1
|
Roberts WR, Ruck EC, Downey KM, Pinseel E, Alverson AJ. Resolving Marine-Freshwater Transitions by Diatoms Through a Fog of Gene Tree Discordance. Syst Biol 2023; 72:984-997. [PMID: 37335140 DOI: 10.1093/sysbio/syad038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023] Open
Abstract
Despite the obstacles facing marine colonists, most lineages of aquatic organisms have colonized and diversified in freshwaters repeatedly. These transitions can trigger rapid morphological or physiological change and, on longer timescales, lead to increased rates of speciation and extinction. Diatoms are a lineage of ancestrally marine microalgae that have diversified throughout freshwater habitats worldwide. We generated a phylogenomic data set of genomes and transcriptomes for 59 diatom taxa to resolve freshwater transitions in one lineage, the Thalassiosirales. Although most parts of the species tree were consistently resolved with strong support, we had difficulties resolving a Paleocene radiation, which affected the placement of one freshwater lineage. This and other parts of the tree were characterized by high levels of gene tree discordance caused by incomplete lineage sorting and low phylogenetic signal. Despite differences in species trees inferred from concatenation versus summary methods and codons versus amino acids, traditional methods of ancestral state reconstruction supported six transitions into freshwaters, two of which led to subsequent species diversification. Evidence from gene trees, protein alignments, and diatom life history together suggest that habitat transitions were largely the product of homoplasy rather than hemiplasy, a condition where transitions occur on branches in gene trees not shared with the species tree. Nevertheless, we identified a set of putatively hemiplasious genes, many of which have been associated with shifts to low salinity, indicating that hemiplasy played a small but potentially important role in freshwater adaptation. Accounting for differences in evolutionary outcomes, in which some taxa became locked into freshwaters while others were able to return to the ocean or become salinity generalists, might help further distinguish different sources of adaptive mutation in freshwater diatoms.
Collapse
Affiliation(s)
- Wade R Roberts
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Elizabeth C Ruck
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kala M Downey
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Eveline Pinseel
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
2
|
Nedoluzhko A, Orlova SY, Kurnosov DS, Orlov AM, Galindo-Villegas J, Rastorguev SM. Genomic Signatures of Freshwater Adaptation in Pacific Herring ( Clupea pallasii). Genes (Basel) 2022; 13:genes13101856. [PMID: 36292743 PMCID: PMC9601299 DOI: 10.3390/genes13101856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022] Open
Abstract
Pacific herring (Clupea pallasii) is an essential target of commercial fishing in the North Pacific Ocean. Previous studies have suggested the existence of marine and lake ecological forms of this species within its range. The lake ecological form of herring has a shortened life cycle, spending the winter and spawning in brackish waters near the shoreline without long migrations for feeding; it also has a relatively smaller body size than the marine form. Genetic-based studies have shown that brackish water Pacific herring not only can be distinguished as a separate lake ecological form but possibly has its genetic legacy. Here, as part of an ongoing study, using ddRAD-sequencing data for marine and lake ecological forms from a total of 54 individuals and methods of comparative bioinformatics, we describe genomic signatures of freshwater adaptivity in Pacific herring. In total, 253 genes containing discriminating SNPs were found, and part of those genes was organized into genome clusters, also known as “genomic islands of divergence”. Moreover, the Tajima’s D test showed that these loci are under directional selection in the lake populations of the Pacific herring. Yet, most discriminating loci between the lake and marine ecological forms of Pacific herring do not intersect (by gene name) with those in other known marine fish species with known freshwater/brackish populations. However, some are associated with the same physiological trait—osmoregulation.
