1
|
Ivanov V, Lee KM, Mutanen M. ddRAD Sequencing and DNA Barcoding. Methods Mol Biol 2024; 2744:213-221. [PMID: 38683321 DOI: 10.1007/978-1-0716-3581-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Double-digest restriction site-associated DNA sequencing is a library preparation protocol that enables capturing variable sites across the genome including single-nucleotide polymorphisms (SNPs). These SNPs can be utilized to gain evolutionary insights into patterns observed in DNA barcodes, to infer population structure and phylogenies, to detect gene flow and introgression, and to perform species delimitation analyses. The protocol includes chemically shearing genomic DNA with restriction enzymes, unique tagging, size selection, and amplification of the resulting DNA fragments. Here we provide a detailed description of each step of the protocol, as well as information on essential equipment and common issues encountered during laboratory work.
Collapse
Affiliation(s)
- Vladislav Ivanov
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Kyung Min Lee
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
| | - Marko Mutanen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
2
|
Alexander Pyron R. Unsupervised machine learning for species delimitation, integrative taxonomy, and biodiversity conservation. Mol Phylogenet Evol 2023; 189:107939. [PMID: 37804960 DOI: 10.1016/j.ympev.2023.107939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Integrative taxonomy, combining data from multiple axes of biologically relevant variation, is a major goal of systematics. Ideally, such taxonomies will derive from similarly integrative species-delimitation analyses. Yet, most current methods rely solely or primarily on molecular data, with other layers often incorporated only in a post hoc qualitative or comparative manner. A major limitation is the difficulty of devising quantitative parametric models linking different datasets in a unified ecological and evolutionary framework. Machine Learning (ML) methods offer flexibility in this arena by easily learning high-dimensional associations between observations (e.g., individual specimens) across a wide array of input features (e.g., genetics, geography, environment, and phenotype) to delimit statistically meaningful clusters. Here, I implement an unsupervised method using Self-Organizing (or "Kohonen") Maps (SOMs) for such purposes. Recent extensions called "SuperSOMs" can integrate multiple layers, each of which exerts independent influence on a two-dimensional output grid via empirically estimated weights. The grid cells are then delimited into K distinct units that can be interpreted as species or other entities. I show empirical examples in salamanders (Desmognathus) and snakes (Storeria) with layers representing alleles, space, climate, and traits. Simulations reveal that the SuperSOM approach can detect K = 1, tends not to over-split, reflects contributions from all layers, and limits large layers (e.g., genetic matrices) from overwhelming other datasets, desirable properties addressing major concerns from previous studies. Finally, I suggest that these and similar methods could integrate conservation-relevant layers such as population trends and human encroachment to delimit management units from an explicitly quantitative framework grounded in the ecology and evolution of species limits and boundaries.
Collapse
Affiliation(s)
- R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, DC 20052 USA.
| |
Collapse
|
3
|
Hundsdoerfer AK, Schell T, Patzold F, Wright CJ, Yoshido A, Marec F, Daneck H, Winkler S, Greve C, Podsiadlowski L, Hiller M, Pippel M. High-quality haploid genomes corroborate 29 chromosomes and highly conserved synteny of genes in Hyles hawkmoths (Lepidoptera: Sphingidae). BMC Genomics 2023; 24:443. [PMID: 37550607 PMCID: PMC10405479 DOI: 10.1186/s12864-023-09506-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/05/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Morphological and traditional genetic studies of the young Pliocene genus Hyles have led to the understanding that despite its importance for taxonomy, phenotypic similarity of wing patterns does not correlate with phylogenetic relationship. To gain insights into various aspects of speciation in the Spurge Hawkmoth (Hyles euphorbiae), we assembled a chromosome-level genome and investigated some of its characteristics. RESULTS The genome of a male H. euphorbiae was sequenced using PacBio and Hi-C data, yielding a 504 Mb assembly (scaffold N50 of 18.2 Mb) with 99.9% of data represented by the 29 largest scaffolds forming the haploid chromosome set. Consistent with this, FISH analysis of the karyotype revealed n = 29 chromosomes and a WZ/ZZ (female/male) sex chromosome system. Estimates of chromosome length based on the karyotype image provided an additional quality metric of assembled chromosome size. Rescaffolding the published male H. vespertilio genome resulted in a high-quality assembly (651 Mb, scaffold N50 of 22 Mb) with 98% of sequence data in the 29 chromosomes. The larger genome size of H. vespertilio (average 1C DNA value of 562 Mb) was accompanied by a proportional increase in repeats from 45% in H. euphorbiae (measured as 472 Mb) to almost 55% in H. vespertilio. Several wing pattern genes were found on the same chromosomes in the two species, with varying amounts and positions of repetitive elements and inversions possibly corrupting their function. CONCLUSIONS Our two-fold comparative genomics approach revealed high gene synteny of the Hyles genomes to other Sphingidae and high correspondence to intact Merian elements, the ancestral linkage groups of Lepidoptera, with the exception of three simple fusion events. We propose a standardized approach for genome taxonomy using nucleotide homology via scaffold chaining as the primary tool combined with Oxford plots based on Merian elements to infer and visualize directionality of chromosomal rearrangements. The identification of wing pattern genes promises future understanding of the evolution of forewing patterns in the genus Hyles, although further sequencing data from more individuals are needed. The genomic data obtained provide additional reliable references for further comparative studies in hawkmoths (Sphingidae).
