1
|
Nguyen AH, Hood KS, Mileykovskaya E, Miller WR, Tran TT. Bacterial cell membranes and their role in daptomycin resistance: A review. Front Mol Biosci 2022; 9:1035574. [PMID: 36452455 PMCID: PMC9702088 DOI: 10.3389/fmolb.2022.1035574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Lipids play a major role in bacterial cells. Foremost, lipids are the primary constituents of the cell membrane bilayer, providing structure and separating the cell from the surrounding environment. This makes the lipid bilayer a prime target for antimicrobial peptides and membrane-acting antibiotics such as daptomycin. In response, bacteria have evolved mechanisms by which the membrane can be adapted to resist attack by these antimicrobial compounds. In this review, we focus on the membrane phospholipid changes associated with daptomycin resistance in enterococci, Staphylococcus aureus, and the Viridans group streptococci.
Collapse
Affiliation(s)
- April H. Nguyen
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, United States,Division of Infectious Diseases, Department of Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Kara S. Hood
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, United States,Division of Infectious Diseases, Department of Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Eugenia Mileykovskaya
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - William R. Miller
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, United States,Division of Infectious Diseases, Department of Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Truc T. Tran
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, United States,Division of Infectious Diseases, Department of Medicine, Houston Methodist Hospital, Houston, TX, United States,*Correspondence: Truc T. Tran,
| |
Collapse
|
2
|
Sekiya M. Proton Pumping ATPases: Rotational Catalysis, Physiological Roles in Oral Pathogenic Bacteria, and Inhibitors. Biol Pharm Bull 2022; 45:1404-1411. [PMID: 36184496 DOI: 10.1248/bpb.b22-00396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proton pumping ATPases, both F-type and V/A-type ATPases, generate ATP using electrochemical energy or pump protons/sodium ions by hydrolyzing ATP. The enzymatic reaction and proton transport are coupled through subunit rotation, and this unique rotational mechanism (rotational catalysis) has been intensively studied. Single-molecule and thermodynamic analyses have revealed the detailed rotational mechanism, including the catalytically inhibited state and the roles of subunit interactions. In mammals, F- and V-ATPases are involved in ATP synthesis and organelle acidification, respectively. Most bacteria, including anaerobes, have F- and/or A-ATPases in the inner membrane. However, these ATPases are not believed to be essential in anaerobic bacteria since anaerobes generate sufficient ATP without oxidative phosphorylation. Recent studies suggest that F- and A-ATPases perform indispensable functions beyond ATP synthesis in oral pathogenic anaerobes; F-ATPase is involved in acid tolerance in Streptococcus mutans, and A-ATPase mediates nutrient import in Porphyromonas gingivalis. Consistently, inhibitors of oral bacterial F- and A-ATPases, such as phytopolyphenols and bedaquiline, strongly diminish growth and survival. Herein, we discuss rotational catalysis of bacterial F- and A-ATPases, and discuss their physiological roles, focusing on oral bacteria. We also review the effects of ATPase inhibitors on the growth and survival of oral pathogenic bacteria. The features of the catalytic mechanism and unique physiological roles in oral bacteria highlight the potential for proton pumping ATPases to serve as targets for oral antimicrobial agents.
Collapse
Affiliation(s)
- Mizuki Sekiya
- Division of Biochemistry, School of Pharmacy, Iwate Medical University
| |
Collapse
|
3
|
Kwack KH, Lee JH, Moon JH. Whole genome and RNA sequencing of oral commensal bacterium Streptococcus anginosus subsp. anginosus with vancomycin tolerance. J Microbiol 2022; 60:167-176. [PMID: 34997538 DOI: 10.1007/s12275-022-1425-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022]
Abstract
"Antibiotic tolerance" promotes the rapid subsequent evolution of "antibiotic resistance," however, it is often overlooked because it is difficult to distinguish between tolerant and susceptible organisms. A commensal bacterium S. anginosus subsp. anginosus strain KHUD_S1, isolated from dental biofilm was found to exhibit a high MBC/MIC ratio of 32 against vancomycin. We observed KHUD_S1 cells exposed to vancomycin did not grow but maintained viability. Transmission electron microscope showed KHUD_S1 cells possessed a dense, thick capsule and maintained the cell wall integrity upon vancomycin exposure. To infer the underlying mechanisms of the vancomycin tolerance in KHUD_S1, we performed whole genome sequencing and RNA sequencing. The KHUD_S1 genome carried three genes encoding branching enzymes that can affect peptidoglycan structure through interpeptide bridge formation. Global gene expression profiling revealed that the vancomycin-induced downregulation of carbohydrate and inorganic ion transport/metabolism as well as translation is less prominent in KHUD_S1 than in the vancomycin susceptible strain KHUD_S3. Based on the transcriptional levels of genes related to peptidoglycan synthesis, KHUD_S1 was determined to have a 3D peptidoglycan architecture distinct from KHUD_S3. It was found that, under vancomycin exposure, the peptidoglycan was remodeled through changes in the interpeptide bridge and transpeptidation reactions. Collectively, these features of S. anginosus KHUD_S1, including a dense capsule and differential gene expression in peptidoglycan synthesis, may contribute to vancomycin tolerance. Our results showing the occurrence of vancomycin tolerance amongst oral commensal bacteria highlight the need for considering future strategies for screening of antibiotic tolerance as an effort to reduce antibiotic resistance.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Present address: Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, New York, 14214, USA
