1
|
Hyman P, van Raaij M. Bacteriophage T4 long tail fiber domains. Biophys Rev 2017; 10:463-471. [PMID: 29204885 DOI: 10.1007/s12551-017-0348-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/13/2017] [Indexed: 11/24/2022] Open
Abstract
Bacteriophage T4 initially recognizes its host cells using its long tail fibers. Long tail fibers consist of a phage-proximal and a phage-distal rod, each around 80 nm long and attached to each other at a slight angle. The phage-proximal rod is formed by a homo-trimer of gene product 34 (gp34) and is attached to the phage-distal rod by a monomer of gp35. The phage-distal rod consists of two protein trimers: a trimer of gp36, attached to gp35, although most of the phage-distal rod, including the receptor-binding domain, is formed by a trimer of gp37. In this review, we discuss what is known about the detailed structure and function of the different long tail fiber domains. Partial crystal structures of gp34 and gp37 have revealed the presence of new protein folds, some of which are present in several repeats, while others are apparently unique. Gp38, a phage chaperone protein necessary for folding of gp37, is thought to act on an α-helical coiled-coil region in gp37. Future studies should reveal the remaining structure of the long tail fibers, how they assemble into a functional unit, and how the long tail fibers trigger the infection process after successful recognition of a suitable host bacterium.
Collapse
Affiliation(s)
- Paul Hyman
- Department of Biology/Toxicology, Ashland University, 401 College Ave., Ashland, OH, 44805, USA.
| | - Mark van Raaij
- Departamento de Estructura de Macromoleculas, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049, Madrid, Spain
| |
Collapse
|
2
|
Pouillot F, Blois H, Iris F. Genetically engineered virulent phage banks in the detection and control of emergent pathogenic bacteria. Biosecur Bioterror 2010; 8:155-69. [PMID: 20569057 DOI: 10.1089/bsp.2009.0057] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural outbreaks of multidrug-resistant microorganisms can cause widespread devastation, and several can be used or engineered as agents of bioterrorism. From a biosecurity standpoint, the capacity to detect and then efficiently control, within hours, the spread and the potential pathological effects of an emergent outbreak, for which there may be no effective antibiotics or vaccines, become key challenges that must be met. We turned to phage engineering as a potentially highly flexible and effective means to both detect and eradicate threats originating from emergent (uncharacterized) bacterial strains. To this end, we developed technologies allowing us to (1) concurrently modify multiple regions within the coding sequence of a gene while conserving intact the remainder of the gene, (2) reversibly interrupt the lytic cycle of an obligate virulent phage (T4) within its host, (3) carry out efficient insertion, by homologous recombination, of any number of engineered genes into the deactivated genomes of a T4 wild-type phage population, and (4) reactivate the lytic cycle, leading to the production of engineered infective virulent recombinant progeny. This allows the production of very large, genetically engineered lytic phage banks containing, in an E. coli host, a very wide spectrum of variants for any chosen phage-associated function, including phage host-range. Screening of such a bank should allow the rapid isolation of recombinant T4 particles capable of detecting (ie, diagnosing), infecting, and destroying hosts belonging to gram-negative bacterial species far removed from the original E. coli host.