Collapse
Affiliation(s)
- Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, 191187 Saint Petersburg, Russia
- Limited Liability Company ELGENE, 109029 Moscow, Russia
| | - Svetlana Yu. Orlova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 107140 Moscow, Russia
- Laboratory of Genetic Basis of Identification, Vavilov Institute of General Genetics of the Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (S.Y.O.); (J.G.-V.); (S.M.R.)
| | - Denis S. Kurnosov
- Research Group of Intraspecific Differentiation, Russian Federal Research Institute of Fisheries and Oceanography, Pacific Branch (TINRO), 690091 Vladivostok, Russia
| | - Alexei M. Orlov
- Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology of the Russian Academy of Sciences, 117218 Moscow, Russia
- Laboratory of Behavior of Lower Vertebrates, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
- Department of Ichthyology and Hydrobiology, Tomsk State University, 634050 Tomsk, Russia
- Laboratory of Marine Biology, Caspian Institute of Biological Resources, Russian Academy of Sciences, 367000 Makhachkala, Russia
| | - Jorge Galindo-Villegas
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
- Correspondence: (S.Y.O.); (J.G.-V.); (S.M.R.)
| | - Sergey M. Rastorguev
- Limited Liability Company ELGENE, 109029 Moscow, Russia
- Kurchatov Center for Genomic Research, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Correspondence: (S.Y.O.); (J.G.-V.); (S.M.R.)
| |
Collapse
|
3
|
Nedoluzhko A, Sharko F, Tsygankova S, Boulygina E, Slobodova N, Teslyuk A, Galindo-Villegas J, Rastorguev S. Intergeneric hybridization of two stickleback species leads to introgression of membrane-associated genes and invasive TE expansion. Front Genet 2022; 13:863547. [PMID: 36092944 PMCID: PMC9452749 DOI: 10.3389/fgene.2022.863547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
Interspecific hybridization has occurred relatively frequently during the evolution of vertebrates. This process usually abolishes reproductive isolation between the parental species. Moreover, it results in the exchange of genetic material and can lead to hybridogenic speciation. Hybridization between species has predominately been observed at the interspecific level, whereas intergeneric hybridization is rarer. Here, using whole-genome sequencing analysis, we describe clear and reliable signals of intergeneric introgression between the three-spined stickleback (Gasterosteus aculeatus) and its distant mostly freshwater relative the nine-spined stickleback (Pungitius pungitius) that inhabit northwestern Russia. Through comparative analysis, we demonstrate that such introgression phenomena apparently take place in the moderate-salinity White Sea basin, although it is not detected in Japanese sea stickleback populations. Bioinformatical analysis of the sites influenced by introgression showed that they are located near transposable elements, whereas those in protein-coding sequences are mostly found in membrane-associated and alternative splicing-related genes.
Collapse
Affiliation(s)
- Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, Saint Petersburg, Russia
- Limited Liability Company ELGENE, Moscow, Russia
| | - Fedor Sharko
- Limited Liability Company ELGENE, Moscow, Russia
- Laboratory of Vertebrate Genomics and Epigenomics, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Laboratory of Bioinformatics and Big Data Analysis, Kurchatov Center for Genomic Research, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Svetlana Tsygankova
- Laboratory of Eukaryotic Genomics, Kurchatov Center for Genomic Research, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Eugenia Boulygina
- Laboratory of Eukaryotic Genomics, Kurchatov Center for Genomic Research, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Natalia Slobodova
- Laboratory of Eukaryotic Genomics, Kurchatov Center for Genomic Research, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Anton Teslyuk
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Jorge Galindo-Villegas
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- *Correspondence: Jorge Galindo-Villegas, ; Sergey Rastorguev,
| | - Sergey Rastorguev
- Limited Liability Company ELGENE, Moscow, Russia
- Laboratory of Bioinformatics and Big Data Analysis, Kurchatov Center for Genomic Research, National Research Center “Kurchatov Institute”, Moscow, Russia
- *Correspondence: Jorge Galindo-Villegas, ; Sergey Rastorguev,
| |
Collapse
|
4
|
Fraimout A, Li Z, Sillanpää MJ, Merilä J. Age-dependent genetic architecture across ontogeny of body size in sticklebacks. Proc Biol Sci 2022; 289:20220352. [PMID: 35582807 PMCID: PMC9118060 DOI: 10.1098/rspb.2022.0352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Heritable variation in traits under natural selection is a prerequisite for evolutionary response. While it is recognized that trait heritability may vary spatially and temporally depending on which environmental conditions traits are expressed under, less is known about the possibility that genetic variance contributing to the expected selection response in a given trait may vary at different stages of ontogeny. Specifically, whether different loci underlie the expression of a trait throughout development and thus providing an additional source of variation for selection to act on in the wild, is unclear. Here we show that body size, an important life-history trait, is heritable throughout ontogeny in the nine-spined stickleback (Pungitius pungitius). Nevertheless, both analyses of quantitative trait loci and genetic correlations across ages show that different chromosomes/loci contribute to this heritability in different ontogenic time-points. This suggests that body size can respond to selection at different stages of ontogeny but that this response is determined by different loci at different points of development. Hence, our study provides important results regarding our understanding of the genetics of ontogeny and opens an interesting avenue of research for studying age-specific genetic architecture as a source of non-parallel evolution.
