1
|
Hollywood JB, Hutchinson D, Feehery-Alpuerto N, Whitfield M, Davis K, Johnson LM. The Effects of the Paleo Diet on Autoimmune Thyroid Disease: A Mixed Methods Review. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:727-736. [PMID: 36598468 DOI: 10.1080/27697061.2022.2159570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023]
Abstract
The aim of this systematic review was to examine the characteristics of Paleolithic diet (PD) interventions designed for adult patients with autoimmune thyroid disease (AITD) in order to determine if diet elements have the potential to successfully reduce thyroid antibodies (Ab) such as thyroglobulin (Tg), thyroid peroxidase (TPO), and thyroid stimulating hormone receptor (TSHR), and improve thyroid hormones (thyroxine (T4), triiodothyronine (T3) and thyroid stimulating hormone (TSH)) or resolve AITD pathogenesis. Randomized controlled trials (RCTs) with an adult population of 18 years and older, diagnosed with Hashimoto's thyroiditis (HT) or Graves' disease (GD) (Basedow's), who were placed on a diet of Paleolithic or ancestral nature, and achieved reduction of AITD Abs, improvement of thyroid hormones, and, or resolution of AITD were searched. Various electronic databases were used. Bias was assessed using critical appraisal tools from the Scottish Intercollegiate Guidelines Network (SIGN) and Joanna Briggs Institute (JBI). Studies were excluded according to exclusion criteria and results analyzed. One randomized controlled trial (RCT), a pilot study, and six case studies were found. In total, eight AITD studies focusing on Paleolithic or ancestral interventions were located. In highlight, females were the predominant gender. Case studies solely focused on AITD with protocols ranging from 8-60 weeks. All studies showed clinical improvements, one had significant improvement, two showed AITD resolution. After structured evaluation of nutritional interventions utilizing the PD on the effects of AITD, it was concluded foods of ancestral nature along with the addition of specific supplements, food components, exercise and mindfulness meditation, and exclusion of modern day foods have a considerable impact on thyroid Ab and hormones. The relevant studies suggest while this dietary protocol can be useful in clinical practice, larger-scale studies need to be conducted. Key teaching pointsThere are currently no dietary interventions recommended for the treatment of autoimmune thyroid disease. The Paleo diet has been documented to improve AITD antibodies and thyroid hormones in both Hashimoto's thyroiditis and Graves' disease.The Paleo diet can provide a natural source of nutrients similar to supplemental nutrients that have shown positive results on AITD.The paleo diet provides specific macronutrient percentages that may be beneficial in reducing AITD antibodies, while improving thyroid hormones.Methylation supplementation may be useful in AITD cases.
Collapse
Affiliation(s)
- J B Hollywood
- Department of Nutrition and Herbal Medicine, Maryland University of Integrative Health, Laurel, Maryland, USA
- Discover Your Greatest Self, True Paleo Inc., Tampa, Florida, USA
| | - D Hutchinson
- Department of Nutrition, Huntington University of Health Sciences, Knoxville, Tennessee, USA
- Discover Your Greatest Self, True Paleo Inc., Tampa, Florida, USA
| | - N Feehery-Alpuerto
- College of Nutrition, Sonoran University of Health Sciences, Tempe, Arizona, USA
| | - M Whitfield
- Department of Nutrition and Herbal Medicine, Maryland University of Integrative Health, Laurel, Maryland, USA
- Discover Your Greatest Self, True Paleo Inc., Tampa, Florida, USA
| | - K Davis
- Department of Nutrition and Herbal Medicine, Maryland University of Integrative Health, Laurel, Maryland, USA
- Institute of Health Professionals, Portland Community College, Portland, Oregon, USA
| | - L M Johnson
- Department of Nutrition and Herbal Medicine, Maryland University of Integrative Health, Laurel, Maryland, USA
| |
Collapse
|
2
|
Pathogenic Variants Associated with Rare Monogenic Diseases Established in Ancient Neanderthal and Denisovan Genome-Wide Data. Genes (Basel) 2023; 14:genes14030727. [PMID: 36980999 PMCID: PMC10048696 DOI: 10.3390/genes14030727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Ancient anatomically modern humans (AMHs) encountered other archaic human species, most notably Neanderthals and Denisovans, when they left Africa and spread across Europe and Asia ~60,000 years ago. They interbred with them, and modern human genomes retain DNA inherited from these interbreeding events. High quality (high coverage) ancient human genomes have recently been sequenced allowing for a direct estimation of individual heterozygosity, which has shown that genetic diversity in these archaic human groups was very low, indicating low population sizes. In this study, we analyze ten ancient human genome-wide data, including four sequenced with high-coverage. We screened these ancient genome-wide data for pathogenic mutations associated with monogenic diseases, and established unusual aggregation of pathogenic mutations in individual subjects, including quadruple homozygous cases of pathogenic variants in the PAH gene associated with the condition phenylketonuria in a ~120,000 years old Neanderthal. Such aggregation of pathogenic mutations is extremely rare in contemporary populations, and their existence in ancient humans could be explained by less significant clinical manifestations coupled with small community sizes, leading to higher inbreeding levels. Our results suggest that pathogenic variants associated with rare diseases might be the result of introgression from other archaic human species, and archaic admixture thus could have influenced disease risk in modern humans.
