1
|
Coffin JM, Kearney MF. False Alarm: XMRV, Cancer, and Chronic Fatigue Syndrome. Annu Rev Virol 2024; 11:261-281. [PMID: 38976866 DOI: 10.1146/annurev-virology-111821-125122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Xenotropic murine leukemia virus (MLV)-related virus (XMRV) was first described in 2006 in some human prostate cancers. But it drew little attention until 2009, when it was also found, as infectious virus and as MLV-related DNA, in samples from people suffering from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). This discovery was rapidly followed by efforts of the international research community to understand the significance of the association and its potential to spread widely as an important human pathogen. Within a few years, efforts by researchers worldwide failed to repeat these findings, and mounting evidence for laboratory contamination with mouse-derived virus and viral DNA sequences became accepted as the explanation for the initial findings. As researchers engaged in these studies, we present here a historical review of the rise and fall of XMRV as a human pathogen, and we discuss the lessons learned from these events.
Collapse
Affiliation(s)
- John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA;
| | | |
Collapse
|
2
|
Boso G, Lam O, Bamunusinghe D, Oler AJ, Wollenberg K, Liu Q, Shaffer E, Kozak CA. Patterns of Coevolutionary Adaptations across Time and Space in Mouse Gammaretroviruses and Three Restrictive Host Factors. Viruses 2021; 13:v13091864. [PMID: 34578445 PMCID: PMC8472935 DOI: 10.3390/v13091864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/04/2021] [Accepted: 09/15/2021] [Indexed: 10/26/2022] Open
Abstract
The classical laboratory mouse strains are genetic mosaics of three Mus musculus subspecies that occupy distinct regions of Eurasia. These strains and subspecies carry infectious and endogenous mouse leukemia viruses (MLVs) that can be pathogenic and mutagenic. MLVs evolved in concert with restrictive host factors with some under positive selection, including the XPR1 receptor for xenotropic/polytropic MLVs (X/P-MLVs) and the post-entry restriction factor Fv1. Since positive selection marks host-pathogen genetic conflicts, we examined MLVs for counter-adaptations at sites that interact with XPR1, Fv1, and the CAT1 receptor for ecotropic MLVs (E-MLVs). Results describe different co-adaptive evolutionary paths within the ranges occupied by these virus-infected subspecies. The interface of CAT1, and the otherwise variable E-MLV envelopes, is highly conserved; antiviral protection is afforded by the Fv4 restriction factor. XPR1 and X/P-MLVs variants show coordinate geographic distributions, with receptor critical sites in envelope, under positive selection but with little variation in envelope and XPR1 in mice carrying P-ERVs. The major Fv1 target in the viral capsid is under positive selection, and the distribution of Fv1 alleles is subspecies-correlated. These data document adaptive, spatial and temporal, co-evolutionary trajectories at the critical interfaces of MLVs and the host factors that restrict their replication.
Collapse
Affiliation(s)
- Guney Boso
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (G.B.); (O.L.); (D.B.); (Q.L.); (E.S.)
| | - Oscar Lam
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (G.B.); (O.L.); (D.B.); (Q.L.); (E.S.)
| | - Devinka Bamunusinghe
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (G.B.); (O.L.); (D.B.); (Q.L.); (E.S.)
| | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (A.J.O.); (K.W.)
| | - Kurt Wollenberg
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (A.J.O.); (K.W.)
| | - Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (G.B.); (O.L.); (D.B.); (Q.L.); (E.S.)
| | - Esther Shaffer
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (G.B.); (O.L.); (D.B.); (Q.L.); (E.S.)
| | - Christine A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; (G.B.); (O.L.); (D.B.); (Q.L.); (E.S.)
- Correspondence:
| |
Collapse
|
3
|
Young GR, Ferron AKW, Panova V, Eksmond U, Oliver PL, Kassiotis G, Stoye JP. Gv1, a Zinc Finger Gene Controlling Endogenous MLV Expression. Mol Biol Evol 2021; 38:2468-2474. [PMID: 33560369 PMCID: PMC8136514 DOI: 10.1093/molbev/msab039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The genomes of inbred mice harbor around 50 endogenous murine leukemia virus (MLV) loci, although the specific complement varies greatly between strains. The Gv1 locus is known to control the transcription of endogenous MLVs and to be the dominant determinant of cell-surface presentation of MLV envelope, the GIX antigen. Here, we identify a single Krüppel-associated box zinc finger protein (ZFP) gene, Zfp998, as Gv1 and show it to be necessary and sufficient to determine the GIX+ phenotype. By long-read sequencing of bacterial artificial chromosome clones from 129 mice, the prototypic GIX+ strain, we reveal the source of sufficiency and deficiency as splice-acceptor variations and highlight the varying origins of the chromosomal region encompassing Gv1. Zfp998 becomes the second identified ZFP gene responsible for epigenetic suppression of endogenous MLVs in mice and further highlights the prominent role of this gene family in control of endogenous retroviruses.
Collapse
Affiliation(s)
- George R Young
- Retrovirus-host Interactions Laboratory, The Francis Crick Institute, London, UK
| | - Aaron K W Ferron
- Retrovirus-host Interactions Laboratory, The Francis Crick Institute, London, UK
| | - Veera Panova
- Retroviral Immunology, The Francis Crick Institute, London, UK
| | - Urszula Eksmond
- Retroviral Immunology, The Francis Crick Institute, London, UK
| | | | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London, UK.,Department of Infectious Disease, Imperial College London, London, UK
| | - Jonathan P Stoye
- Retrovirus-host Interactions Laboratory, The Francis Crick Institute, London, UK.,Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
4
|
Chiu ES, VandeWoude S. Endogenous Retroviruses Drive Resistance and Promotion of Exogenous Retroviral Homologs. Annu Rev Anim Biosci 2020; 9:225-248. [PMID: 33290087 DOI: 10.1146/annurev-animal-050620-101416] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endogenous retroviruses (ERVs) serve as markers of ancient viral infections and provide invaluable insight into host and viral evolution. ERVs have been exapted to assist in performing basic biological functions, including placentation, immune modulation, and oncogenesis. A subset of ERVs share high nucleotide similarity to circulating horizontally transmitted exogenous retrovirus (XRV) progenitors. In these cases, ERV-XRV interactions have been documented and include (a) recombination to result in ERV-XRV chimeras, (b) ERV induction of immune self-tolerance to XRV antigens, (c) ERV antigen interference with XRV receptor binding, and (d) interactions resulting in both enhancement and restriction of XRV infections. Whereas the mechanisms governing recombination and immune self-tolerance have been partially determined, enhancement and restriction of XRV infection are virus specific and only partially understood. This review summarizes interactions between six unique ERV-XRV pairs, highlighting important ERV biological functions and potential evolutionary histories in vertebrate hosts.
Collapse
Affiliation(s)
- Elliott S Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA; ,
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA; ,
| |
Collapse
|
5
|
Acharya R, Wallis ZK, Keener RJ, Gillock ET. Preliminary PCR-Based Screening Indicates a Higher Incidence of Porcine Endogenous Retrovirus Subtype C (PERV-C) in Feral Versus Domestic Swine. ACTA ACUST UNITED AC 2019. [DOI: 10.1660/062.122.0309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Rashmi Acharya
- 1. Department of Biological Sciences, Fort Hays State University, Hays, Kansas
| | - Zoey K. Wallis
- 1. Department of Biological Sciences, Fort Hays State University, Hays, Kansas
| | - Robert J. Keener
- 2. Department of Agriculture, Fort Hays State University, Hays, Kansas
| | - Eric T. Gillock
- 1. Department of Biological Sciences, Fort Hays State University, Hays, Kansas
| |
Collapse
|
6
|
Skorski M, Bamunusinghe D, Liu Q, Shaffer E, Kozak CA. Distribution of endogenous gammaretroviruses and variants of the Fv1 restriction gene in individual mouse strains and strain subgroups. PLoS One 2019; 14:e0219576. [PMID: 31291374 PMCID: PMC6619830 DOI: 10.1371/journal.pone.0219576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/26/2019] [Indexed: 01/16/2023] Open
Abstract
Inbred laboratory mouse strains carry endogenous retroviruses (ERVs) classed as ecotropic, xenotropic or polytropic mouse leukemia viruses (E-, X- or P-MLVs). Some of these MLV ERVs produce infectious virus and/or contribute to the generation of intersubgroup recombinants. Analyses of selected mouse strains have linked the appearance of MLVs and virus-induced disease to the strain complement of MLV E-ERVs and to host genes that restrict MLVs, particularly Fv1. Here we screened inbred strain DNAs and genome assemblies to describe the distribution patterns of 45 MLV ERVs and Fv1 alleles in 58 classical inbred strains grouped in two ways: by common ancestry to describe ERV inheritance patterns, and by incidence of MLV-associated lymphomagenesis. Each strain carries a unique set of ERVs, and individual ERVs are present in 5–96% of the strains, often showing lineage-specific distributions. Two ERVs are alternatively present as full-length proviruses or solo long terminal repeats. High disease incidence strains carry the permissive Fv1n allele, tested strains have highly expressed E-ERVs and most have the Bxv1 X-ERV; these three features are not present together in any low-moderate disease strain. The P-ERVs previously implicated in P-MLV generation are not preferentially found in high leukemia strains, but the three Fv1 alleles that restrict inbred strain E-MLVs are found only in low-moderate leukemia strains. This dataset helps define the genetic basis of strain differences in spontaneous lymphomagenesis, describes the distribution of MLV ERVs in strains with shared ancestry, and should help annotate sequenced strain genomes for these insertionally polymorphic and functionally important proviruses.