Collapse
|
3
|
Qu Y, Hyman P, Harrah T, Goldberg E. In vivo bypass of chaperone by extended coiled-coil motif in T4 tail fiber. J Bacteriol 2005; 186:8363-9. [PMID: 15576786 PMCID: PMC532435 DOI: 10.1128/jb.186.24.8363-8369.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distal-half tail fiber of bacteriophage T4 is made of three gene products: trimeric gp36 and gp37 and monomeric gp35. Chaperone P38 is normally required for folding gp37 peptides into a P37 trimer; however, a temperature-sensitive mutation in T4 (ts3813) that suppresses this requirement at 30 degrees C but not at 42 degrees C was found in gene 37 (R. J. Bishop and W. B. Wood, Virology 72:244-254, 1976). Sequencing of the temperature-sensitive mutant revealed a 21-bp duplication of wild-type gene 37 inserted into its C-terminal portion (S. Hashemolhosseini et al., J. Mol. Biol. 241:524-533, 1994). We noticed that the 21-amino-acid segment encompassing this duplication in the ts3813 mutant has a sequence typical of a coiled coil and hypothesized that its extension would relieve the temperature sensitivity of the ts3813 mutation. To test our hypothesis, we crossed the T4 ts3813 mutant with a plasmid encoding an engineered pentaheptad coiled coil. Each of the six mutants that we examined retained two amber mutations in gene 38 and had a different coiled-coil sequence varying from three to five heptads. While the sequences varied, all maintained the heptad-repeating coiled-coil motif and produced plaques at up to 50 degrees C. This finding strongly suggests that the coiled-coil motif is a critical factor in the folding of gp37. The presence of a terminal coiled-coil-like sequence in the tail fiber genes of 17 additional T-even phages implies the conservation of this mechanism. The increased melting temperature should be useful for "clamps" to initiate the folding of trimeric beta-helices in vitro and as an in vivo screen to identify, sequence, and characterize trimeric coiled coils.
Collapse
Affiliation(s)
- Yun Qu
- Tufts University School of Medicine, Dept. of Molecular and Microbiology, 146 Harrison Ave., Boston, MA 02111, USA
| | | | | | | |
Collapse
|
4
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Tétart F, Desplats C, Krisch HM. Genome plasticity in the distal tail fiber locus of the T-even bacteriophage: recombination between conserved motifs swaps adhesin specificity. J Mol Biol 1998; 282:543-56. [PMID: 9737921 DOI: 10.1006/jmbi.1998.2047] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adsorption specificity of the T-even phages is determined by the protein sequence near the tip of the long tail fibers. These adhesin sequences are highly variable in both their sequence and specificity for bacterial receptors. The tail fiber adhesin domains are located in different genes in closely related phages of the T-even type. In phage T4, the adhesin sequence is encoded by the C-terminal domain of the large tail fiber gene (gene 37), but in T2, the adhesin is a separate gene product (gene 38) that binds to the tip of T2 tail fibers. Analysis of phage T6 and Ac3 sequences reveals additional variant forms of this locus. The tail fiber host specificity determinants can be exchanged, although the different loci have only limited homology. Chimeric fibers can be created by crossovers either between small homologies within the structural part of the fiber gene or in conserved motifs of the adhesin domain. For example, the T2 adhesin determinants are flanked by G-rich DNA motifs and exchanges involving these sequences can replace the specificity determinants. These features of the distal tail fiber loci genetically link their different forms and can mediate acquisition of diverse host range determinants, including those that allow it to cross species boundaries and infect taxonomically distant hosts.
Collapse
Affiliation(s)
- F Tétart
- Laboratoire de Microbiologie et Génétique Moléculaire, CNRS, 118 Route de Narbonne, Toulouse Cedex, UPR 9007, France
| | | | | |
Collapse
|
6
|
Monod C, Repoila F, Kutateladze M, Tétart F, Krisch HM. The genome of the pseudo T-even bacteriophages, a diverse group that resembles T4. J Mol Biol 1997; 267:237-49. [PMID: 9096222 DOI: 10.1006/jmbi.1996.0867] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polymerase chain reaction analysis of a large collection of bacteriophages with T-even morphology revealed four phages that are distantly related to all the others. The genomes of these pseudo T-even phages hybridized under stringent conditions to only a limited portion of the T4 genome that encodes virus head, head-to-tail joining and contractile tail genes. Except for this region, no extensive hybridization was detected between most pairs of the different pseudo T-even genomes. Sequencing of this conserved region of the pseudo T-even phage RB49 revealed substantial nucleotide sequence divergence from T4 (approximately 30% to 40%), and random genomic sequencing of this phage indicated that more than a third of its sequences had no detectable homology to T4. Among those sequences related to the T-even genes were virion structural components including the constituents of the phage base plate. Only a few sequences had homology to T4 early functions; these included ribonucleotide diphosphatase reductase, DNA ligase and the large subunit of DNA topoisomerase. The genomes of the pseudo T-even phage were digested by restriction enzymes that are unable to digest the T-even DNAs which contain glucosylated hydroxymethyl-cytosine residues. This suggests that only limited nucleotide modifications must be present in the pseudo T-even genomes. Conservation of much of the morphogenetic region of these diverse phage genomes may reflect particularly strong sequence constraints on these gene products. However, other explanations are considered, including the possibility that the various morphogenetic segments were acquired by the pseudo T-even genomes by modular evolution. These results support the notion that phage evolution may proceed within a network of both closely and distantly related genomes.
