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
3
|
Comaills V, Castellano-Pozo M. Chromosomal Instability in Genome Evolution: From Cancer to Macroevolution. BIOLOGY 2023; 12:671. [PMID: 37237485 PMCID: PMC10215859 DOI: 10.3390/biology12050671] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
The integrity of the genome is crucial for the survival of all living organisms. However, genomes need to adapt to survive certain pressures, and for this purpose use several mechanisms to diversify. Chromosomal instability (CIN) is one of the main mechanisms leading to the creation of genomic heterogeneity by altering the number of chromosomes and changing their structures. In this review, we will discuss the different chromosomal patterns and changes observed in speciation, in evolutional biology as well as during tumor progression. By nature, the human genome shows an induction of diversity during gametogenesis but as well during tumorigenesis that can conclude in drastic changes such as the whole genome doubling to more discrete changes as the complex chromosomal rearrangement chromothripsis. More importantly, changes observed during speciation are strikingly similar to the genomic evolution observed during tumor progression and resistance to therapy. The different origins of CIN will be treated as the importance of double-strand breaks (DSBs) or the consequences of micronuclei. We will also explain the mechanisms behind the controlled DSBs, and recombination of homologous chromosomes observed during meiosis, to explain how errors lead to similar patterns observed during tumorigenesis. Then, we will also list several diseases associated with CIN, resulting in fertility issues, miscarriage, rare genetic diseases, and cancer. Understanding better chromosomal instability as a whole is primordial for the understanding of mechanisms leading to tumor progression.
Collapse
Affiliation(s)
- Valentine Comaills
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
| | - Maikel Castellano-Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
- Genetic Department, Faculty of Biology, University of Seville, 41080 Seville, Spain
| |
Collapse
|
4
|
Barnada SM, Isopi A, Tejada-Martinez D, Goubert C, Patoori S, Pagliaroli L, Tracewell M, Trizzino M. Genomic features underlie the co-option of SVA transposons as cis-regulatory elements in human pluripotent stem cells. PLoS Genet 2022; 18:e1010225. [PMID: 35704668 PMCID: PMC9239442 DOI: 10.1371/journal.pgen.1010225] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/28/2022] [Accepted: 04/28/2022] [Indexed: 01/08/2023] Open
Abstract
Domestication of transposable elements (TEs) into functional cis-regulatory elements is a widespread phenomenon. However, the mechanisms behind why some TEs are co-opted as functional enhancers while others are not are underappreciated. SINE-VNTR-Alus (SVAs) are the youngest group of transposons in the human genome, where ~3,700 copies are annotated, nearly half of which are human-specific. Many studies indicate that SVAs are among the most frequently co-opted TEs in human gene regulation, but the mechanisms underlying such processes have not yet been thoroughly investigated. Here, we leveraged CRISPR-interference (CRISPRi), computational and functional genomics to elucidate the genomic features that underlie SVA domestication into human stem-cell gene regulation. We found that ~750 SVAs are co-opted as functional cis-regulatory elements in human induced pluripotent stem cells. These SVAs are significantly closer to genes and harbor more transcription factor binding sites than non-co-opted SVAs. We show that a long DNA motif composed of flanking YY1/2 and OCT4 binding sites is enriched in the co-opted SVAs and that these two transcription factors bind consecutively on the TE sequence. We used CRISPRi to epigenetically repress active SVAs in stem cell-like NCCIT cells. Epigenetic perturbation of active SVAs strongly attenuated YY1/OCT4 binding and influenced neighboring gene expression. Ultimately, SVA repression resulted in ~3,000 differentially expressed genes, 131 of which were the nearest gene to an annotated SVA. In summary, we demonstrated that SVAs modulate human gene expression, and uncovered that location and sequence composition contribute to SVA domestication into gene regulatory networks.