Collapse
Affiliation(s)
- Matthew Skorski
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Devinka Bamunusinghe
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Esther Shaffer
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Christine A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
7
|
Gagnier L, Belancio VP, Mager DL. Mouse germ line mutations due to retrotransposon insertions. Mob DNA 2019; 10:15. [PMID: 31011371 PMCID: PMC6466679 DOI: 10.1186/s13100-019-0157-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022] Open
Abstract
Transposable element (TE) insertions are responsible for a significant fraction of spontaneous germ line mutations reported in inbred mouse strains. This major contribution of TEs to the mutational landscape in mouse contrasts with the situation in human, where their relative contribution as germ line insertional mutagens is much lower. In this focussed review, we provide comprehensive lists of TE-induced mouse mutations, discuss the different TE types involved in these insertional mutations and elaborate on particularly interesting cases. We also discuss differences and similarities between the mutational role of TEs in mice and humans.
Collapse
Affiliation(s)
- Liane Gagnier
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| | - Victoria P. Belancio
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Dixie L. Mager
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| |
Collapse
|
8
|
Bamunusinghe D, Skorski M, Buckler-White A, Kozak CA. Xenotropic Mouse Gammaretroviruses Isolated from Pre-Leukemic Tissues Include a Recombinant. Viruses 2018; 10:v10080418. [PMID: 30096897 PMCID: PMC6116186 DOI: 10.3390/v10080418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/28/2018] [Accepted: 08/03/2018] [Indexed: 11/16/2022] Open
Abstract
Naturally-occurring lymphomagenesis is induced by mouse leukemia viruses (MLVs) carried as endogenous retroviruses (ERVs). Replicating the ecotropic MLVs recombines with polytropic (P-ERVs) and xenotropic ERVs (X-ERVs) to generate pathogenic viruses with an altered host range. While most recovered nonecotropic recombinants have a polytropic host range, the X-MLVs are also present in the pre-leukemic tissues. We analyzed two such isolates from the AKR mice to identify their ERV progenitors and to look for evidence of recombination. AKR40 resembles the active X-ERV Bxv1, while AKR6 has a Bxv1-like backbone with substitutions that alter the long terminal repeat (LTR) enhancer and the envelope (env). AKR6 has a modified xenotropic host range, and its Env residue changes all lie outside of the domain that governs the receptor choice. The AKR6 segment spanning the two substitutions, but not the entire AKR6 env-LTR, exists as an ERV, termed Xmv67, in AKR, but not in the C57BL/6 mice. This suggests that AKR6 is the product of one, not two, recombination events. Xmv67 originated in the Asian mice. These data indicate that the recombinant X-MLVs that can be generated during lymphomagenesis, describe a novel X-ERV subtype found in the AKR genome, but not in the C57BL/6 reference genome, and identify residues in the envelope C-terminus that may influence the host range.
Collapse
Affiliation(s)
- Devinka Bamunusinghe
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA.
| | - Matthew Skorski
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA.
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA.
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
9
|
Bamunusinghe D, Liu Q, Plishka R, Dolan MA, Skorski M, Oler AJ, Yedavalli VRK, Buckler-White A, Hartley JW, Kozak CA. Recombinant Origins of Pathogenic and Nonpathogenic Mouse Gammaretroviruses with Polytropic Host Range. J Virol 2017; 91:e00855-17. [PMID: 28794032 PMCID: PMC5640873 DOI: 10.1128/jvi.00855-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
Ecotropic, xenotropic, and polytropic mouse leukemia viruses (E-, X-, and P-MLVs) exist in mice as infectious viruses and endogenous retroviruses (ERVs) inserted into mouse chromosomes. All three MLV subgroups are linked to leukemogenesis, which involves generation of recombinants with polytropic host range. Although P-MLVs are deemed to be the proximal agents of disease induction, few biologically characterized infectious P-MLVs have been sequenced for comparative analysis. We analyzed the complete genomes of 16 naturally occurring infectious P-MLVs, 12 of which were typed for pathogenic potential. We sought to identify ERV progenitors, recombinational hot spots, and segments that are always replaced, never replaced, or linked to pathogenesis or host range. Each P-MLV has an E-MLV backbone with P- or X-ERV replacements that together cover 100% of the recombinant genomes, with different substitution patterns for X- and P-ERVs. Two segments are always replaced, both coding for envelope (Env) protein segments: the N terminus of the surface subunit and the cytoplasmic tail R peptide. Viral gag gene replacements are influenced by host restriction genes Fv1 and Apobec3 Pathogenic potential maps to the env transmembrane subunit segment encoding the N-heptad repeat (HR1). Molecular dynamics simulations identified three novel interdomain salt bridges in the lymphomagenic virus HR1 that could affect structural stability, entry or sensitivity to host immune responses. The long terminal repeats of lymphomagenic P-MLVs are differentially altered by recombinations, duplications, or mutations. This analysis of the naturally occurring, sometimes pathogenic P-MLV recombinants defines the limits and extent of intersubgroup recombination and identifies specific sequence changes linked to pathogenesis and host interactions.IMPORTANCE During virus-induced leukemogenesis, ecotropic mouse leukemia viruses (MLVs) recombine with nonecotropic endogenous retroviruses (ERVs) to produce polytropic MLVs (P-MLVs). Analysis of 16 P-MLV genomes identified two segments consistently replaced: one at the envelope N terminus that alters receptor choice and one in the R peptide at the envelope C terminus, which is removed during virus assembly. Genome-wide analysis shows that nonecotropic replacements in the progenitor ecotropic MLV genome are more extensive than previously appreciated, covering 100% of the genome; contributions from xenotropic and polytropic ERVs differentially alter the regions responsible for receptor determination or subject to APOBEC3 and Fv1 restriction. All pathogenic viruses had modifications in the regulatory elements in their long terminal repeats and differed in a helical segment of envelope involved in entry and targeted by the host immune system. Virus-induced leukemogenesis thus involves generation of complex recombinants, and specific replacements are linked to pathogenesis and host restrictions.
Collapse
Affiliation(s)
- Devinka Bamunusinghe
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Ronald Plishka
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Matthew Skorski
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Venkat R K Yedavalli
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Janet W Hartley
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Abstract
Advances in technology have made it possible to analyze integration sites in cells from HIV-infected patients. A significant fraction of infected cells in patients on long-term therapy are clonally expanded; in some cases the integrated viral DNA contributes to the clonal expansion of the infected cells. Although the large majority (>95%) of the HIV proviruses in treated patients are defective, expanded clones can carry replication-competent proviruses, and cells from these clones can release infectious virus. As discussed in this Perspective, it is likely that cells that produce virus are strongly selected against in vivo, and cells with replication competent proviruses expand and survive because only a small fraction of the cells produce virus. These findings have implications for strategies that are intended to eliminate the reservoir of infected cells that has made it almost impossible to cure HIV-infected patients.
Collapse
Affiliation(s)
- Stephen H Hughes
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA.