Collapse
Affiliation(s)
- Anna K Hundsdoerfer
- Senckenberg Natural History Collections Dresden, Königsbrücker Landstr. 159, 01109, Dresden, Germany.
| | - Tilman Schell
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt Am Main, Germany
| | - Franziska Patzold
- Senckenberg Natural History Collections Dresden, Königsbrücker Landstr. 159, 01109, Dresden, Germany
| | | | - Atsuo Yoshido
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Hana Daneck
- Senckenberg Natural History Collections Dresden, Königsbrücker Landstr. 159, 01109, Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany
| | - Carola Greve
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt Am Main, Germany
| | - Lars Podsiadlowski
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113, Bonn, Germany
| | - Michael Hiller
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt Am Main, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Uppsala, 751 23, Sweden
| |
Collapse
|
4
|
Tiley GP, Flouri T, Jiao X, Poelstra JW, Xu B, Zhu T, Rannala B, Yoder AD, Yang Z. Estimation of species divergence times in presence of cross-species gene flow. Syst Biol 2023; 72:820-836. [PMID: 36961245 PMCID: PMC10405360 DOI: 10.1093/sysbio/syad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/22/2023] [Indexed: 03/25/2023] Open
Abstract
Cross-species introgression can have significant impacts on phylogenomic reconstruction of species divergence events. Here, we used simulations to show how the presence of even a small amount of introgression can bias divergence time estimates when gene flow is ignored in the analysis. Using advances in analytical methods under the multispecies coalescent (MSC) model, we demonstrate that by accounting for incomplete lineage sorting and introgression using large phylogenomic data sets this problem can be avoided. The multispecies-coalescent-with-introgression (MSci) model is capable of accurately estimating both divergence times and ancestral effective population sizes, even when only a single diploid individual per species is sampled. We characterize some general expectations for biases in divergence time estimation under three different scenarios: 1) introgression between sister species, 2) introgression between non-sister species, and 3) introgression from an unsampled (i.e., ghost) outgroup lineage. We also conducted simulations under the isolation-with-migration (IM) model and found that the MSci model assuming episodic gene flow was able to accurately estimate species divergence times despite high levels of continuous gene flow. We estimated divergence times under the MSC and MSci models from two published empirical datasets with previous evidence of introgression, one of 372 target-enrichment loci from baobabs (Adansonia), and another of 1000 transcriptome loci from 14 species of the tomato relative, Jaltomata. The empirical analyses not only confirm our findings from simulations, demonstrating that the MSci model can reliably estimate divergence times but also show that divergence time estimation under the MSC can be robust to the presence of small amounts of introgression in empirical datasets with extensive taxon sampling. [divergence time; gene flow; hybridization; introgression; MSci model; multispecies coalescent].
Collapse
Affiliation(s)
| | - Tomáš Flouri
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Xiyun Jiao
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Statistics and Data Science, China Southern University of Science and Technology, Shenzhen, Guangdong, China
| | | | - Bo Xu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianqi Zhu
- National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China
- Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China
| | - Bruce Rannala
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
5
|
Oury N, Noël C, Mona S, Aurelle D, Magalon H. From genomics to integrative species delimitation? The case study of the Indo-Pacific Pocillopora corals. Mol Phylogenet Evol 2023; 184:107803. [PMID: 37120114 DOI: 10.1016/j.ympev.2023.107803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
With the advent of genomics, sequencing thousands of loci from hundreds of individuals now appears feasible at reasonable costs, allowing complex phylogenies to be resolved. This is particularly relevant for cnidarians, for which insufficient data is available due to the small number of currently available markers and obscures species boundaries. Difficulties in inferring gene trees and morphological incongruences further blur the study and conservation of these organisms. Yet, can genomics alone be used to delimit species? Here, focusing on the coral genus Pocillopora, whose colonies play key roles in Indo-Pacific reef ecosystems but have challenged taxonomists for decades, we explored and discussed the usefulness of multiple criteria (genetics, morphology, biogeography and symbiosis ecology) to delimit species of this genus. Phylogenetic inferences, clustering approaches and species delimitation methods based on genome-wide single-nucleotide polymorphisms (SNP) were first used to resolve Pocillopora phylogeny and propose genomic species hypotheses from 356 colonies sampled across the Indo-Pacific (western Indian Ocean, tropical southwestern Pacific and south-east Polynesia). These species hypotheses were then compared to other lines of evidence based on genetic, morphology, biogeography and symbiont associations. Out of 21 species hypotheses delimited by genomics, 13 were strongly supported by all approaches, while six could represent either undescribed species or nominal species that have been synonymised incorrectly. Altogether, our results support (1) the obsolescence of macromorphology (i.e., overall colony and branches shape) but the relevance of micromorphology (i.e., corallite structures) to refine Pocillopora species boundaries, (2) the relevance of the mtORF (coupled with other markers in some cases) as a diagnostic marker of most species, (3) the requirement of molecular identification when species identity of colonies is absolutely necessary to interpret results, as morphology can blur species identification in the field, and (4) the need for a taxonomic revision of the genus Pocillopora. These results give new insights into the usefulness of multiple criteria for resolving Pocillopora, and more widely, scleractinian species boundaries, and will ultimately contribute to the taxonomic revision of this genus and the conservation of its species.
Collapse
Affiliation(s)
- Nicolas Oury
- UMR ENTROPIE (Université de La Réunion, IRD, IFREMER, Université de Nouvelle-Calédonie, CNRS), Université de La Réunion, St Denis, La Réunion, France; Laboratoire Cogitamus, Paris, France.