| | - Jae-Hyung Lee
- Department of Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Ji-Hoi Moon
- Department of Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
4
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
5
|
Robayo DAG, Erira HAT, Jaimes FOG, Torres AM, Galindo AIC. Oropharyngeal Squamous Cell Carcinoma: Human Papilloma Virus Coinfection with Streptococcus anginosus. Braz Dent J 2019; 30:626-633. [DOI: 10.1590/0103-6440201902805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/27/2019] [Indexed: 01/29/2023] Open
Abstract
Abstract Introduction: Human papilloma virus (HPV) and oral bacteria capable of acetaldehyde production from ethanol, such as Streptococcus anginosus, Prevotella melaninogenica, and Fusobacterium naviforme are among oropharyngeal squamous cell carcinoma (OSCC) infectious risk factors. Objective: Determine associations with HPV and S. anginosus, P. melaninogenica, and F. naviforme in patients with and without OSCC. Methods: Presence of HPV and HPV-16 was determined in 26 patients with OSCC and 26 without OSCC by conventional PCR and simultaneous presence of S. anginosus, P. melaninogenica, and F. naviforme quantification through q-PCR. Statistical analysis was carried out using Pearson’s X² and Student’s-t test. Results: Patients with OSCC had HPV and HPV-16 frequencies of 84% and 61.5%, respectively, in contrast for patients without OSCC frequencies were 34.6 and 30.7%. P. melaninogenica, and F. naviforme microorganisms were not present in any participant in this study. S. anginosus frequency in patients with OSC was 38.4% and in patients without OSCC was 30.7%. Patients with OSCC had S. anginosus + HPV co-infection at a 38.4% frequency and S. anginosus + HPV-16 at a 23.1% frequency. For individuals without OSCC S. anginosus + HPV co-infection was 3.8% and S. anginosus + HPV-16 3.8%. A greater frequency of S. anginosus + HPV co-infection and S. anginosus + HPV-16 was observed in patients with OSCC in comparison with individuals without OSCC, suggesting the importance of detecting HPV/HPV-16 and S. anginosus simultaneously in individuals at risk of developing OSCC
Collapse
|
6
|
Sasaki M, Kodama Y, Shimoyama Y, Ishikawa T, Kimura S. Aciduricity and acid tolerance mechanisms of Streptococcus anginosus. J GEN APPL MICROBIOL 2018; 64:174-179. [PMID: 29669961 DOI: 10.2323/jgam.2017.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although Streptococcus anginosus constitutes a proportion of the normal flora of the gastrointestinal and genital tracts, and the oral cavity, it has been reported that S. anginosus infection could be closely associated with abscesses at various body sites, infective endocarditis, and upper gastrointestinal cancers. The colonization in an acidic environment due to the aciduricity of S. anginosus could be the etiology of the systemic infection of the bacteria. To elucidate the aciduricity and acid tolerance mechanisms of the microbe, we examined the viability and growth of S. anginosus under acidic conditions. The viabilities of S. anginosus NCTC 10713 and Streptococcus mutans ATCC 25175 at pH 4.0 showed as being markedly higher than those of Streptococcus sanguinis ATCC 10556, Streptococcus gordonii ATCC 10558, and Streptococcus mitis ATCC 49456; however, the viability was partially inhibited by dicyclohexylcarbodiimide, an H+-ATPase inhibitor, suggesting that H+-ATPase could play a role in the viability of S. anginosus under acidic conditions. In addition, S. anginosus NCTC 10713 could grow at pH 5.0 and showed a marked arginine deiminase (ADI) activity, unlike its ΔarcA mutant, deficient in the gene encoding ADI, and other streptococcal species, which indicated that ADI could also be associated with aciduricity. These results suggest that S. anginosus has significant aciduric properties, which can be attributed to these enzyme activities.
Collapse
Affiliation(s)
- Minoru Sasaki
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University School of Dentistry
| | - Yoshitoyo Kodama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University School of Dentistry
| | - Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University School of Dentistry
| | - Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University School of Dentistry
| | - Shigenobu Kimura
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University School of Dentistry
| |
Collapse
|
7
|
A novel plasmid, pSAA0430-08, from Streptococcus anginosus subsp. anginosus strain 0430-08. Plasmid 2018; 95:16-27. [DOI: 10.1016/j.plasmid.2018.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/02/2018] [Accepted: 01/11/2018] [Indexed: 11/21/2022]
|