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
11
|
Affiliation(s)
- John M. Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111;
| | - Hung Fan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| |
Collapse
|
12
|
Boi S, Rosenke K, Hansen E, Hendrick D, Malik F, Evans LH. Endogenous retroviruses mobilized during friend murine leukemia virus infection. Virology 2016; 499:136-143. [PMID: 27657834 DOI: 10.1016/j.virol.2016.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
We have demonstrated in a mouse model that infection with a retrovirus can lead not only to the generation of recombinants between exogenous and endogenous gammaretrovirus, but also to the mobilization of endogenous proviruses by pseudotyping entire polytropic proviral transcripts and facilitating their infectious spread to new cells. However, the frequency of this occurrence, the kinetics, and the identity of mobilized endogenous proviruses was unclear. Here we find that these mobilized transcripts are detected after only one day of infection. They predominate over recombinant polytropic viruses early in infection, persist throughout the course of disease and are comprised of multiple different polytropic proviruses. Other endogenous retroviral elements such as intracisternal A particles (IAPs) were not detected. The integration of the endogenous transcripts into new cells could result in loss of transcriptional control and elevated expression which may facilitate pathogenesis, perhaps by contributing to the generation of polytropic recombinant viruses.
Collapse
Affiliation(s)
- Stefano Boi
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | - Kyle Rosenke
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | - Ethan Hansen
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | - Duncan Hendrick
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | - Frank Malik
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | - Leonard H Evans
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| |
Collapse
|
13
|
Sequence Diversity, Intersubgroup Relationships, and Origins of the Mouse Leukemia Gammaretroviruses of Laboratory and Wild Mice. J Virol 2016; 90:4186-98. [PMID: 26865715 DOI: 10.1128/jvi.03186-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/03/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Mouse leukemia viruses (MLVs) are found in the common inbred strains of laboratory mice and in the house mouse subspecies ofMus musculus Receptor usage and envelope (env) sequence variation define three MLV host range subgroups in laboratory mice: ecotropic, polytropic, and xenotropic MLVs (E-, P-, and X-MLVs, respectively). These exogenous MLVs derive from endogenous retroviruses (ERVs) that were acquired by the wild mouse progenitors of laboratory mice about 1 million years ago. We analyzed the genomes of seven MLVs isolated from Eurasian and American wild mice and three previously sequenced MLVs to describe their relationships and identify their possible ERV progenitors. The phylogenetic tree based on the receptor-determining regions ofenvproduced expected host range clusters, but these clusters are not maintained in trees generated from other virus regions. Colinear alignments of the viral genomes identified segmental homologies to ERVs of different host range subgroups. Six MLVs show close relationships to a small xenotropic ERV subgroup largely confined to the inbred mouse Y chromosome.envvariations define three E-MLV subtypes, one of which carries duplications of various sizes, sequences, and locations in the proline-rich region ofenv Outside theenvregion, all E-MLVs are related to different nonecotropic MLVs. These results document the diversity in gammaretroviruses isolated from globally distributedMussubspecies, provide insight into their origins and relationships, and indicate that recombination has had an important role in the evolution of these mutagenic and pathogenic agents. IMPORTANCE Laboratory mice carry mouse leukemia viruses (MLVs) of three host range groups which were acquired from their wild mouse progenitors. We sequenced the complete genomes of seven infectious MLVs isolated from geographically separated Eurasian and American wild mice and compared them with endogenous germ line retroviruses (ERVs) acquired early in house mouse evolution. We did this because the laboratory mouse viruses derive directly from specific ERVs or arise by recombination between different ERVs. The six distinctively different wild mouse viruses appear to be recombinants, often involving different host range subgroups, and most are related to a distinctive, largely Y-chromosome-linked MLV ERV subtype. MLVs with ecotropic host ranges show the greatest variability with extensive inter- and intrasubtype envelope differences and with homologies to other host range subgroups outside the envelope. The sequence diversity among these wild mouse isolates helps define their relationships and origins and emphasizes the importance of recombination in their evolution.
Collapse
|
14
|
Beck-Engeser GB, Ahrends T, Knittel G, Wabl R, Metzner M, Eilat D, Wabl M. Infectivity and insertional mutagenesis of endogenous retrovirus in autoimmune NZB and B/W mice. J Gen Virol 2015; 96:3396-3410. [PMID: 26315139 DOI: 10.1099/jgv.0.000271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Murine leukaemia virus has been suggested to contribute to both autoimmune disease and leukaemia in the NZB mouse and in the (NZB × NZW) F1 (abbreviated B/W) mouse. However, with apparently only xenotropic but no ecotropic virus constitutively expressed in these mice, few mechanisms could explain the aetiology of either disease in either mouse strain. Because pseudotyped and/or inducible ecotropic virus may play a role, we surveyed the ability of murine leukaemia virus in NZB, NZW and B/W mice to infect and form a provirus. From the spleen of NZB mice, we isolated circular cDNA of xenotropic and polytropic virus, which indicates ongoing infection by these viruses. From a B/W lymphoma, we isolated and determined the complete sequence of a putative ecotropic NZW virus. From B/W mice, we recovered de novo endogenous retroviral integration sites (tags) from the hyperproliferating cells of the spleen and the peritoneum. The tagged genes seemed to be selected to aid cellular proliferation, as several of them are known cancer genes. The insertions are consistent with the idea that endogenous retrovirus contributes to B-cell hyperproliferation and progression to lymphoma in B/W mice.
Collapse
Affiliation(s)
- Gabriele B Beck-Engeser
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA
| | - Tomasz Ahrends
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA
| | - Gero Knittel
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA
| | - Rafael Wabl
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA
| | - Mirjam Metzner
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA
| | - Dan Eilat
- Department of Medicine, Hadassah University Hospital and The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Matthias Wabl
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA
| |
Collapse
|
15
|
Hartmann S, Hasenkamp N, Mayer J, Michaux J, Morand S, Mazzoni CJ, Roca AL, Greenwood AD. Endogenous murine leukemia retroviral variation across wild European and inbred strains of house mouse. BMC Genomics 2015; 16:613. [PMID: 26282858 PMCID: PMC4538763 DOI: 10.1186/s12864-015-1766-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 07/10/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Endogenous murine leukemia retroviruses (MLVs) are high copy number proviral elements difficult to comprehensively characterize using standard low throughput sequencing approaches. However, high throughput approaches generate data that is challenging to process, interpret and present. RESULTS Next generation sequencing (NGS) data was generated for MLVs from two wild caught Mus musculus domesticus (from mainland France and Corsica) and for inbred laboratory mouse strains C3H, LP/J and SJL. Sequence reads were grouped using a novel sequence clustering approach as applied to retroviral sequences. A Markov cluster algorithm was employed, and the sequence reads were queried for matches to specific xenotropic (Xmv), polytropic (Pmv) and modified polytropic (Mpmv) viral reference sequences. CONCLUSIONS Various MLV subtypes were more widespread than expected among the mice, which may be due to the higher coverage of NGS, or to the presence of similar sequence across many different proviral loci. The results did not correlate with variation in the major MLV receptor Xpr1, which can restrict exogenous MLVs, suggesting that endogenous MLV distribution may reflect gene flow more than past resistance to infection.
Collapse
Affiliation(s)
- Stefanie Hartmann
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str 22-24, Potsdam, 14476, Germany.
| | - Natascha Hasenkamp
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön, 24306, Germany.
| | - Jens Mayer
- Department of Human Genetics, Center of Human and Molecular Biology, Medical Faculty, University of Saarland, Building 60, Homburg, 66421, Germany.
| | - Johan Michaux
- Centre de Biologie et de Gestion des Populations, Campus International de Baillarguet, CS 30016, Montferrier-le-Lez, 34988, France.
| | - Serge Morand
- Conservation Genetics Unit, Institute of Botany (B. 22), University Liège, Liège, 4000, Belgium. .,CIRAD TA C- 22 / E - Campus international de Baillarguet, Montpellier Cedex 5, 34398, France.
| | - Camila J Mazzoni
- Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, Berlin, 14195, Germany. .,Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, Berlin, 10315, Germany.
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory, Urbana, 61801, IL, USA.
| | - Alex D Greenwood
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, Berlin, 10315, Germany.
| |
Collapse
|
16
|
Kozak CA. Origins of the endogenous and infectious laboratory mouse gammaretroviruses. Viruses 2014; 7:1-26. [PMID: 25549291 PMCID: PMC4306825 DOI: 10.3390/v7010001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/18/2014] [Indexed: 01/07/2023] Open
Abstract
The mouse gammaretroviruses associated with leukemogenesis are found in the classical inbred mouse strains and in house mouse subspecies as infectious exogenous viruses (XRVs) and as endogenous retroviruses (ERVs) inserted into their host genomes. There are three major mouse leukemia virus (MuLV) subgroups in laboratory mice: ecotropic, xenotropic, and polytropic. These MuLV subgroups differ in host range, pathogenicity, receptor usage and subspecies of origin. The MuLV ERVs are recent acquisitions in the mouse genome as demonstrated by the presence of many full-length nondefective MuLV ERVs that produce XRVs, the segregation of these MuLV subgroups into different house mouse subspecies, and by the positional polymorphism of these loci among inbred strains and individual wild mice. While some ecotropic and xenotropic ERVs can produce XRVs directly, others, especially the pathogenic polytropic ERVs, do so only after recombinations that can involve all three ERV subgroups. Here, I describe individual MuLV ERVs found in the laboratory mice, their origins and geographic distribution in wild mouse subspecies, their varying ability to produce infectious virus and the biological consequences of this expression.