Collapse
Affiliation(s)
- Antoine Fraimout
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Finland
| | - Zitong Li
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Finland.,CSIRO Agriculture and Food, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Mikko J Sillanpää
- Research Unit of Mathematical Sciences, University of Oulu, FI-90014, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Finland.,Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
5
|
Brookes B, Jeon H, Derry AM, Post JR, Rogers SM, Humphries S, Fraser DJ. Neutral and adaptive drivers of genomic change in introduced brook trout ( Salvelinus fontinalis) populations revealed by pooled sequencing. Ecol Evol 2022; 12:e8584. [PMID: 35154655 PMCID: PMC8820109 DOI: 10.1002/ece3.8584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 12/22/2022] Open
Abstract
Understanding the drivers of successful species invasions is important for conserving native biodiversity and for mitigating the economic impacts of introduced species. However, whole-genome resolution investigations of the underlying contributions of neutral and adaptive genetic variation in successful introductions are rare. Increased propagule pressure should result in greater neutral genetic variation, while environmental differences should elicit selective pressures on introduced populations, leading to adaptive differentiation. We investigated neutral and adaptive variation among nine introduced brook trout (Salvelinus fontinalis) populations using whole-genome pooled sequencing. The populations inhabit isolated alpine lakes in western Canada and descend from a common source, with an average of ~19 (range of 7-41) generations since introduction. We found some evidence of bottlenecks without recovery, no strong evidence of purifying selection, and little support that varying propagule pressure or differences in local environments shaped observed neutral genetic variation differences. Putative adaptive loci analysis revealed nonconvergent patterns of adaptive differentiation among lakes with minimal putatively adaptive loci (0.001%-0.15%) that did not correspond with tested environmental variables. Our results suggest that (i) introduction success is not always strongly influenced by genetic load; (ii) observed differentiation among introduced populations can be idiosyncratic, population-specific, or stochastic; and (iii) conservatively, in some introduced species, colonization barriers may be overcome by support through one aspect of propagule pressure or benign environmental conditions.
Collapse
Affiliation(s)
- Brent Brookes
- Department of BiologyConcordia UniversityMontréalQCCanada
| | - Hyung‐Bae Jeon
- Department of BiologyConcordia UniversityMontréalQCCanada
| | - Alison M. Derry
- Département des sciences biologiquesUniversité du Québec à MontréalMontréalQCCanada
| | - John R. Post
- Department of BiologyUniversity of CalgaryCalgaryABCanada
| | - Sean M. Rogers
- Department of BiologyUniversity of CalgaryCalgaryABCanada
| | - Shelley Humphries
- Parks CanadaNatural Resource Management BranchRadium Hot SpringsBCCanada
| | | |
Collapse
|
6
|
Orlova SY, Rastorguev S, Bagno T, Kurnosov D, Nedoluzhko A. Genetic structure of marine and lake forms of Pacific herring Clupea pallasii. PeerJ 2021; 9:e12444. [PMID: 34760402 PMCID: PMC8570158 DOI: 10.7717/peerj.12444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
The Pacific herring (Clupea pallasii) is one of the most important species in the commercial fisheries distributed in the North Pacific Ocean and the northeastern European seas. This teleost has marine and lake ecological forms a long its distribution in the Holarctic. However, the level of genetic differentiation between these two forms is not well known. In the present study, we used ddRAD-sequencing to genotype 54 specimens from twelve wild Pacific herring populations from the Kara Sea and the Russian part of the northwestern Pacific Ocean for unveiling the genetic structure of Pacific herring. We found that the Kara Sea population is significantly distinct from Pacific Ocean populations. It was demonstrated that lake populations of Pacific herring differ from one another as well as from marine specimens. Our results show that fresh and brackish water Pacific herring, which inhabit lakes, can be distinguished as a separate lake ecological form. Moreover, we demonstrate that each observed lake Pacific herring population has its own and unique genetic legacy.