| | - Cyril Noël
- IFREMER - IRSI - Service de Bioinformatique (SeBiMER), Plouzané, France
| | - Stefano Mona
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, EPHE-PSL, Université PSL, CNRS, SU, UA, Paris, France; EPHE, PSL Research University, Paris, France; Laboratoire d'Excellence CORAIL, Perpignan, France
| | - Didier Aurelle
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, EPHE-PSL, Université PSL, CNRS, SU, UA, Paris, France; Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Hélène Magalon
- UMR ENTROPIE (Université de La Réunion, IRD, IFREMER, Université de Nouvelle-Calédonie, CNRS), Université de La Réunion, St Denis, La Réunion, France; Laboratoire Cogitamus, Paris, France; Laboratoire d'Excellence CORAIL, Perpignan, France
| |
Collapse
|
6
|
McLaughlin JF, Aguilar C, Bernstein JM, Navia-Gine WG, Cueto-Aparicio LE, Alarcon AC, Alarcon BD, Collier R, Takyar A, Vong SJ, López-Chong OG, Driver R, Loaiza JR, De León LF, Saltonstall K, Lipshutz SE, Arcila D, Brock KM, Miller MJ. Comparative phylogeography reveals widespread cryptic diversity driven by ecology in Panamanian birds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023. [PMID: 36993716 DOI: 10.1101/2023.01.26.525769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
UNLABELLED Widespread species often harbor unrecognized genetic diversity, and investigating the factors associated with such cryptic variation can help us better understand the forces driving diversification. Here, we identify potential cryptic species based on a comprehensive dataset of COI mitochondrial DNA barcodes from 2,333 individual Panamanian birds across 429 species, representing 391 (59%) of the 659 resident landbird species of the country, as well as opportunistically sampled waterbirds. We complement this dataset with additional publicly available mitochondrial loci, such as ND2 and cytochrome b, obtained from whole mitochondrial genomes from 20 taxa. Using barcode identification numbers (BINs), we find putative cryptic species in 19% of landbird species, highlighting hidden diversity in the relatively well-described avifauna of Panama. Whereas some of these mitochondrial divergence events corresponded with recognized geographic features that likely isolated populations, such as the Cordillera Central highlands, the majority (74%) of lowland splits were between eastern and western populations. The timing of these splits are not temporally coincident across taxa, suggesting that historical events, such as the formation of the Isthmus of Panama and Pleistocene climatic cycles, were not the primary drivers of cryptic diversification. Rather, we observed that forest species, understory species, insectivores, and strongly territorial species-all traits associated with lower dispersal ability-were all more likely to have multiple BINs in Panama, suggesting strong ecological associations with cryptic divergence. Additionally, hand-wing index, a proxy for dispersal capability, was significantly lower in species with multiple BINs, indicating that dispersal ability plays an important role in generating diversity in Neotropical birds. Together, these results underscore the need for evolutionary studies of tropical bird communities to consider ecological factors along with geographic explanations, and that even in areas with well-known avifauna, avian diversity may be substantially underestimated. LAY SUMMARY - What factors are common among bird species with cryptic diversity in Panama? What role do geography, ecology, phylogeographic history, and other factors play in generating bird diversity?- 19% of widely-sampled bird species form two or more distinct DNA barcode clades, suggesting widespread unrecognized diversity.- Traits associated with reduced dispersal ability, such as use of forest understory, high territoriality, low hand-wing index, and insectivory, were more common in taxa with cryptic diversity. Filogeografía comparada revela amplia diversidad críptica causada por la ecología en las aves de Panamá. RESUMEN Especies extendidas frecuentemente tiene diversidad genética no reconocida, y investigando los factores asociados con esta variación críptica puede ayudarnos a entender las fuerzas que impulsan la diversificación. Aquí, identificamos especies crípticas potenciales basadas en un conjunto de datos de códigos de barras de ADN mitocondrial de 2,333 individuos de aves de Panama en 429 especies, representando 391 (59%) de las 659 especies de aves terrestres residentes del país, además de algunas aves acuáticas muestreada de manera oportunista. Adicionalmente, complementamos estos datos con secuencias mitocondriales disponibles públicamente de otros loci, tal como ND2 o citocroma b, obtenidos de los genomas mitocondriales completos de 20 taxones. Utilizando los números de identificación de código de barras (en ingles: BINs), un sistema taxonómico numérico que proporcina una estimación imparcial de la diversidad potencial a nivel de especie, encontramos especies crípticas putativas en 19% de las especies de aves terrestres, lo que destaca la diversidad oculta en la avifauna bien descrita de Panamá. Aunque algunos de estos eventos de divergencia conciden con características geográficas que probablemente aislaron las poblaciones, la mayoría (74%) de la divergencia en las tierras bajas se encuentra entre las poblaciones orientales y occidentales. El tiempo de esta divergencia no coincidió entre los taxones, sugiriendo que eventos históricos tales como la formación del Istmo de Panamá y los ciclos climáticos del pleistoceno, no fueron los principales impulsores de la especiación. En cambio, observamos asociaciones fuertes entre las características ecológicas y la divergencia mitocondriale: las especies del bosque, sotobosque, con una dieta insectívora, y con territorialidad fuerte mostraton múltiple BINs probables. Adicionalmente, el índice mano-ala, que está asociado a la capacidad de dispersión, fue significativamente menor en las especies con BINs multiples, sugiriendo que la capacidad de dispersión tiene un rol importamente en la generación de la diversidad de las aves neotropicales. Estos resultos demonstran la necesidad de que estudios evolutivos de las comunidades de aves tropicales consideren los factores ecológicos en conjunto con las explicaciones geográficos. Palabras clave: biodiversidad tropical, biogeografía, códigos de barras, dispersión, especies crípticas.
Collapse
|
7
|
McLaughlin JF, Aguilar C, Bernstein JM, Navia-Gine WG, Cueto-Aparicio LE, Alarcon AC, Alarcon BD, Collier R, Takyar A, Vong SJ, López-Chong OG, Driver R, Loaiza JR, De León LF, Saltonstall K, Lipshutz SE, Arcila D, Brock KM, Miller MJ. Comparative phylogeography reveals widespread cryptic diversity driven by ecology in Panamanian birds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.530646. [PMID: 36993716 PMCID: PMC10055050 DOI: 10.1101/2023.03.15.530646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Widespread species often harbor unrecognized genetic diversity, and investigating the factors associated with such cryptic variation can help us better understand the forces driving diversification. Here, we identify potential cryptic species based on a comprehensive dataset of COI mitochondrial DNA barcodes from 2,333 individual Panamanian birds across 429 species, representing 391 (59%) of the 659 resident landbird species of the country, as well as opportunistically sampled waterbirds. We complement this dataset with additional publicly available mitochondrial loci, such as ND2 and cytochrome b, obtained from whole mitochondrial genomes from 20 taxa. Using barcode identification numbers (BINs), we find putative cryptic species in 19% of landbird species, highlighting hidden diversity in the relatively well-described avifauna of Panama. Whereas some of these mitochondrial divergence events corresponded with recognized geographic features that likely isolated populations, such as the Cordillera Central highlands, the majority (74%) of lowland splits were between eastern and western populations. The timing of these splits are not temporally coincident across taxa, suggesting that historical events, such as the formation of the Isthmus of Panama and Pleistocene climatic cycles, were not the primary drivers of cryptic diversification. Rather, we observed that forest species, understory species, insectivores, and strongly territorial species-all traits associated with lower dispersal ability-were all more likely to have multiple BINs in Panama, suggesting strong ecological associations with cryptic divergence. Additionally, hand-wing index, a proxy for dispersal capability, was significantly lower in species with multiple BINs, indicating that dispersal ability plays an important role in generating diversity in Neotropical birds. Together, these results underscore the need for evolutionary studies of tropical bird communities to consider ecological factors along with geographic explanations, and that even in areas with well-known avifauna, avian diversity may be substantially underestimated.