Collapse
|
17
|
Wildschutte JH, Ram D, Subramanian R, Stevens VL, Coffin JM. The distribution of insertionally polymorphic endogenous retroviruses in breast cancer patients and cancer-free controls. Retrovirology 2014; 11:62. [PMID: 25112280 PMCID: PMC4149278 DOI: 10.1186/s12977-014-0062-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/18/2014] [Indexed: 12/31/2022] Open
Abstract
Background Integration of retroviral DNA into a germ cell can result in a provirus that is transmitted vertically to the host’s offspring. In humans, such endogenous retroviruses (HERVs) comprise >8% of the genome. The HERV-K(HML-2) proviruses consist of ~90 elements related to mouse mammary tumor virus, which causes breast cancer in mice. A subset of HERV-K(HML-2) proviruses has some or all genes intact, and even encodes functional proteins, though a replication competent copy has yet to be observed. More than 10% of HML-2 proviruses are human-specific, having integrated subsequent to the Homo-Pan divergence, and, of these, 11 are currently known to be polymorphic in integration site with variable frequencies among individuals. Increased expression of the most recent HML-2 proviruses has been observed in tissues and cell lines from several types of cancer, including breast cancer, for which expression may provide a meaningful marker of the disease. Results In this study, we performed a case–control analysis to investigate the possible relationship between the genome-wide presence of individual polymorphic HML-2 proviruses with the occurrence of breast cancer. For this purpose, we screened 50 genomic DNA samples from individuals diagnosed with breast cancer or without history of the disease (n = 25 per group) utilizing a combination of locus-specific PCR screening, in silico analysis of HML-2 content within the reference human genome sequence, and high-resolution genomic hybridization in semi-dried agarose. By implementing this strategy, we were able to analyze the distribution of both annotated and previously undescribed polymorphic HML-2 proviruses within our sample set, and to assess their possible association with disease outcome. Conclusions In a case–control analysis of 50 humans with regard to breast cancer diagnosis, we found no significant difference in the prevalence of proviruses between groups, suggesting common polymorphic HML-2 proviruses are not associated with breast cancer. Our findings indicate a higher level of putatively novel HML-2 sites within the population, providing support for additional recent insertion events, implying ongoing, yet rare, activities. These findings do not rule out either the possibility of involvement of such proviruses in a subset of breast cancers, or their possible utility as tissue-specific markers of disease.
Collapse
Affiliation(s)
| | | | | | | | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston 02111, MA, USA.
| |
Collapse
|
18
|
Endogenous gammaretrovirus acquisition in Mus musculus subspecies carrying functional variants of the XPR1 virus receptor. J Virol 2013; 87:9845-55. [PMID: 23824809 DOI: 10.1128/jvi.01264-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The xenotropic and polytropic mouse leukemia viruses (X-MLVs and P-MLVs, respectively) have different host ranges but use the same functionally polymorphic receptor, XPR1, for entry. Endogenous retroviruses (ERVs) of these 2 gammaretrovirus subtypes are largely segregated in different house mouse subspecies, but both MLV types are found in the classical strains of laboratory mice, which are genetic mosaics of 3 wild mouse subspecies. To describe the subspecies origins of laboratory mouse XP-MLV ERVs and their coevolutionary trajectory with their XPR1 receptor, we screened the house mouse subspecies for known and novel Xpr1 variants and for the individual full-length XP-MLV ERVs found in the sequenced C57BL mouse genome. The 12 X-MLV ERVs predate the origins of laboratory mice; they were all traced to Japanese wild mice and are embedded in the 5% of the laboratory mouse genome derived from the Asian Mus musculus musculus and, in one case, in the <1% derived from M. m. castaneus. While all 31 P-MLV ERVs map to the 95% of the laboratory mouse genome derived from P-MLV-infected M. m. domesticus, no C57BL P-MLV ERVs were found in wild M. m. domesticus. All M. m. domesticus mice carry the fully permissive XPR1 receptor allele, but all of the various restrictive XPR1 receptors, including the X-MLV-restricting laboratory mouse Xpr1(n) and a novel M. m. castaneus allele, originated in X-MLV-infected Asian mice. Thus, P-MLV ERVs show more insertional polymorphism than X-MLVs, and these differences in ERV acquisition and fixation are linked to subspecies-specific and functionally distinct XPR1 receptor variants.
Collapse
|
19
|
Ito K, Baudino L, Kihara M, Leroy V, Vyse TJ, Evans LH, Izui S. Three Sgp loci act independently as well as synergistically to elevate the expression of specific endogenous retroviruses implicated in murine lupus. J Autoimmun 2013; 43:10-7. [PMID: 23465716 DOI: 10.1016/j.jaut.2013.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 01/06/2023]
Abstract
Endogenous retroviruses are implicated in murine lupus nephritis. They provide a source of nephritogenic retroviral gp70-anti-gp70 immune complexes through the production of serum gp70 protein and anti-gp70 autoantibodies as a result of the activation of TLR7. The Sgp (serum gp70 production) loci identified in lupus-prone mice play distinct roles for the expression of different classes of endogenous retroviruses, as Sgp3 regulates the transcription of xenotropic, polytropic and modified polytropic (mPT) viruses, and Sgp4 the transcription of only xenotropic viruses. In the present study, we extended these analyses to a third locus, Sgp5, using BALB/c mice congenic for the NZW-derived Sgp5 allele and also explored the possible interaction of Sgp3 and Sgp4 loci to promote the expression of endogenous retroviruses and serum gp70. The analysis of Sgp5 BALB/c congenic mice demonstrated that the Sgp5 locus enhanced the expression of xenotropic and mPT viruses, thereby upregulating the production of serum gp70. These data indicate a distinct action of the Sgp5 locus on the expression of endogenous retroviruses, as compared with two other Sgp loci. Moreover, comparative analysis of C57BL/6 double congenic mice for Sgp3 and Sgp4 loci with single congenic mice revealed that Sgp3 and Sgp4 acted synergistically to elevate the transcription of the potentially replication-competent Xmv18 provirus and the production of serum gp70. This indicates that the combined effect of three different Sgp loci markedly enhance the expression of endogenous retroviruses and their gene product, serum gp70, thereby contributing to the formation of nephritogenic gp70-anti-gp70 immune complexes in murine lupus.
Collapse
Affiliation(s)
- Kiyoaki Ito
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
20
|
Nitta T, Lee S, Ha D, Arias M, Kozak CA, Fan H. Moloney murine leukemia virus glyco-gag facilitates xenotropic murine leukemia virus-related virus replication through human APOBEC3-independent mechanisms. Retrovirology 2012; 9:58. [PMID: 22828015 PMCID: PMC3423011 DOI: 10.1186/1742-4690-9-58] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/24/2012] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND One of the unique features of gammaretroviruses is that they contain an additional extended form of Gag, glyco-gag, which initiates in the leader sequence. MuLV glyco-gag, gPr80Gag, promotes retrovirus replication and disease progression. Although virtually all infectious MuLVs encode glyco-gag, XMRV (xenotropic murine leukemia virus-related virus) lacks the classical gPr80Gag sequence. We examined XMRV to determine if its leader sequence contains glyco-gag activity, whether the presence of conventional gPr80Gag affects replication of XMRV, and we describe the evolution of glyco-gag-deficient MuLVs in Mus. RESULTS We introduced several mutations disrupting two putative but noncanonical glyco-gag proteins in the leader sequence region in XMRV and found that those mutations did not affect virus release nor susceptibility to the antiviral activity of hA3G (human APOBEC3G). A chimeric XMRV encoding the Moloney MuLV (M-MuLV) leader sequence (MXMRV) demonstrated that M-MuLV glyco-gag facilitated MXMRV release and increased infectivity. Infectivity assays with several cell lines showed that glyco-gag increases XMRV infectivity in all cell lines tested, but the level of this increase varies in different cell lines. Because MuLV glyco-gag counteracts mouse APOBEC3, we investigated whether M-MuLV glyco-gag enhances XMRV infection by counteracting human APOBEC3. Comparison of hAPOBEC3 isoforms expressed in different cell lines indicated that hA3B was the most likely candidate for a restrictive hA3. However over-expression of hA3B showed no enhanced restriction of infection by XMRV compared to MXMRV. Endogenous MuLVs in the sequenced mouse genome were screened for canonical glyco-gag, which was identified in two clades of xenotropic MuLVs (X-MuLVs) and ecotropic MuLVs, but not in other X-MuLVs or in any polytropic MuLVs. CONCLUSIONS M-MuLV glyco-gag facilitates XMRV replication, and the leader sequence region in XMRV does not encode proteins equivalent to M-MuLV glyco-gag. The fact that the ability of glyco-gag to enhance XMRV infection varies in different cell lines suggests a glyco-gag sensitive restrictive factor that further reduces XMRV infectivity. The M-MuLV glyco-gag enhancement for XMRV replication is through a hAPOBEC3 independent mechanism. The absence of glyco-gag in MuLVs carried by western European mice suggests that loss of this sequence is a relatively recent event with limited subspecies distribution.