Collapse
Affiliation(s)
- Svetlana Yu Orlova
- Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia.,Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow, Russia
| | | | - Tatyana Bagno
- National Research Center "Kurchatov Institute", Moscow, Russia
| | - Denis Kurnosov
- Russian Federal Research Institute of Fisheries and Oceanography, Pacific Branch (TINRO), Vladivostok, Russia
| | - Artem Nedoluzhko
- Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow, Russia.,Nord University, Bodø, Norway
| |
Collapse
|
7
|
Haenel Q, Guerard L, MacColl ADC, Berner D. The maintenance of standing genetic variation: Gene flow vs. selective neutrality in Atlantic stickleback fish. Mol Ecol 2021; 31:811-821. [PMID: 34753205 PMCID: PMC9299253 DOI: 10.1111/mec.16269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022]
Abstract
Adaptation to derived habitats often occurs from standing genetic variation. The maintenance within ancestral populations of genetic variants favourable in derived habitats is commonly ascribed to long‐term antagonism between purifying selection and gene flow resulting from hybridization across habitats. A largely unexplored alternative idea based on quantitative genetic models of polygenic adaptation is that variants favoured in derived habitats are neutral in ancestral populations when their frequency is relatively low. To explore the latter, we first identify genetic variants important to the adaptation of threespine stickleback fish (Gasterosteus aculeatus) to a rare derived habitat—nutrient‐depleted acidic lakes—based on whole‐genome sequence data. Sequencing marine stickleback from six locations across the Atlantic Ocean then allows us to infer that the frequency of these derived variants in the ancestral habitat is unrelated to the likely opportunity for gene flow of these variants from acidic‐adapted populations. This result is consistent with the selective neutrality of derived variants within the ancestor. Our study thus supports an underappreciated explanation for the maintenance of standing genetic variation, and calls for a better understanding of the fitness consequences of adaptive variation across habitats and genomic backgrounds.
Collapse
Affiliation(s)
- Quiterie Haenel
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Laurent Guerard
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | | | - Daniel Berner
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Kirch M, Romundset A, Gilbert MTP, Jones FC, Foote AD. Ancient and modern stickleback genomes reveal the demographic constraints on adaptation. Curr Biol 2021; 31:2027-2036.e8. [PMID: 33705715 DOI: 10.1016/j.cub.2021.02.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 10/21/2022]
Abstract
Adaptation is typically studied by comparing modern populations with contrasting environments. Individuals persisting in the ancestral habitat are typically used to represent the ancestral founding population; however, it has been questioned whether these individuals are good proxies for the actual ancestors.1 To address this, we applied a paleogenomics approach2 to directly access the ancestral genepool: partially sequencing the genomes of two 11- to 13,000-year-old stickleback recovered from the transitionary layer between marine and freshwater sediments of two Norwegian isolation lakes3 and comparing them with 30 modern stickleback genomes from the same lakes and adjacent marine fjord, in addition to a global dataset of 20 genomes.4 The ancient stickleback shared genome-wide ancestry with the modern fjord population, whereas modern lake populations have lost substantial ancestral variation following founder effects, and subsequent drift and selection. Freshwater-adaptive alleles found in one ancient stickleback genome have not risen to high frequency in the present-day population from the same lake. Comparison to the global dataset suggested incomplete adaptation to freshwater in our modern lake populations. Our findings reveal the impact of population bottlenecks in constraining adaptation due to reduced efficacy of selection on standing variation present in founder populations.