Collapse
Affiliation(s)
- Samantha M. Barnada
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Genetics, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Andrew Isopi
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Biochemistry and Molecular Pharmacology PhD Program, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Daniela Tejada-Martinez
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Clément Goubert
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Sruti Patoori
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Luca Pagliaroli
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Mason Tracewell
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Biochemistry and Molecular Pharmacology PhD Program, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Soares SC, Eler ES, E Silva CEF, da Silva MNF, Araújo NP, Svartman M, Feldberg E. LINE-1 and SINE-B1 mapping and genome diversification in Proechimys species (Rodentia: Echimyidae). Life Sci Alliance 2022; 5:5/6/e202101104. [PMID: 35304430 PMCID: PMC8932440 DOI: 10.26508/lsa.202101104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
This study aimed to understand the impact of LINE-1 and SINE-B1 retroelements on the architecture and karyotypic diversification of five rodent species of the genus Proechimys from different regions of the Amazon. Karyotype comparisons were performed using fluorescent interspecific in situ hybridization. The L1 and B1 retroelements showed a non-random arrangement and a conserved pattern when the genomes of the five species of Proechimys were compared, including the two cytotypes of Proechimys guyannensis The signal homeology among the chromosomes and the degree of similarity among the formed clusters indicate rearrangements such as fusion/fission, and demonstrates that these retroelements can behave as derived characters shared in Proechimys The differentiated distribution and organization of these retroelements in the karyotypes and in the chromosomal fiber, respectively, may represent a strong indication of their role as generating sources of karyotypic diversity in the genus Proechimys and provide insights into the evolutionary relationships between taxa.
Collapse
Affiliation(s)
- Simone Cardoso Soares
- Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil .,Laboratório de Genética Animal (LGA), Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil.,Universidade do Estado do Amazonas, Manaus, Brazil
| | - Eduardo Schmidt Eler
- Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Carlos Eduardo Faresin E Silva
- Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil.,Laboratório de Genética Animal (LGA), Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | | - Naiara Pereira Araújo
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia de Rondônia campus Jaru, Jaru, Brazil
| | - Marta Svartman
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eliana Feldberg
- Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil.,Laboratório de Genética Animal (LGA), Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| |
Collapse
|
6
|
Chen D, Cremona MA, Qi Z, Mitra RD, Chiaromonte F, Makova KD. Human L1 Transposition Dynamics Unraveled with Functional Data Analysis. Mol Biol Evol 2021; 37:3576-3600. [PMID: 32722770 DOI: 10.1093/molbev/msaa194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Long INterspersed Elements-1 (L1s) constitute >17% of the human genome and still actively transpose in it. Characterizing L1 transposition across the genome is critical for understanding genome evolution and somatic mutations. However, to date, L1 insertion and fixation patterns have not been studied comprehensively. To fill this gap, we investigated three genome-wide data sets of L1s that integrated at different evolutionary times: 17,037 de novo L1s (from an L1 insertion cell-line experiment conducted in-house), and 1,212 polymorphic and 1,205 human-specific L1s (from public databases). We characterized 49 genomic features-proxying chromatin accessibility, transcriptional activity, replication, recombination, etc.-in the ±50 kb flanks of these elements. These features were contrasted between the three L1 data sets and L1-free regions using state-of-the-art Functional Data Analysis statistical methods, which treat high-resolution data as mathematical functions. Our results indicate that de novo, polymorphic, and human-specific L1s are surrounded by different genomic features acting at specific locations and scales. This led to an integrative model of L1 transposition, according to which L1s preferentially integrate into open-chromatin regions enriched in non-B DNA motifs, whereas they are fixed in regions largely free of purifying selection-depleted of genes and noncoding most conserved elements. Intriguingly, our results suggest that L1 insertions modify local genomic landscape by extending CpG methylation and increasing mononucleotide microsatellite density. Altogether, our findings substantially facilitate understanding of L1 integration and fixation preferences, pave the way for uncovering their role in aging and cancer, and inform their use as mutagenesis tools in genetic studies.