Collapse
Affiliation(s)
- Takayuki Nitta
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA, 92697-3905, USA
| | - Sangouk Lee
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA, 92697-3905, USA
| | - Dat Ha
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA, 92697-3905, USA
| | - Maribel Arias
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA, 92697-3905, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892-0460, USA
| | - Hung Fan
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA, 92697-3905, USA
| |
Collapse
|
21
|
Abstract
In 2006, a new retrovirus was isolated from prostate cancer patient tissue. Named xenotropic murine leukemia virus-related virus (XMRV), this was potentially the third class of retrovirus to be pathogenic in humans. XMRV made a more dramatic impact on the wider scientific community, and indeed the media, in 2009 when it was reported to be present in a remarkably high proportion of patients with chronic fatigue syndrome as well as a significant, albeit smaller, proportion of healthy controls. The apparent strong link to disease and the fear of a previously unknown retrovirus circulating in the general population lead to a surge in XMRV research. Subsequent studies failed to find an association of XMRV with disease and, in most cases, failed to find the virus in human samples. In 2011, the case against XMRV and human disease strengthened, ending with several decisive publications revealing the origin of the virus and demonstrating contamination of samples. In this review, we outline the passage of research on XMRV and its potential association with disease from its isolation to the present day, where we find ourselves at the end of a turbulent story.
Collapse
Affiliation(s)
- Harriet C T Groom
- Division of Virology, MRC National Institute for Medical Research, London NW7 1AA, UK
| | - Kate N Bishop
- Division of Virology, MRC National Institute for Medical Research, London NW7 1AA, UK
| |
Collapse
|
22
|
Mus spicilegus endogenous retrovirus HEMV uses murine sodium-dependent myo-inositol transporter 1 as a receptor. J Virol 2012; 86:6341-4. [PMID: 22457525 DOI: 10.1128/jvi.00083-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We sought to determine the relationship between two recent additions to the murine leukemia virus (MLV) ecotropic subgroup: Mus cervicolor isolate M813 and Mus spicilegus endogenous retrovirus HEMV. Though divergent in sequence, the two viruses share an Env protein with similarly curtailed VRA and VRB regions, and infection by both is restricted to mouse cells. HEMV and M813 displayed reciprocal receptor interference, suggesting that they share a receptor. Expression of the M813 receptor murine sodium-dependent myo-inositol transporter 1 (mSMIT1) allowed previously nonpermissive cells to be infected by HEMV, indicating that mSMIT1 also serves as a receptor for HEMV. Our findings add HEMV as a second member to the MLV subgroup that uses mSMIT1 to gain entry into cells.
Collapse
|
23
|
Multiple sources of contamination in samples from patients reported to have XMRV infection. PLoS One 2012; 7:e30889. [PMID: 22363509 PMCID: PMC3282701 DOI: 10.1371/journal.pone.0030889] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/22/2011] [Indexed: 11/22/2022] Open
Abstract
Xenotropic murine leukemia virus (MLV)-related retrovirus (XMRV) was reported to be associated with prostate cancer by Urisman, et al. in 2006 and chronic fatigue syndrome (CFS) by Lombardi, et al. in 2009. To investigate this association, we independently evaluated plasma samples from 4 patients with CFS reported by Lombardi, et al. to have XMRV infection and from 5 healthy controls reported to be XMRV uninfected. We also analyzed viral sequences obtained from supernatants of cell cultures found to contain XMRV after coculture with 9 clinical samples from 8 patients. A qPCR assay capable of distinguishing XMRV from endogenous MLVs showed that the viral sequences detected in the CFS patient plasma behaved like endogenous MLVs and not XMRV. Single-genome sequences (N = 89) from CFS patient plasma were indistinguishable from endogenous MLVs found in the mouse genome that are distinct from XMRV. By contrast, XMRV sequences were detected by qPCR in 2 of the 5 plasma samples from healthy controls (sequencing of the qPCR product confirmed XMRV not MLV). Single-genome sequences (N = 234) from the 9 culture supernatants reportedly positive for XMRV were indistinguishable from XMRV sequences obtained from 22Rv1 and XMRV-contaminated 293T cell-lines. These results indicate that MLV DNA detected in the plasma samples from CFS patients evaluated in this study was from contaminating mouse genomic DNA and that XMRV detected in plasma samples from healthy controls and in cultures of patient samples was due to cross-contamination with XMRV (virus or nucleic acid).
Collapse
|
24
|
Naturally Occurring Polymorphisms of the Mouse Gammaretrovirus Receptors CAT-1 and XPR1 Alter Virus Tropism and Pathogenicity. Adv Virol 2011; 2011:975801. [PMID: 22312361 PMCID: PMC3265322 DOI: 10.1155/2011/975801] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/12/2011] [Indexed: 01/29/2023] Open
Abstract
Gammaretroviruses of several different host range subgroups have been isolated from laboratory mice. The ecotropic viruses infect mouse cells and rely on the host CAT-1 receptor. The xenotropic/polytropic viruses, and the related human-derived XMRV, can infect cells of other mammalian species and use the XPR1 receptor for entry. The coevolution of these viruses and their receptors in infected mouse populations provides a good example of how genetic conflicts can drive diversifying selection. Genetic and epigenetic variations in the virus envelope glycoproteins can result in altered host range and pathogenicity, and changes in the virus binding sites of the receptors are responsible for host restrictions that reduce virus entry or block it altogether. These battleground regions are marked by mutational changes that have produced 2 functionally distinct variants of the CAT-1 receptor and 5 variants of the XPR1 receptor in mice, as well as a diverse set of infectious viruses, and several endogenous retroviruses coopted by the host to interfere with entry.
Collapse
|
25
|
Identification of replication competent murine gammaretroviruses in commonly used prostate cancer cell lines. PLoS One 2011; 6:e20874. [PMID: 21698104 PMCID: PMC3117837 DOI: 10.1371/journal.pone.0020874] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 05/11/2011] [Indexed: 11/19/2022] Open
Abstract
A newly discovered gammaretrovirus, termed XMRV, was recently reported to be present in the prostate cancer cell line CWR22Rv1. Using a combination of both immunohistochemistry with broadly-reactive murine leukemia virus (MLV) anti-sera and PCR, we determined if additional prostate cancer or other cell lines contain XMRV or MLV-related viruses. Our study included a total of 72 cell lines, which included 58 of the 60 human cancer cell lines used in anticancer drug screens and maintained at the NCI-Frederick (NCI-60). We have identified gammaretroviruses in two additional prostate cancer cell lines: LAPC4 and VCaP, and show that these viruses are replication competent. Viral genome sequencing identified the virus in LAPC4 and VCaP as nearly identical to another known xenotropic MLV, Bxv-1. We also identified a gammaretrovirus in the non-small-cell lung carcinoma cell line EKVX. Prostate cancer cell lines appear to have a propensity for infection with murine gammaretroviruses, and we propose that this may be in part due to cell line establishment by xenograft passage in immunocompromised mice. It is unclear if infection with these viruses is necessary for cell line establishment, or what confounding role they may play in experiments performed with these commonly used lines. Importantly, our results suggest a need for regular screening of cancer cell lines for retroviral "contamination", much like routine mycoplasma testing.
