1
|
Hernández-Soto LM, Martínez-Abarca F, Ramírez-Saad H, López-Pérez M, Aguirre-Garrido JF. Genome analysis of haloalkaline isolates from the soda saline crater lake of Isabel Island; comparative genomics and potential metabolic analysis within the genus Halomonas. BMC Genomics 2023; 24:696. [PMID: 37986038 PMCID: PMC10662389 DOI: 10.1186/s12864-023-09800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Isabel Island is a Mexican volcanic island primarily composed of basaltic stones. It features a maar known as Laguna Fragatas, which is classified as a meromictic thalassohaline lake. The constant deposition of guano in this maar results in increased levels of phosphorus, nitrogen, and carbon. The aim of this study was to utilize high-quality genomes from the genus Halomonas found in specialized databases as a reference for genome mining of moderately halophilic bacteria isolated from Laguna Fragatas. This research involved genomic comparisons employing phylogenetic, pangenomic, and metabolic-inference approaches. RESULTS The Halomonas genus exhibited a large open pangenome, but several genes associated with salt metabolism and homeostatic regulation (ectABC and betABC), nitrogen intake through nitrate and nitrite transporters (nasA, and narGI), and phosphorus uptake (pstABCS) were shared among the Halomonas isolates. CONCLUSIONS The isolated bacteria demonstrate consistent adaptation to high salt concentrations, and their nitrogen and phosphorus uptake mechanisms are highly optimized. This optimization is expected in an extremophile environment characterized by minimal disturbances or abrupt seasonal variations. The primary significance of this study lies in the dearth of genomic information available for this saline and low-disturbance environment. This makes it important for ecosystem conservation and enabling an exploration of its biotechnological potential. Additionally, the study presents the first two draft genomes of H. janggokensis.
Collapse
Affiliation(s)
- Luis Mario Hernández-Soto
- Doctorado en Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Francisco Martínez-Abarca
- Estructura, Dinámica y Función de Genomas de Rizobacterias, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - Hugo Ramírez-Saad
- Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de Mexico, México
| | - Marcos López-Pérez
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Estado de México, Lerma, México
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Estado de México, Lerma, México.
| |
Collapse
|
3
|
Athmika, Ghate SD, Arun AB, Rao SS, Kumar STA, Kandiyil MK, Saptami K, Rekha PD. Genome analysis of a halophilic bacterium Halomonas malpeensis YU-PRIM-29 T reveals its exopolysaccharide and pigment producing capabilities. Sci Rep 2021; 11:1749. [PMID: 33462335 PMCID: PMC7814019 DOI: 10.1038/s41598-021-81395-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022] Open
Abstract
Halomonas malpeensis strain YU-PRIM-29T is a yellow pigmented, exopolysaccharide (EPS) producing halophilic bacterium isolated from the coastal region. To understand the biosynthesis pathways involved in the EPS and pigment production, whole genome analysis was performed. The complete genome sequencing and the de novo assembly were carried out using Illumina sequencing and SPAdes genome assembler (ver 3.11.1) respectively followed by detailed genome annotation. The genome consists of 3,607,821 bp distributed in 18 contigs with 3337 protein coding genes and 53% of the annotated CDS are having putative functions. Gene annotation disclosed the presence of genes involved in ABC transporter-dependent pathway of EPS biosynthesis. As the ABC transporter-dependent pathway is also implicated in the capsular polysaccharide (CPS) biosynthesis, we employed extraction protocols for both EPS (from the culture supernatants) and CPS (from the cells) and found that the secreted polysaccharide i.e., EPS was predominant. The EPS showed good emulsifying activities against the petroleum hydrocarbons and its production was dependent on the carbon source supplied. The genome analysis also revealed genes involved in industrially important metabolites such as zeaxanthin pigment, ectoine and polyhydroxyalkanoate (PHA) biosynthesis. To confirm the genome data, we extracted these metabolites from the cultures and successfully identified them. The pigment extracted from the cells showed the distinct UV-Vis spectra having characteristic absorption peak of zeaxanthin (λmax 448 nm) with potent antioxidant activities. The ability of H. malpeensis strain YU-PRIM-29T to produce important biomolecules makes it an industrially important bacterium.