Collapse
Affiliation(s)
- Di Chen
- Intercollege Graduate Degree Program in Genetics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Marzia A Cremona
- Department of Statistics, The Pennsylvania State University, University Park, PA.,Department of Operations and Decision Systems, Université Laval, Québec, Canada
| | - Zongtai Qi
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Robi D Mitra
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Francesca Chiaromonte
- Department of Statistics, The Pennsylvania State University, University Park, PA.,EMbeDS, Sant'Anna School of Advanced Studies, Pisa, Italy.,The Huck Institutes of the Life Sciences, Center for Medical Genomics, The Pennsylvania State University, University Park, PA
| | - Kateryna D Makova
- The Huck Institutes of the Life Sciences, Center for Medical Genomics, The Pennsylvania State University, University Park, PA.,Department of Biology, The Pennsylvania State University, University Park, PA
| |
Collapse
|
7
|
Palazzo A, Marsano RM. Transposable elements: a jump toward the future of expression vectors. Crit Rev Biotechnol 2021; 41:792-808. [PMID: 33622117 DOI: 10.1080/07388551.2021.1888067] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Expression vectors (EVs) are artificial nucleic acid molecules with a modular structure that allows for the transcription of DNA sequences of interest in either cellular or cell-free environments. These vectors have emerged as cross-disciplinary tools with multiple applications in an expanding Life Sciences market. The cis-regulatory sequences (CRSs) that control the transcription in EVs are typically sourced from either viruses or from characterized genes. However, the recent advancement in transposable elements (TEs) technology provides attractive alternatives that may enable a significant improvement in the design of EVs. Commonly known as "jumping genes," due to their ability to move between genetic loci, TEs are constitutive components of both eukaryotic and prokaryotic genomes. TEs harbor native CRSs that allow the regulated transcription of transposition-related genes. However, some TE-related CRSs display striking characteristics, which provides the opportunity to reconsider TEs as lead actors in the design of EVs. In this article, we provide a synopsis of the transcriptional control elements commonly found in EVs together with an extensive discussion of their advantages and limitations. We also highlight the latest findings that may allow for the implementation of TE-derived sequences in the EVs feasible, possibly improving existing vectors. By introducing this new concept of TEs as a source of regulatory sequences, we aim to stimulate a profitable discussion of the potential advantages and benefits of developing a new generation of EVs based on the use of TE-derived control sequences.
Collapse
Affiliation(s)
- Antonio Palazzo
- Laboratory of Translational Nanotechnology, "Istituto Tumori Giovanni Paolo II" I.R.C.C.S, Bari, Italy
| | | |
Collapse
|
8
|
Pellestor F, Gaillard JB, Schneider A, Puechberty J, Gatinois V. Chromoanagenesis, the mechanisms of a genomic chaos. Semin Cell Dev Biol 2021; 123:90-99. [PMID: 33608210 DOI: 10.1016/j.semcdb.2021.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Designated under the name of chromoanagenesis, the phenomena of chromothripsis, chromanasynthesis and chromoplexy constitute new types of complex rearrangements, including many genomic alterations localized on a few chromosomal regions, and whose discovery over the last decade has changed our perception about the formation of chromosomal abnormalities and their etiology. Although exhibiting specific features, these new catastrophic mechanisms generally occur within a single cell cycle and their emergence is closely linked to genomic instability. Various non-exclusive exogenous or cellular mechanisms capable of generating chromoanagenesis have been evoked. However, recent experimental data shed light on 2 major processes, which following a defect in the mitotic segregation of chromosomes, can generate a cascade of cellular events leading to chromoanagenesis. These mechanisms are the formation of micronuclei integrating isolated chromosomal material, and the occurrence of chromatin bridges around chromosomal material resulting from telomeric fusions. In both cases, the cellular and molecular mechanisms of fragmentation, repair and transmission of damaged chromosomal material are consistent with the features of chromoanagenesis-related complex chromosomal rearrangements. In this review, we introduce each type of chromoanagenesis, and describe the experimental models that have allowed to validate the existence of chromoanagenesis events and to better understand their cellular mechanisms of formation and transmission, as well as their impact on the stability and the plasticity of the genome.