Collapse
Affiliation(s)
- J. F. McLaughlin
- Department of Biology, University of Oklahoma, Norman, OK, USA
- Sam Noble Oklahoma Museum of Natural History Norman, OK, USA
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA
| | - Celestino Aguilar
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama
| | - Justin M. Bernstein
- Department of Biology, Villanova University, Villanova, PA, USA
- Center for Genomics, University of Kansas, Lawrence, KS, USA
| | - Wayra G. Navia-Gine
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
- Pacific Biosciences, 1305 O’Brien Dr, Menlo Park, CA, USA
| | | | | | | | - Rugger Collier
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Anshule Takyar
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Sidney J. Vong
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | | | - Robert Driver
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Jose R. Loaiza
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama
| | - Luis F. De León
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Republic of Panama
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | | | | | - Dahiana Arcila
- Department of Biology, University of Oklahoma, Norman, OK, USA
- Sam Noble Oklahoma Museum of Natural History Norman, OK, USA
| | - Kinsey M. Brock
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | - Matthew J. Miller
- Department of Biology, University of Oklahoma, Norman, OK, USA
- Sam Noble Oklahoma Museum of Natural History Norman, OK, USA
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
- Reneco International Wildlife Consultants, Abu Dhabi, UAE
| |
Collapse
|
8
|
Ortiz D, Pekár S, Bryjová A. Gene flow assessment helps to distinguish strong genomic structure from speciation in an Iberian ant-eating spider. Mol Phylogenet Evol 2023; 180:107682. [PMID: 36574825 DOI: 10.1016/j.ympev.2022.107682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/01/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
Although genomic data is boosting our understanding of evolution, we still lack a solid framework to perform reliable genome-based species delineation. This problem is especially critical in the case of phylogeographically structured organisms, with allopatric populations showing similar divergence patterns as species. Here, we assess the species limits and phylogeography of Zodarion alacre, an ant-eating spider widely distributed across the Iberian Peninsula. We first performed species delimitation based on genome-wide data and then validated these results using additional evidence. A commonly employed species delimitation strategy detected four distinct lineages with almost no admixture, which present allopatric distributions. These lineages showed ecological differentiation but no clear morphological differentiation, and evidence of introgression in a mitochondrial barcode. Phylogenomic networks found evidence of substantial gene flow between lineages. Finally, phylogeographic methods highlighted remarkable isolation by distance and detected evidence of range expansion from south-central Portugal to central-north Spain. We conclude that despite their deep genomic differentiation, the lineages of Z. alacre do not show evidence of complete speciation. Our results likely shed light on why Zodarion is among the most diversified spider genera despite its limited distribution and support the use of gene flow evidence to inform species boundaries.
Collapse
Affiliation(s)
- David Ortiz
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia.
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Anna Bryjová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
9
|
Wilson TC, Rossetto M, Bain D, Yap JS, Wilson PD, Stimpson ML, Weston PH, Croft L. A turn in species conservation for hairpin banksias: demonstration of oversplitting leads to better management of diversity. AMERICAN JOURNAL OF BOTANY 2022; 109:1652-1671. [PMID: 36164832 PMCID: PMC9828017 DOI: 10.1002/ajb2.16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Understanding evolutionary history and classifying discrete units of organisms remain overwhelming tasks, and lags in this workload concomitantly impede an accurate documentation of biodiversity and conservation management. Rapid advances and improved accessibility of sensitive high-throughput sequencing tools are fortunately quickening the resolution of morphological complexes and thereby improving the estimation of species diversity. The recently described and critically endangered Banksia vincentia is morphologically similar to the hairpin banksia complex (B. spinulosa s.l.), a group of eastern Australian flowering shrubs whose continuum of morphological diversity has been responsible for taxonomic controversy and possibly questionable conservation initiatives. METHODS To assist conservation while testing the current taxonomy of this group, we used high-throughput sequencing to infer a population-scale evolutionary scenario for a sample set that is comprehensive in its representation of morphological diversity and a 2500-km distribution. RESULTS Banksia spinulosa s.l. represents two clades, each with an internal genetic structure shaped through historical separation by biogeographic barriers. This structure conflicts with the existing taxonomy for the group. Corroboration between phylogeny and population statistics aligns with the hypothesis that B. collina, B. neoanglica, and B. vincentia should not be classified as species. CONCLUSIONS The pattern here supports how morphological diversity can be indicative of a locally expressed suite of traits rather than relationship. Oversplitting in the hairpin banksias is atypical since genomic analyses often reveal that species diversity is underestimated. However, we show that erring on overestimation can yield negative consequences, such as the disproportionate prioritization of a geographically anomalous population.
Collapse
Affiliation(s)
- Trevor C. Wilson
- Plant Discovery and Evolution, Australian Institute of Botanical ScienceRoyal Botanic Gardens and Domain TrustSydneyAustralia
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical ScienceThe Royal Botanic Garden SydneyAustralia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical ScienceThe Royal Botanic Garden SydneyAustralia
| | - David Bain
- Ecosystems and Threatened Species, Biodiversity Conservation and ScienceNSW Department of Planning and EnvironmentWollongongAustralia
| | - Jia‐Yee S. Yap
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical ScienceThe Royal Botanic Garden SydneyAustralia
| | - Peter D. Wilson
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical ScienceThe Royal Botanic Garden SydneyAustralia
| | - Margaret L. Stimpson
- Botany, School of Environmental and Rural ScienceUniversity of New EnglandArmidaleNSW2351Australia
| | - Peter H. Weston
- Plant Discovery and Evolution, Australian Institute of Botanical ScienceRoyal Botanic Gardens and Domain TrustSydneyAustralia
| | - Larry Croft
- Centre of Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelong3125VictoriaAustralia
| |
Collapse
|
10
|
Wilson TC, Rossetto M, Bain D, Yap JYS, Wilson PD, Stimpson ML, Weston PH, Croft L. A turn in species conservation for hairpin banksias: demonstration of oversplitting leads to better management of diversity. AMERICAN JOURNAL OF BOTANY 2022. [PMID: 36164832 DOI: 10.5061/dryad.69p8cz94x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
PREMISE Understanding evolutionary history and classifying discrete units of organisms remain overwhelming tasks, and lags in this workload concomitantly impede an accurate documentation of biodiversity and conservation management. Rapid advances and improved accessibility of sensitive high-throughput sequencing tools are fortunately quickening the resolution of morphological complexes and thereby improving the estimation of species diversity. The recently described and critically endangered Banksia vincentia is morphologically similar to the hairpin banksia complex (B. spinulosa s.l.), a group of eastern Australian flowering shrubs whose continuum of morphological diversity has been responsible for taxonomic controversy and possibly questionable conservation initiatives. METHODS To assist conservation while testing the current taxonomy of this group, we used high-throughput sequencing to infer a population-scale evolutionary scenario for a sample set that is comprehensive in its representation of morphological diversity and a 2500-km distribution. RESULTS Banksia spinulosa s.l. represents two clades, each with an internal genetic structure shaped through historical separation by biogeographic barriers. This structure conflicts with the existing taxonomy for the group. Corroboration between phylogeny and population statistics aligns with the hypothesis that B. collina, B. neoanglica, and B. vincentia should not be classified as species. CONCLUSIONS The pattern here supports how morphological diversity can be indicative of a locally expressed suite of traits rather than relationship. Oversplitting in the hairpin banksias is atypical since genomic analyses often reveal that species diversity is underestimated. However, we show that erring on overestimation can yield negative consequences, such as the disproportionate prioritization of a geographically anomalous population.