Collapse
|
3
|
Aqil A, Speidel L, Pavlidis P, Gokcumen O. Balancing selection on genomic deletion polymorphisms in humans. eLife 2023; 12:79111. [PMID: 36625544 PMCID: PMC9943071 DOI: 10.7554/elife.79111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
A key question in biology is why genomic variation persists in a population for extended periods. Recent studies have identified examples of genomic deletions that have remained polymorphic in the human lineage for hundreds of millennia, ostensibly owing to balancing selection. Nevertheless, genome-wide investigation of ancient and possibly adaptive deletions remains an imperative exercise. Here, we demonstrate an excess of polymorphisms in present-day humans that predate the modern human-Neanderthal split (ancient polymorphisms), which cannot be explained solely by selectively neutral scenarios. We analyze the adaptive mechanisms that underlie this excess in deletion polymorphisms. Using a previously published measure of balancing selection, we show that this excess of ancient deletions is largely owing to balancing selection. Based on the absence of signatures of overdominance, we conclude that it is a rare mode of balancing selection among ancient deletions. Instead, more complex scenarios involving spatially and temporally variable selective pressures are likely more common mechanisms. Our results suggest that balancing selection resulted in ancient deletions harboring disproportionately more exonic variants with GWAS (genome-wide association studies) associations. We further found that ancient deletions are significantly enriched for traits related to metabolism and immunity. As a by-product of our analysis, we show that deletions are, on average, more deleterious than single nucleotide variants. We can now argue that not only is a vast majority of common variants shared among human populations, but a considerable portion of biologically relevant variants has been segregating among our ancestors for hundreds of thousands, if not millions, of years.
Collapse
Affiliation(s)
- Alber Aqil
- Department of Biological Sciences, University at BuffaloBuffaloUnited States
| | - Leo Speidel
- University College London, Genetics InstituteLondonUnited Kingdom
- The Francis Crick InstituteLondonUnited Kingdom
| | - Pavlos Pavlidis
- Institute of Computer Science (ICS), Foundation of Research and Technology-HellasHeraklionGreece
| | - Omer Gokcumen
- Department of Biological Sciences, University at BuffaloBuffaloUnited States
| |
Collapse
|
4
|
Enhanced source memory for cheaters with higher resemblance to own-culture typical faces. Psychon Bull Rev 2022; 30:700-711. [PMID: 36127491 DOI: 10.3758/s13423-022-02177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 11/08/2022]
Abstract
Recent evidence suggests that culture-specific face typicality has an impact on making trait judgments. Additionally, facial resemblance to one's culture-typical faces causes them to be perceived as reliable, less dangerous, and more accurately recognized. When judging persons from other cultural origins, one's own culture's face standards might shape inferences, behavior, and memory. In this study, the partners' facial resemblance to participants' culturally typical faces was manipulated using target faces, considered to be higher or lower, similar to people living in the participants' hometown. Participants were asked to invest in a company together with partners who have a higher and lower resemblance to their own-culture typical faces in a cooperation game. The results showed that facial resemblance to own-culture typical faces affected investment preferences. Partners with a higher resemblance to own-culture typical faces were more correctly distinguished in the old-new recognition memory task. The study found that partners with a higher resemblance to own-culture typical faces had a source memory advantage for cheating behaviors. These results confirmed that a higher resemblance to own-culture typical faces provide an advantage in cross-cultural interactions, allowing them to become better recognized. Additionally, enhanced source memory for cheaters with higher resemblance to own-culture typical faces may indicate a flexible cognitive system that is sensitive to information that violates social expectations.