Collapse
Affiliation(s)
- F Pellestor
- Unit of Chromosomal Genetics and Research Plateform Chromostem, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHU, 371 avenue du Doyen Gaston Giraud, Montpellier Cedex 5 34295, France; INSERM 1183 Unit "Genome and Stem Cell Plasticity in Development and Aging" Institute of Regenerative Medecine and Biotherapies, St Eloi Hospital, Montpellier, France.
| | - J B Gaillard
- Unit of Chromosomal Genetics and Research Plateform Chromostem, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHU, 371 avenue du Doyen Gaston Giraud, Montpellier Cedex 5 34295, France
| | - A Schneider
- Unit of Chromosomal Genetics and Research Plateform Chromostem, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHU, 371 avenue du Doyen Gaston Giraud, Montpellier Cedex 5 34295, France
| | - J Puechberty
- Unit of Chromosomal Genetics and Research Plateform Chromostem, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHU, 371 avenue du Doyen Gaston Giraud, Montpellier Cedex 5 34295, France
| | - V Gatinois
- Unit of Chromosomal Genetics and Research Plateform Chromostem, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHU, 371 avenue du Doyen Gaston Giraud, Montpellier Cedex 5 34295, France; INSERM 1183 Unit "Genome and Stem Cell Plasticity in Development and Aging" Institute of Regenerative Medecine and Biotherapies, St Eloi Hospital, Montpellier, France
| |
Collapse
|
9
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that propagate within genomes. Through diverse invasion strategies, TEs have come to occupy a substantial fraction of nearly all eukaryotic genomes, and they represent a major source of genetic variation and novelty. Here we review the defining features of each major group of eukaryotic TEs and explore their evolutionary origins and relationships. We discuss how the unique biology of different TEs influences their propagation and distribution within and across genomes. Environmental and genetic factors acting at the level of the host species further modulate the activity, diversification, and fate of TEs, producing the dramatic variation in TE content observed across eukaryotes. We argue that cataloging TE diversity and dissecting the idiosyncratic behavior of individual elements are crucial to expanding our comprehension of their impact on the biology of genomes and the evolution of species.
Collapse
Affiliation(s)
- Jonathan N Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| |
Collapse
|
10
|
Co-option of the lineage-specific LAVA retrotransposon in the gibbon genome. Proc Natl Acad Sci U S A 2020; 117:19328-19338. [PMID: 32690705 DOI: 10.1073/pnas.2006038117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Co-option of transposable elements (TEs) to become part of existing or new enhancers is an important mechanism for evolution of gene regulation. However, contributions of lineage-specific TE insertions to recent regulatory adaptations remain poorly understood. Gibbons present a suitable model to study these contributions as they have evolved a lineage-specific TE called LAVA (LINE-AluSz-VNTR-Alu LIKE), which is still active in the gibbon genome. The LAVA retrotransposon is thought to have played a role in the emergence of the highly rearranged structure of the gibbon genome by disrupting transcription of cell cycle genes. In this study, we investigated whether LAVA may have also contributed to the evolution of gene regulation by adopting enhancer function. We characterized fixed and polymorphic LAVA insertions across multiple gibbons and found 96 LAVA elements overlapping enhancer chromatin states. Moreover, LAVA was enriched in multiple transcription factor binding motifs, was bound by an important transcription factor (PU.1), and was associated with higher levels of gene expression in cis We found gibbon-specific signatures of purifying/positive selection at 27 LAVA insertions. Two of these insertions were fixed in the gibbon lineage and overlapped with enhancer chromatin states, representing putative co-opted LAVA enhancers. These putative enhancers were located within genes encoding SETD2 and RAD9A, two proteins that facilitate accurate repair of DNA double-strand breaks and prevent chromosomal rearrangement mutations. Co-option of LAVA in these genes may have influenced regulation of processes that preserve genome integrity. Our findings highlight the importance of considering lineage-specific TEs in studying evolution of gene regulatory elements.