Collapse
Affiliation(s)
- C Monod
- Laboratoire de Microbiologie et Génétique Moleculaire, CNRS UPR 9007,Toulouse, France
| | | | | | | | | |
Collapse
|
7
|
Hashemolhosseini S, Stierhof YD, Hindennach I, Henning U. Characterization of the helper proteins for the assembly of tail fibers of coliphages T4 and lambda. J Bacteriol 1996; 178:6258-65. [PMID: 8892827 PMCID: PMC178498 DOI: 10.1128/jb.178.21.6258-6265.1996] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Assembly of tail fibers of coliphage T4 requires the action of helper proteins. In the absence of one of these, protein 38 (p38), p37, constituting the distal part of the long tail fiber, fails to oligomerize. In the absence of the other, p57, p34 (another component of the long tail fiber), p37, and p12 (the subunit of the short tail fiber) remain unassembled. p38 can be replaced by the Tfa (tail fiber assembly) protein (pTfa) of phage lambda, which has the advantage of remaining soluble even when produced in massive amounts. The mechanisms of action of the helpers are unknown. As a first step towards elucidation of these mechanisms, p57 and pTfa have been purified to homogeneity and have been crystallized. The identity of gene 57 (g57), not known with certainty previously, has been established. The 79-residue protein p57 represents a very exotic polypeptide. It is oligomeric and acidic (an excess of nine negative charges). It does not contain Phe, Trp, Tyr, His, Pro, and Cys. Only 25 N-terminal residues were still able to complement a g57 amber mutant, although with a reduced efficiency. In cells overproducing the protein, it assumed a quasi-crystalline structure in the form of highly ordered fibers. They traversed the cells longitudinally (and thus blocked cell division) with a diameter approaching that of the cell and with a hexagonal appearance. The 194-residue pTfa is also acidic (an excess of 13 negative charges) and is likely to be dimeric.
Collapse
|
8
|
Sandmeier H. Acquisition and rearrangement of sequence motifs in the evolution of bacteriophage tail fibres. Mol Microbiol 1994; 12:343-50. [PMID: 8065255 DOI: 10.1111/j.1365-2958.1994.tb01023.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular analysis reveals a surprising sharing of short gene segments among a variety of large double-stranded DNA bacteriophages of enteric bacteria. Ancestral genomes from otherwise unrelated phages, including lambda, Mu, P1, P2 and T4, must have exchanged parts of their tail-fibre genes. Individual genes appear as mosaics with parts derived from a common gene pool. Therefore, horizontal gene transfer emerges as a major factor in the evolution of a specific part of phage genomes. Current concepts of homologous recombination cannot account for the formation of such chimeric genes and the recombinational mechanisms responsible are not known. However, recombination sites for DNA invertases and recombination site-like sequences are present at the boundaries of gene segments conferring the specificity for the host receptor. This, together with the properties of the DNA inversion mechanism, suggests that these site-specific recombination enzymes could be responsible for the exchange of host-range determinants.