Collapse
|
26
|
Ray A, Rahbari R, Badge RM. IAP display: a simple method to identify mouse strain specific IAP insertions. Mol Biotechnol 2011; 47:243-52. [PMID: 20872285 PMCID: PMC3032225 DOI: 10.1007/s12033-010-9338-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intracisternal A-type particle (IAP) elements are high copy number long terminal repeat (LTR) rodent retrotransposons. Some IAP elements can transpose, and are responsible for ~12% of spontaneous mouse mutations. Inbred mouse strains show variation in genomic IAP distribution, contributing to inter-strain genetic variability. Additionally IAP elements can influence the transcriptional regulation of neighbouring genes through their strong LTR promoter, effecting phenotypic variation. This genetic and phenotypic variability can translate into experimental variability between mouse strains. For example, it has been demonstrated that strain-specific genetic/epigenetic factors can interact to yield variable responses to drugs. Therefore, in experimental contexts it is essential to unequivocally identify mouse strains. Recently it was estimated that any two inbred strains share only ~40% of their IAP insertions. Of the remaining 60%, some insertions will be strain specific, fixed during inbreeding. These fixed insertions can be exploited as genetic markers to identify inbred strains, if they can be identified simply and efficiently. Here, we report the development of a PCR-based system allowing direct acquisition of strain-specific IAP insertions. In a pilot study, we identified 21 IAP loci, genotyped IAP insertions at 9 loci, and discovered two strain-specific insertions that could reliably identify these strains.
Collapse
Affiliation(s)
- Akshay Ray
- Department of Genetics, University of Leicester, University Road, Leicester LE17RH, UK
| | | | | |
Collapse
|
27
|
Oakes B, Tai AK, Cingöz O, Henefield MH, Levine S, Coffin JM, Huber BT. Contamination of human DNA samples with mouse DNA can lead to false detection of XMRV-like sequences. Retrovirology 2010; 7:109. [PMID: 21171973 PMCID: PMC3022687 DOI: 10.1186/1742-4690-7-109] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/20/2010] [Indexed: 01/13/2023] Open
Abstract
Background In 2006, a novel gammaretrovirus, XMRV (xenotropic murine leukemia virus-related virus), was discovered in some prostate tumors. A more recent study indicated that this infectious retrovirus can be detected in 67% of patients suffering from chronic fatigue syndrome (CFS), but only very few healthy controls (4%). However, several groups have published to date that they could not identify XMRV RNA or DNA sequences in other cohorts of CFS patients, while another group detected murine leukemia virus (MLV)-like sequences in 87% of such patients, but only 7% of healthy controls. Since there is a high degree of similarity between XMRV and abundant endogenous MLV proviruses, it is important to distinguish contaminating mouse sequences from true infections. Results DNA from the peripheral blood of 112 CFS patients and 36 healthy controls was tested for XMRV with two different PCR assays. A TaqMan qPCR assay specific for XMRV pol sequences was able to detect viral DNA from 2 XMRV-infected cells (~ 10-12 pg DNA) in up to 5 μg of human genomic DNA, but yielded negative results in the test of 600 ng genomic DNA from 100,000 peripheral blood cells of all samples tested. However, positive results were obtained with some of these samples, using a less specific nested PCR assay for a different XMRV sequence. DNA sequencing of the PCR products revealed a wide variety of virus-related sequences, some identical to those found in prostate cancer and CFS patients, others more closely related to known endogenous MLVs. However, all samples that tested positive for XMRV and/or MLV DNA were also positive for the highly abundant intracisternal A-type particle (IAP) long terminal repeat and most were positive for murine mitochondrial cytochrome oxidase sequences. No contamination was observed in any of the negative control samples, containing those with no DNA template, which were included in each assay. Conclusions Mouse cells contain upwards of 100 copies each of endogenous MLV DNA. Even much less than one cell's worth of DNA can yield a detectable product using highly sensitive PCR technology. It is, therefore, vital that contamination by mouse DNA be monitored with adequately sensitive assays in all samples tested.
Collapse
Affiliation(s)
- Brendan Oakes
- Department of Pathology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Kozak CA. The mouse "xenotropic" gammaretroviruses and their XPR1 receptor. Retrovirology 2010; 7:101. [PMID: 21118532 PMCID: PMC3009702 DOI: 10.1186/1742-4690-7-101] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 11/30/2010] [Indexed: 11/29/2022] Open
Abstract
The xenotropic/polytropic subgroup of mouse leukemia viruses (MLVs) all rely on the XPR1 receptor for entry, but these viruses vary in tropism, distribution among wild and laboratory mice, pathogenicity, strategies used for transmission, and sensitivity to host restriction factors. Most, but not all, isolates have typical xenotropic or polytropic host range, and these two MLV tropism types have now been detected in humans as viral sequences or as infectious virus, termed XMRV, or xenotropic murine leukemia virus-related virus. The mouse xenotropic MLVs (X-MLVs) were originally defined by their inability to infect cells of their natural mouse hosts. It is now clear, however, that X-MLVs actually have the broadest host range of the MLVs. Nearly all nonrodent mammals are susceptible to X-MLVs, and all species of wild mice and several common strains of laboratory mice are X-MLV susceptible. The polytropic MLVs, named for their apparent broad host range, show a more limited host range than the X-MLVs in that they fail to infect cells of many mouse species as well as many nonrodent mammals. The co-evolution of these viruses with their receptor and other host factors that affect their replication has produced a heterogeneous group of viruses capable of inducing various diseases, as well as endogenized viral genomes, some of which have been domesticated by their hosts to serve in antiviral defense.
Collapse
Affiliation(s)
- Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
29
|
Kwon DN, Lee YK, Greenhalgh DG, Cho K. Lipopolysaccharide stress induces cell-type specific production of murine leukemia virus type-endogenous retroviral virions in primary lymphoid cells. J Gen Virol 2010; 92:292-300. [PMID: 20965985 PMCID: PMC3081078 DOI: 10.1099/vir.0.023416-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Some murine-endogenous retroviruses, making up ∼10 % of the mouse genome, are induced during the course of experimental sepsis in which lipopolysaccharide (LPS), a pathogenic component of gram-negative bacteria, often plays a critical role. In this study, we investigated whether LPS stress induces the production of murine leukemia virus type-endogenous retrovirus (MuLV-ERV) virions in primary lymphoid cells. LPS treatment of cells (single-cell suspensions and sorted B- and T-cells) isolated from seven lymphoid organs of C57BL/6J mice resulted in a differential increase in the production of MuLV-ERV virions in most cells examined. Interestingly, among the 34 unique MuLV-ERV U3 sequences cloned from the viral genomic RNAs, the nuclear respiratory factor 1 (transcription factor) element was present only in the 20 U3 sequences that were derived from the LPS-induced MuLV-ERV U3 bands. Using the U3 sequences as a probe, 55 putative MuLV-ERV loci were mapped onto the C57BL/6J mouse genome and 15 of them retained full coding potential. Furthermore, one full-length recombinant MuLV-ERV originating from a locus on chromosome 13 was determined to be responsive to LPS stress. The findings from this study suggest that LPS stress differentially activates MuLV-ERV virion production in lymphoid organs in a cell type- and MuLV-ERV-specific manner. Further investigation is needed to define the role of MuLV-ERVs in the LPS signalling pathway(s) in general, as well as in the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Deug-Nam Kwon
- Burn Research, Shriners Hospitals for Children Northern California and Department of Surgery, University of California, Davis, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
30
|
Baudino L, Changolkar LN, Pehrson JR, Izui S. The Sgp3 locus derived from the 129 strain is responsible for enhanced endogenous retroviral expression in macroH2A1-deficient mice. J Autoimmun 2010; 35:398-403. [PMID: 20833509 DOI: 10.1016/j.jaut.2010.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/17/2010] [Accepted: 08/22/2010] [Indexed: 10/19/2022]
Abstract
The endogenous retroviral envelope glycoprotein, gp70, implicated in murine lupus nephritis is secreted by hepatocytes, and its expression is largely regulated by the Sgp3 (serum gp70 production 3) locus derived from lupus-prone mice. Because of the localization of the macroH2A1 gene encoding macroH2A histone variants within the Sgp3 interval and of an up-regulated transcription of endogenous retroviral sequences in macroH2A1-deficient C57BL/6 (B6) mice, we investigated whether macroH2A1 is a candidate gene for Sgp3. macroH2A1-deficient B6 mice carrying the 129-derived Sgp3 locus, which was co-transferred with the 129 macroH2A1 mutant gene, displayed increased levels of serum gp70 and hepatic retroviral gp70 RNAs comparable to those of B6.NZB-Sgp3 congenic mice bearing the Sgp3 locus of lupus-prone NZB mice. In contrast, the abundance of retroviral gp70 RNAs in macroH2A1-deficient 129 mice was not elevated at all as compared with wild-type 129 mice. Furthermore, Sgp3 subcongenic B6 mice devoid of the NZB-derived macroH2A1 gene displayed an Sgp3 phenotype identical to that of B6.NZB-Sgp3 congenic mice carrying the NZB-derived macroH2A1 gene, thus excluding macroH2A1 as a candidate Sgp3 gene. Collectively, our data indicate that enhanced transcription of endogenous retroviral sequences observed in macroH2A1-deficient B6 mice is not a result of the macroH2A1 mutation, but due to the presence of the 129-derived Sgp3 locus. In contrast, the effect of a macroH2A1 knockout mutation on the expression of several non-retroviral cellular genes was very similar on the B6 and 129 backgrounds, indicating that these effects were due to the macroH2A1 knockout.