Collapse
|
11
|
Damert A. LINE-1 ORF1p does not determine substrate preference for human/orangutan SVA and gibbon LAVA. Mob DNA 2020; 11:27. [PMID: 32676128 PMCID: PMC7353768 DOI: 10.1186/s13100-020-00222-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/06/2020] [Indexed: 12/28/2022] Open
Abstract
Background Non-autonomous VNTR (Variable Number of Tandem Repeats) composite retrotransposons – SVA (SINE-R-VNTR-Alu) and LAVA (L1-Alu-VNTR-Alu) – are specific to hominoid primates. SVA expanded in great apes, LAVA in gibbon. Both SVA and LAVA have been shown to be mobilized by the autonomous LINE-1 (L1)-encoded protein machinery in a cell-based assay in trans. The efficiency of human SVA retrotransposition in vitro has, however, been considerably lower than would be expected based on recent pedigree-based in vivo estimates. The VNTR composite elements across hominoids – gibbon LAVA, orangutan SVA_A descendants and hominine SVA_D descendants – display characteristic structures of the 5′ Alu-like domain and the VNTR. Different partner L1 subfamilies are currently active in each of the lineages. The possibility that the lineage-specific types of VNTR composites evolved in response to evolutionary changes in their autonomous partners, particularly in the nucleic acid binding L1 ORF1-encoded protein, has not been addressed. Results Here I report the identification and functional characterization of a highly active human SVA element using an improved mneo retrotransposition reporter cassette. The modified cassette (mneoM) minimizes splicing between the VNTR of human SVAs and the neomycin phosphotransferase stop codon. SVA deletion analysis provides evidence that key elements determining its mobilization efficiency reside in the VNTR and 5′ hexameric repeats. Simultaneous removal of the 5′ hexameric repeats and part of the VNTR has an additive negative effect on mobilization rates. Taking advantage of the modified reporter cassette that facilitates robust cross-species comparison of SVA/LAVA retrotransposition, I show that the ORF1-encoded proteins of the L1 subfamilies currently active in gibbon, orangutan and human do not display substrate preference for gibbon LAVA versus orangutan SVA versus human SVA. Finally, I demonstrate that an orangutan-derived ORF1p supports only limited retrotransposition of SVA/LAVA in trans, despite being fully functional in L1 mobilization in cis. Conclusions Overall, the analysis confirms SVA as a highly active human retrotransposon and preferred substrate of the L1-encoded protein machinery. Based on the results obtained in human cells coevolution of L1 ORF1p and VNTR composites does not appear very likely. The changes in orangutan L1 ORF1p that markedly reduce its mobilization capacity in trans might explain the different SVA insertion rates in the orangutan and hominine lineages, respectively.
Collapse
Affiliation(s)
- Annette Damert
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
12
|
Pellestor F, Gatinois V. Chromoanagenesis: a piece of the macroevolution scenario. Mol Cytogenet 2020; 13:3. [PMID: 32010222 PMCID: PMC6988253 DOI: 10.1186/s13039-020-0470-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/05/2020] [Indexed: 01/04/2023] Open
Abstract
Over the last decade, new types of massive and complex chromosomal rearrangements based on the chaotic shattering and restructuring of chromosomes have been identified in cancer cells as well as in patients with congenital diseases and healthy individuals. These unanticipated phenomena are named chromothripsis, chromoanasynthesis and chromoplexy, and are grouped under the term of chromoanagenesis. As mechanisms for rapid and profound genome modifications in germlines and early development, these processes can be regarded as credible pathways for genomic evolution and speciation process. Their discovery confirms the importance of genome-centric investigations to fully understand organismal evolution. Because they oppose the model of progressive acquisition of driver mutations or rearrangements, these phenomena conceptually give support to the concept of macroevolution, known through the models of “Hopeful Monsters” and the “Punctuated Equilibrium”. In this review, we summarize mechanisms underlying chromoanagenesis processes and we show that numerous cases of chromosomal speciation and short-term adaptation could be correlated to chromoanagenesis-related mechanisms. In the frame of a modern and integrative analysis of eukaryote evolutionary processes, it seems important to consider the unexpected chromoanagenesis phenomena.