Collapse
Affiliation(s)
- Trevor C Wilson
- Plant Discovery and Evolution, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Australia
| | - David Bain
- Ecosystems and Threatened Species, Biodiversity Conservation and Science, NSW Department of Planning and Environment, Wollongong, Australia
| | - Jia-Yee S Yap
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Australia
| | - Peter D Wilson
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Australia
| | - Margaret L Stimpson
- Botany, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Peter H Weston
- Plant Discovery and Evolution, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | - Larry Croft
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, 3125, Victoria, Australia
| |
Collapse
|
11
|
Rutherford S, Wilson TC, Yap JYS, Lee E, Errington G, Rossetto M. Evolutionary processes in an undescribed eucalypt: implications for the translocation of a critically endangered species. ANNALS OF BOTANY 2022; 130:491-508. [PMID: 35802354 PMCID: PMC9510949 DOI: 10.1093/aob/mcac091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Knowledge of the evolutionary processes responsible for the distribution of threatened and highly localized species is important for their conservation. Population genomics can provide insights into evolutionary processes to inform management practices, including the translocation of threatened plant species. In this study, we focus on a critically endangered eucalypt, Eucalyptus sp. Cattai, which is restricted to a 40-km2 area of Sydney, Australia, and is threatened by increased urbanization. Eucalyptus sp. Cattai has yet to be formally described in part due to its suspected hybrid origin. Here, we examined evolutionary processes and species boundaries in E. sp. Cattai to determine whether translocation was warranted. METHODS We used genome-wide scans to investigate the evolutionary relationships of E. sp. Cattai with related species, and to assess levels of genetic health and admixture. Morphological trait and genomic data were obtained from seedlings of E. sp. Cattai propagated in a common garden to assess their genetic provenance and hybrid status. KEY RESULTS All analyses revealed that E. sp. Cattai was strongly supported as a distinct species. Genetic diversity varied across populations, and clonality was unexpectedly high. Interspecific hybridization was detected, and was more prevalent in seedlings compared to in situ adult plants, indicating that post-zygotic barriers may restrict the establishment of hybrids. CONCLUSIONS Multiple evolutionary processes (e.g. hybridization and clonality) can operate within one rare and restricted species. Insights regarding evolutionary processes from our study were used to assist with the translocation of genetically 'pure' and healthy ex situ seedlings to nearby suitable habitat. Our findings demonstrate that it is vital to provide an understanding of evolutionary relationships and processes with an examination of population genomics in the design and implementation of an effective translocation strategy.
Collapse
Affiliation(s)
| | - Trevor C Wilson
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| | - Jia-Yee Samantha Yap
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| | - Enhua Lee
- Biodiversity and Conservation Division, New South Wales Department of Planning and Environment, Sydney, Australia
| | - Graeme Errington
- Australian PlantBank, Australian Institute of Botanical Science, Australian Botanic Garden, Mount Annan, New South Wales, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| |
Collapse
|
12
|
Wells T, Carruthers T, Muñoz-Rodríguez P, Sumadijaya A, Wood JRI, Scotland RW. Species as a Heuristic: Reconciling Theory and Practice. Syst Biol 2022; 71:1233-1243. [PMID: 34672346 PMCID: PMC9366457 DOI: 10.1093/sysbio/syab087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/07/2021] [Accepted: 10/16/2021] [Indexed: 11/21/2022] Open
Abstract
Species are crucial to most branches of biological research, yet remain controversial in terms of definition, delimitation, and reality. The difficulty of resolving the "species problem" stems from the tension between their theoretical concept as groups of evolving and highly variable organisms and the practical need for a stable and comparable unit of biology. Here, we suggest that treating species as a heuristic can be consistent with a theoretical definition of what species are and with the practical means by which they are identified and delimited. Specifically, we suggest that theoretically species are heuristic since they comprise clusters of closely related individuals responding in a similar manner to comparable sets of evolutionary and ecological forces, whilst they are practically heuristic because they are identifiable by the congruence of contingent properties indicative of those forces. This reconciliation of the theoretical basis of species with their practical applications in biological research allows for a loose but relatively consistent definition of species based on the strategic analysis and integration of genotypic, phenotypic, and ecotypic data. [Cohesion; heuristic; homeostasis; lineage; species problem.].