Collapse
Affiliation(s)
- Melanie Kirch
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | | | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, DK-1353 Copenhagen, Denmark; Department of Natural History, Norwegian University of Science and Technology (NTNU), University Museum, 7491 Trondheim, Norway
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Andrew D Foote
- Department of Natural History, Norwegian University of Science and Technology (NTNU), University Museum, 7491 Trondheim, Norway; Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, UK.
| |
Collapse
|
9
|
Fang B, Kemppainen P, Momigliano P, Merilä J. Population structure limits parallel evolution in sticklebacks. Mol Biol Evol 2021; 38:4205-4221. [PMID: 33956140 PMCID: PMC8476136 DOI: 10.1093/molbev/msab144] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Population genetic theory predicts that small effective population sizes (Ne) and restricted gene flow limit the potential for local adaptation. In particular, the probability of evolving similar phenotypes based on shared genetic mechanisms (i.e., parallel evolution), is expected to be reduced. We tested these predictions in a comparative genomic study of two ecologically similar and geographically codistributed stickleback species (viz. Gasterosteus aculeatus and Pungitius pungitius). We found that P. pungitius harbors less genetic diversity and exhibits higher levels of genetic differentiation and isolation-by-distance than G. aculeatus. Conversely, G. aculeatus exhibits a stronger degree of genetic parallelism across freshwater populations than P. pungitius: 2,996 versus 379 single nucleotide polymorphisms located within 26 versus 9 genomic regions show evidence of selection in multiple freshwater populations of G. aculeatus and P. pungitius, respectively. Most regions involved in parallel evolution in G. aculeatus showed increased levels of divergence, suggestive of selection on ancient haplotypes. In contrast, haplotypes involved in freshwater adaptation in P. pungitius were younger. In accordance with theory, the results suggest that connectivity and genetic drift play crucial roles in determining the levels and geographic distribution of standing genetic variation, providing evidence that population subdivision limits local adaptation and therefore also the likelihood of parallel evolution.
Collapse
Affiliation(s)
- Bohao Fang
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland
| | - Petri Kemppainen
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland
| | - Paolo Momigliano
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland.,Research Division of Ecology and Biodiversity, Faculty of Science, Kadoorie Building, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
10
|
Kemppainen P, Li Z, Rastas P, Löytynoja A, Fang B, Yang J, Guo B, Shikano T, Merilä J. Genetic population structure constrains local adaptation in sticklebacks. Mol Ecol 2021; 30:1946-1961. [PMID: 33464655 DOI: 10.1111/mec.15808] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/19/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
Repeated and independent adaptation to specific environmental conditions from standing genetic variation is common. However, if genetic variation is limited, the evolution of similar locally adapted traits may be restricted to genetically different and potentially less optimal solutions or prevented from happening altogether. Using a quantitative trait locus (QTL) mapping approach, we identified the genomic regions responsible for the repeated pelvic reduction (PR) in three crosses between nine-spined stickleback populations expressing full and reduced pelvic structures. In one cross, PR mapped to linkage group 7 (LG7) containing the gene Pitx1, known to control pelvic reduction also in the three-spined stickleback. In the two other crosses, PR was polygenic and attributed to 10 novel QTL, of which 90% were unique to specific crosses. When screening the genomes from 27 different populations for deletions in the Pitx1 regulatory element, these were only found in the population in which PR mapped to LG7, even though the morphological data indicated large-effect QTL for PR in several other populations as well. Consistent with the available theory and simulations parameterized on empirical data, we hypothesize that the observed variability in genetic architecture of PR is due to heterogeneity in the spatial distribution of standing genetic variation caused by >2× stronger population structuring among freshwater populations and >10× stronger genetic isolation by distance in the sea in nine-spined sticklebacks as compared to three-spined sticklebacks.