Collapse
|
5
|
Taskent O, Lin YL, Patramanis I, Pavlidis P, Gokcumen O. Analysis of Haplotypic Variation and Deletion Polymorphisms Point to Multiple Archaic Introgression Events, Including from Altai Neanderthal Lineage. Genetics 2020; 215:497-509. [PMID: 32234956 PMCID: PMC7268982 DOI: 10.1534/genetics.120.303167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
Abstract
The time, extent, and genomic effect of the introgressions from archaic humans into ancestors of extant human populations remain some of the most exciting venues of population genetics research in the past decade. Several studies have shown population-specific signatures of introgression events from Neanderthals, Denisovans, and potentially other unknown hominin populations in different human groups. Moreover, it was shown that these introgression events may have contributed to phenotypic variation in extant humans, with biomedical and evolutionary consequences. In this study, we present a comprehensive analysis of the unusually divergent haplotypes in the Eurasian genomes and show that they can be traced back to multiple introgression events. In parallel, we document hundreds of deletion polymorphisms shared with Neanderthals. A locus-specific analysis of one such shared deletion suggests the existence of a direct introgression event from the Altai Neanderthal lineage into the ancestors of extant East Asian populations. Overall, our study is in agreement with the emergent notion that various Neanderthal populations contributed to extant human genetic variation in a population-specific manner.
Collapse
Affiliation(s)
- Ozgur Taskent
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260
| | - Yen Lung Lin
- Genetics Section, University of Chicago, Illinois 60637
| | | | - Pavlos Pavlidis
- Foundation for Research and Technology, Hellas, Greece 700 13
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260
| |
Collapse
|
6
|
Domínguez-Andrés J, Netea MG. Impact of Historic Migrations and Evolutionary Processes on Human Immunity. Trends Immunol 2019; 40:1105-1119. [PMID: 31786023 PMCID: PMC7106516 DOI: 10.1016/j.it.2019.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022]
Abstract
The evolution of mankind has constantly been influenced by the pathogens encountered. The various populations of modern humans that ventured out of Africa adapted to different environments and faced a large variety of infectious agents, resulting in local adaptations of the immune system for these populations. The functional variation of immune genes as a result of evolution is relevant in the responses against infection, as well as in the emergence of autoimmune and inflammatory diseases observed in modern populations. Understanding how host-pathogen interactions have influenced the human immune system from an evolutionary perspective might contribute to unveiling the causes behind different immune-mediated disorders and promote the development of new strategies to detect and control such diseases.
Collapse
Affiliation(s)
- Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, The Netherlands.
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, The Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany; Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| |
Collapse
|
7
|
Gokcumen O. Archaic hominin introgression into modern human genomes. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 171 Suppl 70:60-73. [PMID: 31702050 DOI: 10.1002/ajpa.23951] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023]
Abstract
Ancient genomes from multiple Neanderthal and the Denisovan individuals, along with DNA sequence data from diverse contemporary human populations strongly support the prevalence of gene flow among different hominins. Recent studies now provide evidence for multiple gene flow events that leave genetic signatures in extant and ancient human populations. These events include older gene flow from an unknown hominin in Africa predating out-of-Africa migrations, and in the last 50,000-100,000 years, multiple gene flow events from Neanderthals into ancestral Eurasian human populations, and at least three distinct introgression events from a lineage close to Denisovans into ancestors of extant Southeast Asian and Oceanic populations. Some of these introgression events may have happened as late as 20,000 years before present and reshaped the way in which we think about human evolution. In this review, I aim to answer anthropologically relevant questions with regard to recent research on ancient hominin introgression in the human lineage. How have genomic data from archaic hominins changed our view of human evolution? Is there any doubt about whether introgression from ancient hominins to the ancestors of present-day humans occurred? What is the current view of human evolutionary history from the genomics perspective? What is the impact of introgression on human phenotypes?
Collapse
Affiliation(s)
- Omer Gokcumen
- Department of Biological Sciences, North Campus, University at Buffalo, Buffalo, New York
| |
Collapse
|
8
|
Brzozowska MM, Havula E, Allen RB, Cox MP. Genetics, adaptation to environmental changes and archaic admixture in the pathogenesis of diabetes mellitus in Indigenous Australians. Rev Endocr Metab Disord 2019; 20:321-332. [PMID: 31278514 DOI: 10.1007/s11154-019-09505-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Indigenous Australians are particularly affected by type 2 diabetes mellitus (T2D) due to both their genetic susceptibility and a range of environmental and lifestyle risk factors. Recent genetic studies link predisposition to some diseases, including T2D, to alleles acquired from archaic hominins, such as Neanderthals and Denisovans, which persist in the genomes of modern humans today. Indo-Pacific human populations, including Indigenous Australians, remain extremely underrepresented in genomic research with a paucity of data examining the impact of Denisovan or Neanderthal lineages on human phenotypes in Oceania. The few genetic studies undertaken emphasize the uniqueness and antiquity of Indigenous Australian genomes, with possibly the largest proportion of Denisovan ancestry of any population in the world. In this review, we focus on the potential contributions of ancient genes/pathways to modern human phenotypes, while also highlighting the evolutionary roles of genetic adaptation to dietary and environmental changes associated with an adopted Western lifestyle. We discuss the role of genetic and epigenetic factors in the pathogenesis of T2D in understudied Indigenous Australians, including the potential impact of archaic gene lineages on this disease. Finally, we propose that greater understanding of the underlying genetic predisposition may contribute to the clinical efficacy of diabetes management in Indigenous Australians. We suggest that improved identification of T2D risk variants in Oceania is needed. Such studies promise to clarify how genetic and phenotypic differences vary between populations and, crucially, provide novel targets for personalised medical therapies in currently marginalized groups.