Collapse
Affiliation(s)
- Lucie Baudino
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
31
|
Yoshinobu K, Baudino L, Santiago-Raber ML, Morito N, Dunand-Sauthier I, Morley BJ, Evans LH, Izui S. Selective up-regulation of intact, but not defective env RNAs of endogenous modified polytropic retrovirus by the Sgp3 locus of lupus-prone mice. THE JOURNAL OF IMMUNOLOGY 2009; 182:8094-103. [PMID: 19494335 DOI: 10.4049/jimmunol.0900263] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endogenous retroviruses are implicated in the pathogenesis of systemic lupus erythematosus (SLE). Because four different classes of endogenous retroviruses, i.e., ecotropic, xenotropic, polytropic, or modified polytropic (mPT), are expressed in mice, we investigated the possibility that a particular class of endogenous retroviruses is associated with the development of murine SLE. We observed >15-fold increased expression of mPT env (envelope) RNA in livers of all four lupus-prone mice, as compared with those of nine nonautoimmune strains of mice. This was not the case for the three other classes of retroviruses. Furthermore, we found that in addition to intact mPT transcripts, many strains of mice expressed two defective mPT env transcripts which carry a deletion in the env sequence of the 3' portion of the gp70 surface protein and the 5' portion of the p15E transmembrane protein, respectively. Remarkably, in contrast to nonautoimmune strains of mice, all four lupus-prone mice expressed abundant levels of intact mPT env transcripts, but only low or nondetectable levels of the mutant env transcripts. The Sgp3 (serum gp70 production 3) locus derived from lupus-prone mice was responsible for the selective up-regulation of the intact mPT env RNA. Finally, we observed that single-stranded RNA-specific TLR7 played a critical role in the production of anti-gp70 autoantibodies. These data suggest that lupus-prone mice may possess a unique genetic mechanism responsible for the expression of mPT retroviruses, which could act as a triggering factor through activating TLR7 for the development of autoimmune responses in mice predisposed to SLE.
Collapse
Affiliation(s)
- Kumiko Yoshinobu
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Genome-wide assessments reveal extremely high levels of polymorphism of two active families of mouse endogenous retroviral elements. PLoS Genet 2008; 4:e1000007. [PMID: 18454193 PMCID: PMC2265474 DOI: 10.1371/journal.pgen.1000007] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 01/15/2008] [Indexed: 11/19/2022] Open
Abstract
Endogenous retroviral elements (ERVs) in mice are significant genomic mutagens, causing ∼10% of all reported spontaneous germ line mutations in laboratory strains. The majority of these mutations are due to insertions of two high copy ERV families, the IAP and ETn/MusD elements. This significant level of ongoing retrotranspositional activity suggests that inbred mice are highly variable in content of these two ERV groups. However, no comprehensive genome-wide studies have been performed to assess their level of polymorphism. Here we compared three test strains, for which sufficient genomic sequence is available, to each other and to the reference C57BL/6J genome and detected very high levels of insertional polymorphism for both ERV families, with an estimated false discovery rate of only 0.4%. Specifically, we found that at least 60% of IAP and 25% of ETn/MusD elements detected in any strain are absent in one or more of the other three strains. The polymorphic nature of a set of 40 ETn/MusD elements found within gene introns was confirmed using genomic PCR on DNA from a panel of mouse strains. For some cases, we detected gene-splicing abnormalities involving the ERV and obtained additional evidence for decreased gene expression in strains carrying the insertion. In total, we identified nearly 700 polymorphic IAP or ETn/MusD ERVs or solitary LTRs that reside in gene introns, providing potential candidates that may contribute to gene expression differences among strains. These extreme levels of polymorphism suggest that ERV insertions play a significant role in genetic drift of mouse lines. The laboratory mouse is the most widely used mammal for biological research. Hundreds of inbred mouse strains have been developed that vary in characteristics such as susceptibility to cancer or other diseases. There is much interest in uncovering differences between strains that result in different traits and, to aid this effort, millions of single nucleotide differences or polymorphisms between strains have been cataloged. To date, there has been less emphasis placed on other sources of genetic variation. In this study, we have conducted a genome-wide analysis to examine the level of polymorphism of mouse endogenous retroviral sequences (ERVs). ERVs are derived from infectious retroviruses that now exist in the genome and are inherited as part of chromosomes. Unlike in humans, genomic insertions of ERVs cause many new mutations in mice but their extent of variation between strains has been difficult to study because of their high copy numbers. By comparing genomic sequences of four common mouse strains, we found very high levels of polymorphism for two large active families of ERVs. Moreover, we documented nearly 700 polymorphic ERVs located within gene introns and found evidence that some of these affect gene transcript levels. This study demonstrates that ERV polymorphisms are a major source of genetic variability among mouse strains and likely contribute to strain-specific traits.
Collapse
|
33
|
Role of APOBEC3 in genetic diversity among endogenous murine leukemia viruses. PLoS Genet 2007; 3:2014-22. [PMID: 17967065 PMCID: PMC2041998 DOI: 10.1371/journal.pgen.0030183] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 09/07/2007] [Indexed: 11/19/2022] Open
Abstract
The ability of human and murine APOBECs (specifically, APOBEC3) to inhibit infecting retroviruses and retrotransposition of some mobile elements is becoming established. Less clear is the effect that they have had on the establishment of the endogenous proviruses resident in the human and mouse genomes. We used the mouse genome sequence to study diversity and genetic traits of nonecotropic murine leukemia viruses (polytropic [Pmv], modified polytropic [Mpmv], and xenotropic [Xmv] subgroups), the best-characterized large set of recently integrated proviruses. We identified 49 proviruses. In phylogenetic analyses, Pmvs and Mpmvs were monophyletic, whereas Xmvs were divided into several clades, implying a greater number of replication cycles between the integration events. Four distinct primer binding site types (Pro, Gln1, Gln2 and Thr) were dispersed within the phylogeny, indicating frequent mispriming. We analyzed the frequency and context of G-to-A mutations for the role of mA3 in formation of these proviruses. In the Pmv and Mpmv (but not Xmv) groups, mutations attributable to mA3 constituted a large fraction of the total. A significant number of nonsense mutations suggests the absence of purifying selection following mutation. A strong bias of G-to-A relative to C-to-T changes was seen, implying a strand specificity that can only have occurred prior to integration. The optimal sequence context of G-to-A mutations, TTC, was consistent with mA3. At least in the Pmv group, a significant 5′ to 3′ gradient of G-to-A mutations was consistent with mA3 editing. Altogether, our results for the first time suggest mA3 editing immediately preceding the integration event that led to retroviral endogenization, contributing to inactivation of infectivity. Vertebrate genomes are littered with remnants from earlier retroviral infections, in the form of endogenous retroviruses (ERVs). Cellular host defenses against retroviruses, including the APOBEC3 family of cytidine deaminases, have been described previously. APOBEC3 proteins have been shown to edit some retroviruses and other retrotransposing elements during their replication by deamination of C to U during negative-strand synthesis, resulting in G-to-A mutations in the sense strand. Here, we studied the possible effects that the APOBEC-protein family might have had in the establishing ERVs. We identified 49 endogenous (nonecotropic) murine leukemia viruses, divided into three groups; polytropic, modified polytropic, and xenotropic, in the sequenced C57BL/6J mouse genome. We analyzed genetic variation within and among subgroups and found mutation patterns consistent with APOBEC3 editing of Pmv and Mpmv, but not Xmv proviruses. Evidence such as (i) significantly higher G-to-A mutation frequencies compared to controls and large fractions leading to inactivating stop mutations, (ii) optimal sequence contexts surrounding the mutation positions, and (iii) editing gradient following the time course of retroviral replication, implicate APOBEC3 as a factor contributing to inactivation of these ERVs in the mouse genome.