Collapse
Affiliation(s)
- Tom Wells
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Tom Carruthers
- The Herbarium & ToL, Royal Botanic Garden, Kew, Richmond, UK
| | | | - Alex Sumadijaya
- Department of Plant Sciences, University of Oxford, Oxford, UK
- Research Center for Biology National Research and Innovation Agency, Cibinong Science Center, Indonesia
| | - John R I Wood
- Department of Plant Sciences, University of Oxford, Oxford, UK
- The Herbarium & ToL, Royal Botanic Garden, Kew, Richmond, UK
| | | |
Collapse
|
13
|
Pavón-Vázquez CJ, Esquerré D, Fitch AJ, Maryan B, Doughty P, Donnellan SC, Scott Keogh J. Between a rock and a dry place: phylogenomics, biogeography, and systematics of ridge-tailed monitors (Squamata: Varanidae: Varanus acanthurus complex). Mol Phylogenet Evol 2022; 173:107516. [DOI: 10.1016/j.ympev.2022.107516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
|
14
|
Ciaccio E, Debray A, Hedin M. Phylogenomics of paleoendemic lampshade spiders (Araneae, Hypochilidae, Hypochilus), with the description of a new species from montane California. Zookeys 2022; 1086:163-204. [PMID: 35221748 PMCID: PMC8873193 DOI: 10.3897/zookeys.1086.77190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/18/2022] [Indexed: 12/31/2022] Open
Abstract
Hypochilus is a relictual lineage of Nearctic spiders distributed disjunctly across the United States in three montane regions (California, southern Rocky Mountains, southern Appalachia). Phylogenetic resolution of species relationships in Hypochilus has been challenging, and conserved morphology coupled with extreme genetic divergence has led to uncertain species limits in some complexes. Here, Hypochilus interspecies relationships have been reconstructed and cryptic speciation more critically evaluated using a combination of ultraconserved elements, mitochondrial CO1 by-catch, and morphology. Phylogenomic data strongly support the monophyly of regional clades and support a ((California, Appalachia), southern Rocky Mountains) topology. In Appalachia, five species are resolved as four lineages (H.thorelli Marx, 1888 and H.coylei Platnick, 1987 are clearly sister taxa), but the interrelationships of these four lineages remain unresolved. The Appalachian species H.pococki Platnick, 1987 is recovered as monophyletic but is highly genetically structured at the nuclear level. While algorithmic analyses of nuclear data indicate many species (e.g., all H.pococki populations as species), male morphology instead reveals striking stasis. Within the California clade, nuclear and mitochondrial lineages of H.petrunkevitchi Gertsch, 1958 correspond directly to drainage basins of the southern Sierra Nevada, with H.bernardino Catley, 1994 nested within H.petrunkevitchi and sister to the southernmost basin populations. Combining nuclear, mitochondrial, geographical, and morphological evidence a new species from the Tule River and Cedar Creek drainages is described, Hypochilusxomotesp. nov. We also emphasize the conservation issues that face several microendemic, habitat-specialized species in this remarkable genus.
Collapse
Affiliation(s)
- Erik Ciaccio
- Department of Biology, San Diego State University, San Diego, California, USA San Diego State University San Diego United States of America.,Department of Entomology, Plant Pathology and Nematology, University of Idaho, Idaho, USA University of Idaho Idaho United States of America
| | - Andrew Debray
- Department of Biology, San Diego State University, San Diego, California, USA San Diego State University San Diego United States of America.,Nano PharmaSolutions Inc., San Diego, California, USA Nano PharmaSolutions Inc. San Diego United States of America
| | - Marshal Hedin
- Department of Biology, San Diego State University, San Diego, California, USA San Diego State University San Diego United States of America
| |
Collapse
|
15
|
Campbell EO, MacDonald ZG, Gage EV, Gage RV, Sperling FAH. Genomics and ecological modelling clarify species integrity in a confusing group of butterflies. Mol Ecol 2022; 31:2400-2417. [PMID: 35212068 DOI: 10.1111/mec.16407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Abstract
Recent advances in both genomics and ecological modelling present new, multidisciplinary opportunities for resolving species boundaries and understanding the mechanisms that maintain their integrity in regions of contact. Here, we use a combination of high-throughput DNA sequencing and ecological niche modelling to resolve species boundaries and niche divergence within the Speyeria atlantis-hesperis (Lepidoptera: Nymphalidae) complex, a confusing group of North American butterflies. This complex is notorious for its muddled species delimitations, morphological ambiguity, and extensive mito-nuclear discordance. Our admixture and multispecies coalescent-based analyses of single nucleotide polymorphisms identified substantial divergences between S. atlantis and S. hesperis in areas of contact, as well as between distinct northern and southern lineages within S. hesperis. Our results also provide evidence of past introgression relating to another species, S. zerene, which previous work has shown to be more distantly related to the S. atlantis-hesperis complex. We then used ecological models to predict habitat suitability for each of the three recovered genomic lineages in the S. atlantis-hesperis complex and assess their pairwise niche divergence. These analyses resolved that these three lineages are significantly diverged in their respective niches and are not separated by discontinuities in suitable habitat that might present barriers to gene flow. We therefore infer that ecologically-mediated selection resulting in disparate habitat associations is a principal mechanism reinforcing their genomic integrity. Overall, our results unambiguously support significant evolutionary and ecological divergence between the northern and southern lineages of S. hesperis, sufficient to recognize the southern evolutionary lineage as a distinct species, called S. nausicaa based on taxonomic priority.
Collapse
Affiliation(s)
- E O Campbell
- Department of Biological Sciences, Biosciences Centre, University of Alberta, Edmonton, AB, Canada
| | - Z G MacDonald
- Department of Biological Sciences, Biosciences Centre, University of Alberta, Edmonton, AB, Canada.,Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - E V Gage
- Texas Museum of Entomology, Pipe Creek, TX, U.S.A
| | | | - F A H Sperling
- Department of Biological Sciences, Biosciences Centre, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Li D, Chen Z, Liu F, Li D, Xu X. An integrative approach reveals high species diversity in the primitively segmented spider genus. INVERTEBR SYST 2022. [DOI: 10.1071/is21058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Accurate species delimitation is crucial for our understanding of evolution, biodiversity and conservation. However, morphology-based species delimitation alone appears to be prone to taxonomic errors and ineffective for taxa with high interspecific morphological homogeneity or intraspecific morphological variations, as is the case for mesothele and mygalomorph spiders. Combined molecular–morphology species delimitation has shown great potential to delimit species boundaries in such ancient lineages. In the present study, molecular and morphological evidence were integrated to delimit species of the primitively segmented spider genus Songthela Ono, 2000. The cytochrome c oxidase subunit I gene (COI) was sequenced for 192 novel specimens belonging to 12 putative morphospecies. The evolutionary relationships within Songthela and the 12-morphospecies hypothesis were tested in two steps – species discovery and species validation – using four single-locus species delimitation approaches. All species delimitation analyses supported the 12-species hypothesis. Phylogenetic analyses yielded three major clades in Songthela, which are consistent with morphology. Accordingly, we assigned 19 known and 11 new species (S. aokoulong, sp. nov., S. bispina, sp. nov., S. dapo, sp. nov., S. huayanxi, sp. nov., S. lianhe, sp. nov., S. lingshang, sp. nov., S. multidentata, sp. nov., S. tianmen, sp. nov., S. unispina, sp. nov., S. xiujian, sp. nov., S. zizhu, sp. nov.) of Songthela to three species-groups: the bispina-group, the multidentata-group and the unispina-group. Another new species, S. zimugang, sp. nov., is not included in any species groups, but forms a sister lineage to the bispina- and unispina-groups. These results elucidate a high species diversity of Songthela in a small area and demonstrate that integrating morphology with COI-based species delimitation is fast and cost-effective in delimiting species boundaries. http://zoobank.org/urn:lsid:zoobank.org:pub:AF0F5B31-AFAF-4861-9844-445AE8678B67
Collapse
|
17
|
Scalercio S, Infusino M, Huemer P, Mutanen M. Pruning the Barcode Index Numbers tree: Morphological and genetic evidence clarifies species boundaries in the
Eupithecia conterminata
complex (Lepidoptera: Geometridae) in Europe. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Stefano Scalercio
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia Agraria Centro di Ricerca Foreste e Legno Rende Italy
| | - Marco Infusino
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia Agraria Centro di Ricerca Foreste e Legno Rende Italy
| | - Peter Huemer
- Tiroler Landesmuseen Betriebsges.m.b.H. Naturwissenschaftliche Sammlungen Hall Austria
| | - Marko Mutanen
- Ecology and Genetics Research Unit University of Oulu Oulu Finland
| |
Collapse
|
18
|
Parker E, Dornburg A, Struthers CD, Jones CD, Near TJ. Phylogenomic species delimitation dramatically reduces species diversity in an Antarctic adaptive radiation. Syst Biol 2021; 71:58-77. [PMID: 34247239 DOI: 10.1093/sysbio/syab057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/06/2021] [Accepted: 06/30/2021] [Indexed: 11/14/2022] Open
Abstract
Application of genetic data to species delimitation often builds confidence in delimitations previously hypothesized using morphological, ecological, and geographic data and frequently yields recognition of previously-undescribed cryptic diversity. However, a recent critique of genomic data-based species delimitation approaches is that they have the potential to conflate population structure with species diversity, resulting in taxonomic oversplitting. The need for an integrative approach to species delimitation, in which molecular, morphological, ecological, and geographic lines of evidence are evaluated together, is becoming increasingly apparent. Here, we integrate phylogenetic, population genetic, and coalescent analyses of genome-wide sequence data with investigation of variation in multiple morphological traits to delimit species within the Antarctic barbeled plunderfishes (Artedidraconidae: Pogonophryne). Pogonophryne currently comprises 29 valid species, most of which are distinguished solely by variation in ornamentation of the mental barbel that projects from the lower jaw, a structure previously shown to vary widely within a single species. However, our genomic and phenotypic analyses result in a dramatic reduction in the number of distinct species recognized within the clade, providing evidence to support the recognition of no more than six species. We propose to synonymize 24 of the currently recognized species with five species of Pogonophryne. We find genomic and phenotypic evidence for a new species of Pogonophryne from specimens collected in the Ross Sea. Our findings represent a rare example in which application of molecular data provides evidence of taxonomic oversplitting on the basis of morphology, clearly demonstrating the utility of an integrative species delimitation framework.
Collapse
Affiliation(s)
- Elyse Parker
- Department of Ecology & Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, Charlotte, NC 28223, USA
| | - Carl D Struthers
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | - Christopher D Jones
- Antarctic Ecosystem Research Division, NOAA Southwest Fisheries Science Center, La Jolla, CA 92037, USA
| | - Thomas J Near
- Department of Ecology & Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA.,Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
19
|
Zhang Y, De Meyer M, Virgilio M, Feng S, Badji K, Li Z. Phylogenomic resolution of the Ceratitis FARQ complex (Diptera: Tephritidae). Mol Phylogenet Evol 2021; 161:107160. [PMID: 33794396 DOI: 10.1016/j.ympev.2021.107160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
The Ceratitis FARQ complex (formerly FAR complex) includes four frugivorous tephritids, Ceratitis fasciventris, C. anonae, C. rosa and C. quilicii, the latter two causing important agricultural losses in Africa. Although FARQ species can be identified on the basis of subtle morphological differences, they cannot be resolved as monophyletic when trying phylogenetic tree reconstructions based on mitochondrial or nuclear gene fragments except for microsatellites. In this study, we used mitogenome and genome-wide SNPs to investigate the phylogenetic relationship within the complex as well as between all four Ceratitis subgenera. The analysis of 13 species supported the monophyly of the Ceratitis subgenera Ceratitis, Ceratalaspis, Pardalaspis, and recovered Pterandrus as paraphyletic but could not properly resolve species within the FARQ complex. Conversely, gene and species tree reconstructions based on 785,484 genome-wide SNPs could consistently resolve the FARQ taxa and provide insights into their phylogenetic relationships. Gene flow was detected by TreeMix analysis from C. quilicii to C. fasciventris, suggesting the existence of introgression events in the FARQ complex. Our results suggest that genome-wide SNPs represent a suitable tool for the molecular diagnosis of FARQ species and could possibly be used to develop rapid diagnostic methods or to trace the origins of intercepted samples.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Marc De Meyer
- Royal Museum for Central Africa, Invertebrates Section and JEMU, Tervuren B3080, Belgium.
| | - Massimiliano Virgilio
- Royal Museum for Central Africa, Invertebrates Section and JEMU, Tervuren B3080, Belgium.
| | - Shiqian Feng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Kemo Badji
- Crop Protection Directorate, Dakar, Senegal.
| | - Zhihong Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
Rubinoff D, San Jose M, Hundsdoerfer AK. Cryptic diversity in a vagile Hawaiian moth group suggests complex factors drive diversification. Mol Phylogenet Evol 2020; 155:107002. [PMID: 33152535 DOI: 10.1016/j.ympev.2020.107002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
Allopatric speciation should be the dominant model of diversification across archipelagos because islands naturally promote isolation. It also follows that ecologically similar, vagile species should be more resistant to this kind of isolation due to dispersal and unifying selection. In a closely-related group of endemic Hawaiian hawkmoths, we found confounding patterns of inter-island connectivity and speciation that did not correlate with vagility, ecological specialization, or island age. Speciation occurred both in allopatric and sympatric taxa, with only the oldest and youngest islands fostering single-island endemic species. The intermediately-sized, central islands supported a combination of endemic and more widely-occurring lineages, suggesting no clear pattern leading to the current diversity in Hawaii. While some species are relatively common, others are apparently extinct or very rare, even on the same island. Further research into the specific mechanisms for these patterns in Hyles may prove broadly informative for understanding both cladogenesis and improving conservation planning. Our study identifies one new species endemic to Kauai and unique mitochondrial lineages in H. perkinsi, which may prove to be new species.
Collapse
Affiliation(s)
- Daniel Rubinoff
- 310 Gilmore Hall, Department of PEPS, Entomology Section, 3050 Maile Way, The University of Hawaii, Honolulu, HI 96822, United States.
| | - Michael San Jose
- 310 Gilmore Hall, Department of PEPS, Entomology Section, 3050 Maile Way, The University of Hawaii, Honolulu, HI 96822, United States.
| | - Anna K Hundsdoerfer
- Molecular Laboratory, Museum of Zoology, Senckenberg Natural History Collections Dresden, Königsbrücker Landstrasse 159, 01109 Dresden, Germany
| |
Collapse
|
21
|
Poelstra JW, Salmona J, Tiley GP, Schüßler D, Blanco MB, Andriambeloson JB, Bouchez O, Campbell CR, Etter PD, Hohenlohe PA, Hunnicutt KE, Iribar A, Johnson EA, Kappeler PM, Larsen PA, Manzi S, Ralison JM, Randrianambinina B, Rasoloarison RM, Rasolofoson DW, Stahlke AR, Weisrock DW, Williams RC, Chikhi L, Louis EE, Radespiel U, Yoder AD. Cryptic Patterns of Speciation in Cryptic Primates: Microendemic Mouse Lemurs and the Multispecies Coalescent. Syst Biol 2020; 70:203-218. [PMID: 32642760 DOI: 10.1093/sysbio/syaa053] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Mouse lemurs (Microcebus) are a radiation of morphologically cryptic primates distributed throughout Madagascar for which the number of recognized species has exploded in the past two decades. This taxonomic revision has prompted understandable concern that there has been substantial oversplitting in the mouse lemur clade. Here, we investigate mouse lemur diversity in a region in northeastern Madagascar with high levels of microendemism and predicted habitat loss. We analyzed RADseq data with multispecies coalescent (MSC) species delimitation methods for two pairs of sister lineages that include three named species and an undescribed lineage previously identified to have divergent mtDNA. Marked differences in effective population sizes, levels of gene flow, patterns of isolation-by-distance, and species delimitation results were found among the two pairs of lineages. Whereas all tests support the recognition of the presently undescribed lineage as a separate species, the species-level distinction of two previously described species, M. mittermeieri and M. lehilahytsara is not supported-a result that is particularly striking when using the genealogical discordance index (gdi). Nonsister lineages occur sympatrically in two of the localities sampled for this study, despite an estimated divergence time of less than 1 Ma. This suggests rapid evolution of reproductive isolation in the focal lineages and in the mouse lemur clade generally. The divergence time estimates reported here are based on the MSC calibrated with pedigree-based mutation rates and are considerably more recent than previously published fossil-calibrated relaxed-clock estimates. We discuss the possible explanations for this discrepancy, noting that there are theoretical justifications for preferring the MSC estimates in this case. [Cryptic species; effective population size; microendemism; multispecies coalescent; speciation; species delimitation.].
Collapse
Affiliation(s)
| | - Jordi Salmona
- CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, 31062 Toulouse, France
| | - George P Tiley
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Dominik Schüßler
- Research Group Ecology and Environmental Education, Department of Biology, University of Hildesheim, Universitaetsplatz 1, 31141 Hildesheim, Germany
| | - Marina B Blanco
- Department of Biology, Duke University, Durham, NC 27708, USA.,Duke Lemur Center, Duke University, Durham, NC 27705, USA
| | - Jean B Andriambeloson
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo 101, Madagascar
| | - Olivier Bouchez
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - C Ryan Campbell
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Paul D Etter
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Paul A Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - Kelsie E Hunnicutt
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Amaia Iribar
- CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, 31062 Toulouse, France
| | - Eric A Johnson
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 6, 37077 Göttingen, Germany
| | - Peter A Larsen
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Sophie Manzi
- CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, 31062 Toulouse, France
| | - JosÉ M Ralison
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo 101, Madagascar
| | - Blanchard Randrianambinina
- Groupe d'Etude et de Recherche sur les Primates de Madagascar (GERP), BP 779, Antananarivo 101, Madagascar.,Faculté des Sciences, University of Mahajanga, Mahajanga, Madagascar
| | - Rodin M Rasoloarison
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 6, 37077 Göttingen, Germany
| | - David W Rasolofoson
- Groupe d'Etude et de Recherche sur les Primates de Madagascar (GERP), BP 779, Antananarivo 101, Madagascar
| | - Amanda R Stahlke
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - David W Weisrock
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Rachel C Williams
- Department of Biology, Duke University, Durham, NC 27708, USA.,Duke Lemur Center, Duke University, Durham, NC 27705, USA
| | - LounÈs Chikhi
- CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, 31062 Toulouse, France.,Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Edward E Louis
- Grewcock Center for Conservation and Research, Omaha's Henry Doorly Zoo and Aquarium, Omaha, NE, USA
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany Jelmer Poelstra, Jordi Salmona, George P. Tiley are the joint first authors. Ute Radespiel and Anne D. Yoder are the joint senior authors
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
22
|
Schär S, Menchetti M, Schifani E, Hinojosa JC, Platania L, Dapporto L, Vila R. Integrative biodiversity inventory of ants from a Sicilian archipelago reveals high diversity on young volcanic islands (Hymenoptera: Formicidae). ORG DIVERS EVOL 2020. [DOI: 10.1007/s13127-020-00442-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|