Collapse
Affiliation(s)
- Malgorzata Monika Brzozowska
- Endocrinology Department, Sutherland Hospital, Sydney, New South Wales, Australia.
- St George & Sutherland Hospital Clinical School, University of New South Wales, Sydney, Australia.
| | - Essi Havula
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Richard Benjamin Allen
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Murray P Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
| |
Collapse
|
9
|
Vyas DN, Mulligan CJ. Analyses of Neanderthal introgression suggest that Levantine and southern Arabian populations have a shared population history. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:227-239. [PMID: 30889271 DOI: 10.1002/ajpa.23818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/11/2019] [Accepted: 02/21/2019] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Modern humans are thought to have interbred with Neanderthals in the Near East soon after modern humans dispersed out of Africa. This introgression event likely took place in either the Levant or southern Arabia depending on the dispersal route out of Africa that was followed. In this study, we compare Neanderthal introgression in contemporary Levantine and southern Arabian populations to investigate Neanderthal introgression and to study Near Eastern population history. MATERIALS AND METHODS We analyzed genotyping data on >400,000 autosomal SNPs from seven Levantine and five southern Arabian populations and compared these data to those from populations from around the world including Neanderthal and Denisovan genomes. We used f4 and D statistics to estimate and compare levels of Neanderthal introgression between Levantine, southern Arabian, and comparative global populations. We also identified 1,581 putative Neanderthal-introgressed SNPs within our dataset and analyzed their allele frequencies as a means to compare introgression patterns in Levantine and southern Arabian genomes. RESULTS We find that Levantine and southern Arabian populations have similar levels of Neanderthal introgression to each other but lower levels than other non-Africans. Furthermore, we find that introgressed SNPs have very similar allele frequencies in the Levant and southern Arabia, which indicates that Neanderthal introgression is similarly distributed in Levantine and southern Arabian genomes. DISCUSSION We infer that the ancestors of contemporary Levantine and southern Arabian populations received Neanderthal introgression prior to separating from each other and that there has been extensive gene flow between these populations.
Collapse
Affiliation(s)
- Deven N Vyas
- Department of Anthropology, University of Florida, Gainesville, Florida.,Genetics Institute, University of Florida, Gainesville, Florida
| | - Connie J Mulligan
- Department of Anthropology, University of Florida, Gainesville, Florida.,Genetics Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
10
|
Dolgova O, Lao O. Evolutionary and Medical Consequences of Archaic Introgression into Modern Human Genomes. Genes (Basel) 2018; 9:E358. [PMID: 30022013 PMCID: PMC6070777 DOI: 10.3390/genes9070358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/07/2018] [Accepted: 07/11/2018] [Indexed: 01/13/2023] Open
Abstract
The demographic history of anatomically modern humans (AMH) involves multiple migration events, population extinctions and genetic adaptations. As genome-wide data from complete genome sequencing becomes increasingly abundant and available even from extinct hominins, new insights of the evolutionary history of our species are discovered. It is currently known that AMH interbred with archaic hominins once they left the African continent. Current non-African human genomes carry fragments of archaic origin. This review focuses on the fitness consequences of archaic interbreeding in current human populations. We discuss new insights and challenges that researchers face when interpreting the potential impact of introgression on fitness and testing hypotheses about the role of selection within the context of health and disease.
Collapse
Affiliation(s)
- Olga Dolgova
- Population Genomics Group, Centre Nacional d'Anàlisi Genòmica, Centre de Regulació Genòmica (CRG-CNAG), Parc Científic de Barcelona, Baldiri Reixac 4, 08028 Barcelona, Catalonia, Spain.
| | - Oscar Lao
- Population Genomics Group, Centre Nacional d'Anàlisi Genòmica, Centre de Regulació Genòmica (CRG-CNAG), Parc Científic de Barcelona, Baldiri Reixac 4, 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|
11
|
Gokcumen O. The Year In Genetic Anthropology: New Lands, New Technologies, New Questions. AMERICAN ANTHROPOLOGIST 2018. [DOI: 10.1111/aman.13032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Omer Gokcumen
- Department of Biological Sciences University of Buffalo NY 14260 USA
| |
Collapse
|