Collapse
|
34
|
Belshaw R, Watson J, Katzourakis A, Howe A, Woolven-Allen J, Burt A, Tristem M. Rate of recombinational deletion among human endogenous retroviruses. J Virol 2007; 81:9437-42. [PMID: 17581995 PMCID: PMC1951428 DOI: 10.1128/jvi.02216-06] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 06/12/2007] [Indexed: 11/20/2022] Open
Abstract
The fate of most human endogenous retroviruses (HERVs) has been to undergo recombinational deletion. This process involves homologous recombination between the flanking long terminal repeats (LTRs) of a full-length element, leaving a relic structure in the genome termed a solo LTR. We examined loci in one family, HERV-K(HML2), and found that the deletion rate decreased markedly with age: the rate among recently integrated loci was almost 200-fold higher than that among loci whose insertion predated the divergence of humans and chimpanzees (8 x 10(-5) and 4 x 10(-7) recombinational deletion events per locus per generation, respectively). One hypothesis for this finding is that increasing mutational divergence between the flanking LTRs reduces the probability of homologous recombination and thus the rate of solo LTR formation. Consistent with this idea, we were able to replicate the observed rates by a simulation in which the probability of recombinational deletion was reduced 10-fold by a single mutation and 100-fold by any additional mutations. We also discuss the evidence for other factors that may influence the relationship between locus age and the rate of deletion, for example, host recombination rates and selection, and highlight the consequences of recombinational deletion for dating recent HERV integrations.
Collapse
Affiliation(s)
- Robert Belshaw
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
35
|
Chang NT, Yang WK, Huang HC, Yeh KW, Wu CW. The transcriptional activity of HERV-I LTR is negatively regulated by its cis-elements and wild type p53 tumor suppressor protein. J Biomed Sci 2006; 14:211-22. [PMID: 17151828 DOI: 10.1007/s11373-006-9126-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 09/24/2006] [Indexed: 11/29/2022] Open
Abstract
Human endogenous retroviruses (HERVs), abundantly inter-dispersed in the genome, carry long terminal repeats (LTRs) that may potentially retro-transpose to new genomic sites and deregulate the neighboring cellular genes. However, normally HERVs are either structurally defective or inactive due possibly to stringent negative control mechanisms. To study the possible negative regulation of HERV, we isolated the LTR of RTVL-Ia and constructed site-specific mutations for analysis of the promoter and enhancer functions by using chloramphenicol acetyl transferase (CAT) reporter assay. Our results showed that in most transfected human cells the LTR-mediated CAT expression was negligible unless a sequence segment at the AGTAAA polyadenylation site was deleted. In addition, we have found that the wild type p53 may inhibit whereas a p53 mutant (V143A) stimulate the transcriptional activity of HERV-I LTR. Our results imply that HERV-I LTR, while under negative control by its LTR cis-elements and by wild type p53, may become active upon p53 mutation.
Collapse
Affiliation(s)
- Nien-Tzu Chang
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
36
|
Maksakova IA, Romanish MT, Gagnier L, Dunn CA, van de Lagemaat LN, Mager DL. Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLoS Genet 2006; 2:e2. [PMID: 16440055 PMCID: PMC1331978 DOI: 10.1371/journal.pgen.0020002] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The inbred mouse is an invaluable model for human biology and disease. Nevertheless, when considering genetic mechanisms of variation and disease, it is important to appreciate the significant differences in the spectra of spontaneous mutations that distinguish these species. While insertions of transposable elements are responsible for only approximately 0.1% of de novo mutations in humans, the figure is 100-fold higher in the laboratory mouse. This striking difference is largely due to the ongoing activity of mouse endogenous retroviral elements. Here we briefly review mouse endogenous retroviruses (ERVs) and their influence on gene expression, analyze mechanisms of interaction between ERVs and the host cell, and summarize the variety of mutations caused by ERV insertions. The prevalence of mouse ERV activity indicates that the genome of the laboratory mouse is presently behind in the "arms race" against invasion.
Collapse
Affiliation(s)
| | | | | | | | | | - Dixie L Mager
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Martina Y, Marcucci KT, Cherqui S, Szabo A, Drysdale T, Srinivisan U, Wilson CA, Patience C, Salomon DR. Mice transgenic for a human porcine endogenous retrovirus receptor are susceptible to productive viral infection. J Virol 2006; 80:3135-46. [PMID: 16537582 PMCID: PMC1440412 DOI: 10.1128/jvi.80.7.3135-3146.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Porcine endogenous retrovirus (PERV) is considered one of the major risks in xenotransplantation. No valid animal model has been established to evaluate the risks associated with PERV transmission to human patients by pig tissue xenotransplantation or to study the potential pathogenesis associated with PERV infection. In previous work we isolated two genes encoding functional human PERV receptors and proved that introduction of these into mouse fibroblasts allowed the normally nonpermissive mouse cells to become productively infected (T. A. Ericsson, Y. Takeuchi, C. Templin, G. Quinn, S. F. Farhadian, J. C. Wood, B. A. Oldmixon, K. M. Suling, J. K. Ishii, Y. Kitagawa, T. Miyazawa, D. R. Salomon, R. A. Weiss, and C. Patience, Proc. Natl. Acad. Sci. USA 100:6759-6764, 2003). In the present study we created mice transgenic for human PERV-A receptor 2 (HuPAR-2). After inoculation of transgenic animals with infectious PERV supernatants, viral DNA and RNA were detected at multiple time points, indicating productive replication. This establishes the role of HuPAR-2 in PERV infection in vivo; in addition, these transgenic mice represent a new model for determining the risk of PERV transmission and potential pathogenesis. These mice also create a unique opportunity to study the immune response to PERV infection and test potential therapeutic or preventative modalities.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western
- Cell Line
- DNA, Viral/analysis
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Endogenous Retroviruses/genetics
- Endogenous Retroviruses/isolation & purification
- Endogenous Retroviruses/physiology
- Humans
- Mice
- Mice, Transgenic
- Microscopy, Confocal
- NIH 3T3 Cells
- RNA, Viral/analysis
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Receptors, Virus/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Retroviridae Infections/transmission
- Retroviridae Infections/virology
- Reverse Transcriptase Polymerase Chain Reaction
- Swine/virology
- Time Factors
- Transgenes
- Virus Replication
Collapse
Affiliation(s)
- Y Martina
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tipper CH, Bencsics CE, Coffin JM. Characterization of hortulanus endogenous murine leukemia virus, an endogenous provirus that encodes an infectious murine leukemia virus of a novel subgroup. J Virol 2005; 79:8316-29. [PMID: 15956577 PMCID: PMC1143770 DOI: 10.1128/jvi.79.13.8316-8329.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Simple retroviruses present a unique opportunity for examining the host-virus relationship. Following exogenous infection and integration into the germ line, copies of these viruses can become fixed within the genome. The resulting endogenous proviral "fossils" represent a record of past retroviral infections and forms. Previous work in our laboratory has been directed at dissecting the extensive nonecotropic murine leukemia virus content of the mouse genome. One such provirus, hortulanus endogenous murine leukemia virus (HEMV), found in a single copy in the genome of Mus spicilegus, was remarkable for characteristics that suggested that it was ancient and related to the hypothetical common ancestor of murine leukemia viruses (MLVs) and other gammaretroviral species. In the present study, we have analyzed its functional properties. Transfection of a molecular clone of the HEMV provirus into mouse-derived cell lines revealed that it is replication competent. Furthermore, host range and interference studies revealed a strictly ecotropic host range and the use of a receptor distinct from those used by other classical MLVs. The identity of nucleotide sequence of the long terminal repeats (LTRs) further suggested that HEMV is a relatively recent insertion into the M. spicilegus genome at the distal end of chromosome 7. Although unique to M. spicilegus, its presence in a homozygous state in three individuals obtained from different regions implies that it has been present long enough to become fixed in this species. Exhaustive phylogenetic analysis of all regions of the HEMV genome supported the previously assigned ancestral position of HEMV relative to other MLV-related viruses. Thus, HEMV is a relatively recent introduction into the Mus germ line but is representative of a relatively ancestral MLV group.
Collapse
Affiliation(s)
- Christopher H Tipper
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
39
|
Wu T, