1
|
Ali A, Liang P. Transposable elements contribute to tissue-specific gene regulation in humans. Genes Genomics 2024:10.1007/s13258-024-01550-6. [PMID: 39088190 DOI: 10.1007/s13258-024-01550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Transposable elements (TEs) contribute to approximately half of the human genome, and along with many other functions, they have been known to play a role in gene regulation in the genome. With TEs' active/repressed states varying across tissue and cell types, they have the potential to regulate gene expression in a tissue-specific manner. OBJECTIVE AND METHODS To provide a systematic analysis of TEs' contribution in tissue-specific gene regulation, we examined the regulatory elements and genes in association with TE-derived regulatory sequences in 14 human cell lines belonging to 10 different tissue types using the functional genomics data from the ENCODE project. Specifically, we separately analyzed regulatory regions identified by three different approaches (DNase hypersensitive sites (DHS), histone active sites (HA), and histone repressive sites (HR)). RESULTS These regulatory regions showed to be distinct from each other by sharing less than 2.5% among all three types and more than 95% showed to be cell line-specific. Despite a lower total TE content overall than the genome average, each regulatory sequence type showed enrichment for one or two specific TE type(s): DHS for long terminal repeats (LTRs) and DNA transposons, HA for short interspersed nucleotide elements (SINEs), and HR for LTRs. In contrast, SINE was shown to be overrepresented in all three types of regulatory sequences located in gene-neighboring regions. TE-regulated genes were mostly shown to have cell line specific pattern, and tissue-specific genes (TSGs) showed higher usage of TE regulatory sequences in the tissue of their expression. While TEs in the regulatory sequences showed to be older than their genome-wide counterparts, younger TEs were shown to be more likely used in cell line specific regulatory sequences. CONCLUSIONS Collectively, our study provided further evidence enforcing an important contribution of TEs to tissue-specific gene regulation in humans.
Collapse
Affiliation(s)
- Arsala Ali
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
- Centre of Biotechnologies, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
2
|
Tang W, Liang P. The identification of retro-DNAs in primate genomes as DNA transposons mobilizing via retrotransposition. F1000Res 2024; 12:255. [PMID: 38915770 PMCID: PMC11195612 DOI: 10.12688/f1000research.130043.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Background Mobile elements (MEs) constitute a major portion of the genome in primates and other higher eukaryotes, and they play important role in genome evolution and gene function. MEs can be divided into two fundamentally different classes: DNA transposons which transpose in the genome in a "cut-and-paste" style, and retrotransposons which propagate in a "copy-and-paste" fashion via a process involving transcription and reverse-transcription. In primate genomes, DNA transposons are mostly dead, while many retrotransposons are still highly active. We report here the identification of a unique group of MEs, which we call "retro-DNAs", for their combined characteristics of these two fundamentally different ME classes. Methods A comparative computational genomic approach was used to analyze the reference genome sequences of 10 primate species consisting of five apes, four monkeys, and marmoset. Results From our analysis, we identified a total of 1,750 retro-DNAs, representing 748 unique insertion events in the genomes of ten primate species including human. These retro-DNAs contain sequences of DNA transposons but lack the terminal inverted repeats (TIRs), the hallmark of DNA transposons. Instead, they show characteristics of retrotransposons, such as polyA tails, longer target-site duplications (TSDs), and the "TT/AAAA" insertion site motif, suggesting the use of the L1-based target- primed reverse transcription (TPRT) mechanism. At least 40% of these retro-DNAs locate into genic regions, presenting potentials for impacting gene function. More interestingly, some retro-DNAs, as well as their parent sites, show certain levels of expression, suggesting that they have the potential to create more retro-DNA copies in the present primate genomes. Conclusions Although small in number, the identification of these retro-DNAs reveals a new mean for propagating DNA transposons in primate genomes without active canonical DNA transposon activity. Our data also suggest that the TPRT machinery may transpose a wider variety of DNA sequences in the genomes.
Collapse
Affiliation(s)
- Wangxiangfu Tang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
- Centre of Biotechnology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| |
Collapse
|
3
|
Wang J, Weatheritt R, Voineagu I. Alu-minating the Mechanisms Underlying Primate Cortex Evolution. Biol Psychiatry 2022; 92:760-771. [PMID: 35981906 DOI: 10.1016/j.biopsych.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
The higher-order cognitive functions observed in primates correlate with the evolutionary enhancement of cortical volume and folding, which in turn are driven by the primate-specific expansion of cellular diversity in the developing cortex. Underlying these changes is the diversification of molecular features including the creation of human and/or primate-specific genes, the activation of specific molecular pathways, and the interplay of diverse layers of gene regulation. We review and discuss evidence for connections between Alu elements and primate brain evolution, the evolutionary milestones of which are known to coincide along primate lineages. Alus are repetitive elements that contribute extensively to the acquisition of novel genes and the expansion of diverse gene regulatory layers, including enhancers, alternative splicing, RNA editing, and microRNA pathways. By reviewing the impact of Alus on molecular features linked to cortical expansions or gyrification or implications in cognitive deficits, we suggest that future research focusing on the role of Alu-derived molecular events in the context of brain development may greatly advance our understanding of higher-order cognitive functions and neurologic disorders.
Collapse
Affiliation(s)
- Juli Wang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Robert Weatheritt
- St Vincent Clinical School, University of New South Wales, Sydney, Australia; Garvan Institute of Medical Research, EMBL Australia, Sydney, New South Wales, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia.
| |
Collapse
|
4
|
Dumas F, Perelman PL, Biltueva L, Roelke-Parker ME. Retrotransposon mapping in spider monkey genomes of the family Atelidae (Platyrrhini, Primates) shows a high level of LINE-1 amplification. JOURNAL OF BIOLOGICAL RESEARCH - BOLLETTINO DELLA SOCIETÀ ITALIANA DI BIOLOGIA SPERIMENTALE 2022. [DOI: 10.4081/jbr.2022.10725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To investigate the distribution of LINE-1 repeat sequences, a LINE-1 probe was Fluorescence In Situ Hybridized (FISH) on the chromosomes of Ateles geoffroyi and Ateles fusciceps (Atelidae); a LINE-1 probe was also mapped on Cebuella pygmaea (Cebidae) and used as an outgroup for phylogenetic comparison. Ateles spider monkeys have a highly rearranged genome and are an ideal model for testing whether LINE-1 is involved in genome evolution. The LINE-1 probe has been mapped in the two Atelidae species for the first time, revealing a high accumulation of LINE-1 sequences along chromosomal arms, including telomeres, and a scarcity of LINE-1 signals at centromere positions. LINE-1 mapping in C. pygmaea (Cebidae) revealed signals at centromere positions and along chromosome arms, which was consistent with previous published data from other Cebidae species. In a broader sense, the results were analyzed in light of published data on whole-chromosomal human probes mapped in these genomes. This analysis allows us to speculate about the presence of LINE-1 sequences at the junction of human chromosomal syntenies, as well as a possible link between these sequences and chromosomal rearrangements.
Collapse
|
5
|
Billon V, Sanchez-Luque FJ, Rasmussen J, Bodea GO, Gerhardt DJ, Gerdes P, Cheetham SW, Schauer SN, Ajjikuttira P, Meyer TJ, Layman CE, Nevonen KA, Jansz N, Garcia-Perez JL, Richardson SR, Ewing AD, Carbone L, Faulkner GJ. Somatic retrotransposition in the developing rhesus macaque brain. Genome Res 2022; 32:1298-1314. [PMID: 35728967 PMCID: PMC9341517 DOI: 10.1101/gr.276451.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022]
Abstract
The retrotransposon LINE-1 (L1) is central to the recent evolutionary history of the human genome and continues to drive genetic diversity and germline pathogenesis. However, the spatiotemporal extent and biological significance of somatic L1 activity are poorly defined and are virtually unexplored in other primates. From a single L1 lineage active at the divergence of apes and Old World monkeys, successive L1 subfamilies have emerged in each descendant primate germline. As revealed by case studies, the presently active human L1 subfamily can also mobilize during embryonic and brain development in vivo. It is unknown whether nonhuman primate L1s can similarly generate somatic insertions in the brain. Here we applied approximately 40× single-cell whole-genome sequencing (scWGS), as well as retrotransposon capture sequencing (RC-seq), to 20 hippocampal neurons from two rhesus macaques (Macaca mulatta). In one animal, we detected and PCR-validated a somatic L1 insertion that generated target site duplications, carried a short 5' transduction, and was present in ∼7% of hippocampal neurons but absent from cerebellum and nonbrain tissues. The corresponding donor L1 allele was exceptionally mobile in vitro and was embedded in PRDM4, a gene expressed throughout development and in neural stem cells. Nanopore long-read methylome and RNA-seq transcriptome analyses indicated young retrotransposon subfamily activation in the early embryo, followed by repression in adult tissues. These data highlight endogenous macaque L1 retrotransposition potential, provide prototypical evidence of L1-mediated somatic mosaicism in a nonhuman primate, and allude to L1 mobility in the brain over the past 30 million years of human evolution.