Collapse
Affiliation(s)
- Franck Pellestor
- Unit of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, 371 avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France.,INSERM 1183 «Genome and Stem Cell Plasticity in Development and Aging », Institute of Regenerative Medicine and Biotherapies, St Eloi Hospital, Montpellier, France
| | - Vincent Gatinois
- Unit of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, 371 avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France.,INSERM 1183 «Genome and Stem Cell Plasticity in Development and Aging », Institute of Regenerative Medicine and Biotherapies, St Eloi Hospital, Montpellier, France
| |
Collapse
|
13
|
Pellestor F. Chromoanagenesis: cataclysms behind complex chromosomal rearrangements. Mol Cytogenet 2019; 12:6. [PMID: 30805029 PMCID: PMC6371609 DOI: 10.1186/s13039-019-0415-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background During the last decade, genome sequencing projects in cancer genomes as well as in patients with congenital diseases and healthy individuals have led to the identification of new types of massive chromosomal rearrangements arising during single chaotic cellular events. These unanticipated catastrophic phenomenon are termed chromothripsis, chromoanasynthesis and chromoplexis., and are grouped under the name of “chromoanagenesis”. Results For each process, several specific features have been described, allowing each phenomenon to be distinguished from each other and to understand its mechanism of formation and to better understand its aetiology. Thus, chromothripsis derives from chromosome shattering followed by the random restitching of chromosomal fragments with low copy-number change whereas chromoanasynthesis results from erroneous DNA replication of a chromosome through serial fork stalling and template switching with variable copy-number gains, and chromoplexy refers to the occurrence of multiple inter-and intra-chromosomal translocations and deletions with little or no copy-number alterations in prostate cancer. Cumulating data and experimental models have shown that chromothripsis and chromoanasynthesis may essentially result from lagging chromosome encapsulated in micronuclei or telomere attrition and end-to-end telomere fusion. Conclusion The concept of chromanagenesis has provided new insight into the aetiology of complex structural rearrangements, the connection between defective cell cycle progression and genomic instability, and the complexity of cancer evolution. Increasing reported chromoanagenesis events suggest that these chaotic mechanisms are probably much more frequent than anticipated.
Collapse
Affiliation(s)
- Franck Pellestor
- Unit of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, 371, avenue du Doyen Gaston Giraud, 34295 Montpellier cedex 5, France.,INSERM 1183 Unit «Genome and Stem Cell Plasticity in Development and Aging », Institute of Regenerative Medicine and Biotherapies, St Eloi Hospital, Montpellier, France
| |
Collapse
|
14
|
Pellestor F, Gatinois V. Chromothripsis, a credible chromosomal mechanism in evolutionary process. Chromosoma 2018; 128:1-6. [DOI: 10.1007/s00412-018-0679-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 01/17/2023]
|
15
|
Klein SJ, O'Neill RJ. Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res 2018; 26:5-23. [PMID: 29332159 PMCID: PMC5857280 DOI: 10.1007/s10577-017-9569-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
Although it was nearly 70 years ago when transposable elements (TEs) were first discovered “jumping” from one genomic location to another, TEs are now recognized as contributors to genomic innovations as well as genome instability across a wide variety of species. In this review, we illustrate the ways in which active TEs, specifically retroelements, can create novel chromosome rearrangements and impact gene expression, leading to disease in some cases and species-specific diversity in others. We explore the ways in which eukaryotic genomes have evolved defense mechanisms to temper TE activity and the ways in which TEs continue to influence genome structure despite being rendered transpositionally inactive. Finally, we focus on the role of TEs in the establishment, maintenance, and stabilization of critical, yet rapidly evolving, chromosome features: eukaryotic centromeres. Across centromeres, specific types of TEs participate in genomic conflict, a balancing act wherein they are actively inserting into centromeric domains yet are harnessed for the recruitment of centromeric histones and potentially new centromere formation.
Collapse
Affiliation(s)
- Savannah J Klein
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|