Collapse
Affiliation(s)
- H Sandmeier
- Department of Preventive Dentistry and Oral Microbiology, University of Basel, Switzerland
| |
Collapse
|
9
|
Heller KJ. Molecular interaction between bacteriophage and the gram-negative cell envelope. Arch Microbiol 1992; 158:235-48. [PMID: 1417416 DOI: 10.1007/bf00245239] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- K J Heller
- Universität Konstanz, Fakultät für Biologie, Federal Republic of Germany
| |
Collapse
|
10
|
Haggård-Ljungquist E, Halling C, Calendar R. DNA sequences of the tail fiber genes of bacteriophage P2: evidence for horizontal transfer of tail fiber genes among unrelated bacteriophages. J Bacteriol 1992; 174:1462-77. [PMID: 1531648 PMCID: PMC206541 DOI: 10.1128/jb.174.5.1462-1477.1992] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have determined the DNA sequence of the bacteriophage P2 tail genes G and H, which code for polypeptides of 175 and 669 residues, respectively. Gene H probably codes for the distal part of the P2 tail fiber, since the deduced sequence of its product contains regions similar to tail fiber proteins from phages Mu, P1, lambda, K3, and T2. The similarities of the carboxy-terminal portions of the P2, Mu, ann P1 tail fiber proteins may explain the observation that these phages in general have the same host range. The P2 H gene product is similar to the products of both lambda open reading frame (ORF) 401 (stf, side tail fiber) and its downstream ORF, ORF 314. If 1 bp is inserted near the end of ORF 401, this reading frame becomes fused with ORF 314, creating an ORF that may represent the complete stf gene that encodes a 774-amino-acid-long side tail fiber protein. Thus, a frameshift mutation seems to be present in the common laboratory strain of lambda. Gene G of P2 probably codes for a protein required for assembly of the tail fibers of the virion. The entire G gene product is very similar to the products of genes U and U' of phage Mu; a region of these proteins is also found in the tail fiber assembly proteins of phages TuIa, TuIb, T4, and lambda. The similarities in the tail fiber genes of phages of different families provide evidence that illegitimate recombination occurs at previously unappreciated levels and that phages are taking advantage of the gene pool available to them to alter their host ranges under selective pressures.
Collapse
|
11
|
Montag D, Hashemolhosseini S, Henning U. Receptor-recognizing proteins of T-even type bacteriophages. The receptor-recognizing area of proteins 37 of phages T4 TuIa and TuIb. J Mol Biol 1990; 216:327-34. [PMID: 2147721 DOI: 10.1016/s0022-2836(05)80324-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Escherichia coli phages of the T4 family (T4, TuIa, TuIb) recognize their cellular receptors by means of a C-terminal region of protein 37; a dimer of this polypeptide (1026 residues in T4) is located at the distal part of the long tail fibers. Virions of the T2 family use protein 38 (which is attached to the free end of protein 37) for this purpose. The corresponding areas of genes 37 belonging to TuIa and TuIb were cloned and sequenced. Comparison of the deduced protein primary structures, including those of T4 and lambda Stf (Stf most likely representing a subunit of the side tail fibers of phage lambda) showed that an area of 70 to 100 residues is characterized by very variable sequences, while the sequences of the adjacent 43 to 44 C-terminal residues as well as those upstream from the variable region are highly homologous. The variable regions are flanked and interrupted seven or eight times by the motif His-x-His-y, with x and y most often being Ser or Thr; furthermore, the locations of these repeated tetrapeptides are conserved. Using hybrid phages obtained by recombination of one phage with cloned fragments of gene 37 of another, it could be shown that the area of this gene encoding receptor specificity includes the variable area. The situation is analogous to the known receptor-recognizing region of proteins 38 belonging to the T2-type family, except that the repeating sequence is of a different nature. In T4, receptor specificity is coded for by 382 base-pairs of the 3'-end of the gene, starting exactly at the variable area. It was found that T4 can use the outer membrane protein OmpC or lipopolysaccharide as receptors with the same efficiency, and it is proposed that the 70 residues of the variable part of the protein serve to bind to both ligands.
Collapse
Affiliation(s)
- D Montag
- Max-Planck-Institut für Biologie, Tübingen, F.R.G
| | | | | |
Collapse
|