Collapse
Affiliation(s)
- Athmika
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Sudeep D Ghate
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - A B Arun
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Sneha S Rao
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - S T Arun Kumar
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Mrudula Kinarulla Kandiyil
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Kanekar Saptami
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
4
|
Liu Y, Ding H, Sun Y, Li Y, Lu A. Genome Analysis of a Marine Bacterium Halomonas sp. and Its Role in Nitrate Reduction under the Influence of Photoelectrons. Microorganisms 2020; 8:E1529. [PMID: 33027938 PMCID: PMC7650824 DOI: 10.3390/microorganisms8101529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022] Open
Abstract
The solar light response and photoelectrons produced by widespread semiconducting mineral play important roles in biogeochemical cycles on Earth's surface. To explore the potential influence of photoelectrons generated by semiconducting mineral particles on nitrate-reducing microorganisms in the photic zone, a marine heterotrophic denitrifier Halomonas sp. strain 3727 was isolated from seawater in the photic zone of the Yellow Sea, China. This strain was classified as a Halomonadaceae. Whole-genome analysis indicated that this strain possessed genes encoding the nitrogen metabolism, i.e., narG, nasA, nirBD, norZ, nosB, and nxr, which sustained dissimilatory nitrate reduction, assimilatory nitrate reduction, and nitrite oxidation. This strain also possessed genes related to carbon, sulfur, and other metabolisms, hinting at its substantial metabolic flexibility. A series of microcosm experiments in a simulative photoelectron system was conducted, and the results suggested that this bacterial strain could use simulated photoelectrons with different energy for nitrate reduction. Nitrite, as an intermediate product, was accumulated during the nitrate reduction with limited ammonia residue. The nitrite and ammonia productions differed with or without different energy electron supplies. Nitrite was the main product accounting for 30.03% to 68.40% of the total nitrogen in photoelectron supplement systems, and ammonia accounted for 3.77% to 8.52%. However, in open-circuit systems, nitrite and ammonia proportions were 26.77% and 11.17%, respectively, and nitrogen loss in the liquid was not observed. This study reveals that photoelectrons can serve as electron donors for nitrogen transformation mediated by Halomonas sp. strain 3727, which reveals an underlying impact on the nitrogen biogeochemical cycle in the marine photic zone.
Collapse
Affiliation(s)
| | - Hongrui Ding
- The Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, 100871 Beijing, China; (Y.L.); (Y.S.); (Y.L.)
| | | | | | - Anhuai Lu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, 100871 Beijing, China; (Y.L.); (Y.S.); (Y.L.)
| |
Collapse
|
5
|
Engineering salt tolerance of photosynthetic cyanobacteria for seawater utilization. Biotechnol Adv 2020; 43:107578. [PMID: 32553809 DOI: 10.1016/j.biotechadv.2020.107578] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/17/2020] [Accepted: 06/05/2020] [Indexed: 02/04/2023]
Abstract
Photosynthetic cyanobacteria are capable of utilizing sunlight and CO2 as sole energy and carbon sources, respectively. With genetically modified cyanobacteria being used as a promising chassis to produce various biofuels and chemicals in recent years, future large-scale cultivation of cyanobacteria would have to be performed in seawater, since freshwater supplies of the earth are very limiting. However, high concentration of salt is known to inhibit the growth of cyanobacteria. This review aims at comparing the mechanisms that different cyanobacteria respond to salt stress, and then summarizing various strategies of developing salt-tolerant cyanobacteria for seawater cultivation, including the utilization of halotolerant cyanobacteria and the engineering of salt-tolerant freshwater cyanobacteria. In addition, the challenges and potential strategies related to further improving salt tolerance in cyanobacteria are also discussed.
Collapse
|
6
|
Cui J, Sun T, Li S, Xie Y, Song X, Wang F, Chen L, Zhang W. Improved Salt Tolerance and Metabolomics Analysis of Synechococcus elongatus UTEX 2973 by Overexpressing Mrp Antiporters. Front Bioeng Biotechnol 2020; 8:500. [PMID: 32528943 PMCID: PMC7264159 DOI: 10.3389/fbioe.2020.00500] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/29/2020] [Indexed: 11/20/2022] Open
Abstract
The fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 (Syn2973) is a promising candidate for photosynthetic microbial factory. Seawater utilization is necessary for large-scale cultivation of Syn2973 in the future. However, Syn2973 is sensitive to salt stress, making it necessary to improve its salt tolerance. In this study, 21 exogenous putative transporters were individually overexpressed in Syn2973 to evaluate their effects on salt tolerance. The results showed the overexpression of three Mrp antiporters significantly improved the salt tolerance of Syn2973. Notably, overexpressing the Mrp antiporter from Synechococcus sp. PCC 7002 improved cell growth by 57.7% under 0.4 M NaCl condition. In addition, the metabolomics and biomass composition analyses revealed the possible mechanisms against salt stress in both Syn2973 and the genetically engineered strain. The study provides important engineering strategies to improve salt tolerance of Syn2973 and is valuable for understanding mechanisms of salt tolerance in cyanobacteria.
Collapse
Affiliation(s)
- Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Frontier Science Center for Synthetic Biology, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Frontier Science Center for Synthetic Biology, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Yaru Xie
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Frontier Science Center for Synthetic Biology, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Xinyu Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Frontier Science Center for Synthetic Biology, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Frontier Science Center for Synthetic Biology, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|