Collapse
Affiliation(s)
- Victor Billon
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Biology Department, École Normale Supérieure Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Francisco J Sanchez-Luque
- GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
- Institute of Parasitology and Biomedicine "Lopez-Neyra"-Spanish National Research Council, PTS Granada 18016, Spain
| | - Jay Rasmussen
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Gabriela O Bodea
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Daniel J Gerhardt
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Patricia Gerdes
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Stephanie N Schauer
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Prabha Ajjikuttira
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Thomas J Meyer
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Cora E Layman
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Natasha Jansz
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Jose L Garcia-Perez
- GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Sandra R Richardson
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Lucia Carbone
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Geoffrey J Faulkner
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
6
|
Wang Y, Zhao B, Choi J, Lee EA. Genomic approaches to trace the history of human brain evolution with an emerging opportunity for transposon profiling of ancient humans. Mob DNA 2021; 12:22. [PMID: 34663455 PMCID: PMC8525043 DOI: 10.1186/s13100-021-00250-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Transposable elements (TEs) significantly contribute to shaping the diversity of the human genome, and lines of evidence suggest TEs as one of driving forces of human brain evolution. Existing computational approaches, including cross-species comparative genomics and population genetic modeling, can be adapted for the study of the role of TEs in evolution. In particular, diverse ancient and archaic human genome sequences are increasingly available, allowing reconstruction of past human migration events and holding the promise of identifying and tracking TEs among other evolutionarily important genetic variants at an unprecedented spatiotemporal resolution. However, highly degraded short DNA templates and other unique challenges presented by ancient human DNA call for major changes in current experimental and computational procedures to enable the identification of evolutionarily important TEs. Ancient human genomes are valuable resources for investigating TEs in the evolutionary context, and efforts to explore ancient human genomes will potentially provide a novel perspective on the genetic mechanism of human brain evolution and inspire a variety of technological and methodological advances. In this review, we summarize computational and experimental approaches that can be adapted to identify and validate evolutionarily important TEs, especially for human brain evolution. We also highlight strategies that leverage ancient genomic data and discuss unique challenges in ancient transposon genomics.
Collapse
Affiliation(s)
- Yilan Wang
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Boxun Zhao
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Jaejoon Choi
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
7
|
Factors Regulating the Activity of LINE1 Retrotransposons. Genes (Basel) 2021; 12:genes12101562. [PMID: 34680956 PMCID: PMC8535693 DOI: 10.3390/genes12101562] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) is a class of autonomous mobile genetic elements that form somatic mosaicisms in various tissues of the organism. The activity of L1 retrotransposons is strictly controlled by many factors in somatic and germ cells at all stages of ontogenesis. Alteration of L1 activity was noted in a number of diseases: in neuropsychiatric and autoimmune diseases, as well as in various forms of cancer. Altered activity of L1 retrotransposons for some pathologies is associated with epigenetic changes and defects in the genes involved in their repression. This review discusses the molecular genetic mechanisms of the retrotransposition and regulation of the activity of L1 elements. The contribution of various factors controlling the expression and distribution of L1 elements in the genome occurs at all stages of the retrotransposition. The regulation of L1 elements at the transcriptional, post-transcriptional and integration into the genome stages is described in detail. Finally, this review also focuses on the evolutionary aspects of L1 accumulation and their interplay with the host regulation system.
Collapse
|
8
|
Jeon S, Kim S, Oh MH, Liang P, Tang W, Han K. A comprehensive analysis of gorilla-specific LINE-1 retrotransposons. Genes Genomics 2021; 43:1133-1141. [PMID: 34406591 DOI: 10.1007/s13258-021-01146-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Long interspersed element-1 (LINE-1 or L1) is the most abundant retrotransposons in the primate genome. They have approximately 520,000 copies and make up ~ 17% of the primate genome. Full-length L1s can mobilize to a new genomic location using their enzymatic machinery. Gorilla is the second closest species to humans after the chimpanzee, and human-gorilla split 7-12 million years ago. The gorilla genome provides an opportunity to explore primate origins and evolution. OBJECTIVE L1s have contributed to genome diversity and variations during primate evolution. This study aimed to identify gorilla-specific L1s using a more recent version of the gorilla reference genome (Mar. 2016 GSMRT3/gorGor5). METHODS We collected gorilla-specific L1 candidates through computational analysis and manual inspection. L1Xplorer was used to identify whether full-length gorilla-specific L1s were intact. In addition, to determine the level of sequence conservation between intact fulllength gorilla-specific L1s, two ORFs of intact L1s were aligned with the L1PA2 consensus sequence. RESULTS 2002 gorilla-specific L1 candidates were identified through computational analysis. Among them, we manually inspected 1,883 gorilla-specific L1s, among which most of them belong to the L1PA2 subfamily and 12 were intact L1s that could influence genomic variations in the gorilla genome. Interestingly, the 12 intact full-length gorilla-specific L1s have 14 highly conserved nonsynonymous mutations, including 6 mutations and 8 mutations in ORF1 and ORF2, respectively. In comparison to the intact full-length chimpanzee-specific L1s and human-specific hot-L1s, two of these in ORF1 (L256F and E293G) were shown as gorilla-specific nonsynonymous mutations. CONCLUSION The gorilla-specific L1s may have had significantly affected the gorilla genome to compose a genome different form that of other primates during primate evolution.
Collapse
Affiliation(s)
- Soyeon Jeon
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Songmi Kim
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea.,Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Man Hwan Oh
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre of Biotechnologies, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Wanxiangfu Tang
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Kyudong Han
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea. .,Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
9
|
CRISPR Deletion of a SVA Retrotransposon Demonstrates Function as a cis-Regulatory Element at the TRPV1/TRPV3 Intergenic Region. Int J Mol Sci 2021; 22:ijms22041911. [PMID: 33671852 PMCID: PMC7917899 DOI: 10.3390/ijms22041911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
SINE-VNTR-Alu (SVA) retrotransposons are a subclass of transposable elements (TEs) that exist only in primate genomes. TE insertions can be co-opted as cis-regulatory elements (CREs); however, the regulatory potential of SVAs has predominantly been demonstrated using bioinformatic approaches and reporter gene assays. The objective of this study was to demonstrate SVA cis-regulatory activity by CRISPR (clustered regularly interspaced short palindromic repeats) deletion and subsequent measurement of direct effects on local gene expression. We identified a region on chromosome 17 that was enriched with human-specific SVAs. Comparative gene expression analysis at this region revealed co-expression of TRPV1 and TRPV3 in multiple human tissues, which was not observed in mouse, highlighting key regulatory differences between the two species. Furthermore, the intergenic region between TRPV1 and TRPV3 coding sequences contained a human specific SVA insertion located upstream of the TRPV3 promoter and downstream of the 3′ end of TRPV1, highlighting this SVA as a candidate to study its potential cis-regulatory activity on both genes. Firstly, we generated SVA reporter gene constructs and demonstrated their transcriptional regulatory activity in HEK293 cells. We then devised a dual-targeting CRISPR strategy to facilitate the deletion of this entire SVA sequence and generated edited HEK293 clonal cell lines containing homozygous and heterozygous SVA deletions. In edited homozygous ∆SVA clones, we observed a significant decrease in both TRPV1 and TRPV3 mRNA expression, compared to unedited HEK293. In addition, we also observed an increase in the variability of mRNA expression levels in heterozygous ∆SVA clones. Overall, in edited HEK293 with SVA deletions, we observed a disruption to the co-expression of TRPV1 and TRPV3. Here we provide an example of a human specific SVA with cis-regulatory activity in situ, supporting the role of SVA retrotransposons as contributors to species-specific gene expression.
Collapse
|
10
|
Tang W, Liang P. Alu master copies serve as the drivers of differential SINE transposition in recent primate genomes. Anal Biochem 2020; 606:113825. [PMID: 32712063 DOI: 10.1016/j.ab.2020.113825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022]
Abstract
Alu elements, averaging ~300bp in length, are a family of primate-specific short intersperse nuclear elements (SINEs) with more than one million copies and contributing to ~11% of primate genomes. Despite mostly being shared among primates, our recent study revealed highly differential recent Alu transposition among the genomes of primates from Hominidae and Cercopithecidae families. To understand the underlying mechanism, we analyzed six primate genomes and revealed species- and lineage-specific Alu profile exclusively defined by AluY composition. Among all Alus from the 6 genomes, we identified 5401 Alu master copies with 99% being from the AluY subfamily. The numbers of Alu master copies are positively correlated to the number of AluY elements in the genomes with the baboon genome having the largest number of most recent Alu master copies at high activities, while the crab-eating macaque genome having a low number of Alu master copies with low activity. Furthermore, the expression level of Alu master copies is positively correlated with their transposition activity. Our results support the concept that Alu transposition in primate genomes is driven by a small number of master copies, the number and relative activity of which contribute to the differential Alu transposition in recent primate genomes.
Collapse
Affiliation(s)
- Wanxiangfu Tang
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|