Collapse
Affiliation(s)
- Petri Kemppainen
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Zitong Li
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,CSIRO Agriculture & Food, Canberra, ACT, Australia
| | - Pasi Rastas
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Bohao Fang
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jing Yang
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Chinese Sturgeon Research Institute, Three Gorges Corporation, Yichang, China
| | - Baocheng Guo
- The Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Takahito Shikano
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Division of Ecology and Biodiversity, The University of Hong Kong, Pokfulam, Hong Kong, SAR
| |
Collapse
|
11
|
Quintela M, Richter‐Boix À, Bekkevold D, Kvamme C, Berg F, Jansson E, Dahle G, Besnier F, Nash RDM, Glover KA. Genetic response to human-induced habitat changes in the marine environment: A century of evolution of European sprat in Landvikvannet, Norway. Ecol Evol 2021; 11:1691-1718. [PMID: 33613998 PMCID: PMC7882954 DOI: 10.1002/ece3.7160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/21/2022] Open
Abstract
Habitat changes represent one of the five most pervasive threats to biodiversity. However, anthropogenic activities also have the capacity to create novel niche spaces to which species respond differently. In 1880, one such habitat alterations occurred in Landvikvannet, a freshwater lake on the Norwegian coast of Skagerrak, which became brackish after being artificially connected to the sea. This lake is now home to the European sprat, a pelagic marine fish that managed to develop a self-recruiting population in barely few decades. Landvikvannet sprat proved to be genetically isolated from the three main populations described for this species; that is, Norwegian fjords, Baltic Sea, and the combination of North Sea, Kattegat, and Skagerrak. This distinctness was depicted by an accuracy self-assignment of 89% and a highly significant F ST between the lake sprat and each of the remaining samples (average of ≈0.105). The correlation between genetic and environmental variation indicated that salinity could be an important environmental driver of selection (3.3% of the 91 SNPs showed strong associations). Likewise, Isolation by Environment was detected for salinity, although not for temperature, in samples not adhering to an Isolation by Distance pattern. Neighbor-joining tree analysis suggested that the source of the lake sprat is in the Norwegian fjords, rather than in the Baltic Sea despite a similar salinity profile. Strongly drifted allele frequencies and lower genetic diversity in Landvikvannet compared with the Norwegian fjords concur with a founder effect potentially associated with local adaptation to low salinity. Genetic differentiation (F ST) between marine and brackish sprat is larger in the comparison Norway-Landvikvannet than in Norway-Baltic, which suggests that the observed divergence was achieved in Landvikvannet in some 65 generations, that is, 132 years, rather than gradually over thousands of years (the age of the Baltic Sea), thus highlighting the pace at which human-driven evolution can happen.
Collapse
Affiliation(s)
| | - Àlex Richter‐Boix
- CREAFCampus de BellaterraAutonomous University of BarcelonaBarcelonaSpain
| | - Dorte Bekkevold
- DTU‐Aqua National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | | | | | | - Geir Dahle
- Institute of Marine ResearchBergenNorway
| | | | - Richard D. M. Nash
- Centre for EnvironmentFisheries and Aquaculture Science (Cefas)LowestoftUK
| | - Kevin A. Glover
- Institute of Marine ResearchBergenNorway
- Institute of BiologyUniversity of BergenBergenNorway
| |
Collapse
|
12
|
Abstract
Diadromy, the predictable movements of individuals between marine and freshwater environments, is biogeographically and phylogenetically widespread across fishes. Thus, despite the high energetic and potential fitness costs involved in moving between distinct environments, diadromy appears to be an effective life history strategy. Yet, the origin and molecular mechanisms that underpin this migratory behavior are not fully understood. In this review, we aim first to summarize what is known about diadromy in fishes; this includes the phylogenetic relationship among diadromous species, a description of the main hypotheses regarding its origin, and a discussion of the presence of non-migratory populations within diadromous species. Second, we discuss how recent research based on -omics approaches (chiefly genomics, transcriptomics, and epigenomics) is beginning to provide answers to questions on the genetic bases and origin(s) of diadromy. Finally, we suggest future directions for -omics research that can help tackle questions on the evolution of diadromy.
Collapse
Affiliation(s)
- M. Lisette Delgado
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Daniel E. Ruzzante
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
13
|
On the causes of geographically heterogeneous parallel evolution in sticklebacks. Nat Ecol Evol 2020; 4:1105-1115. [DOI: 10.1038/s41559-020-1222-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/14/2020] [Indexed: 12/22/2022]
|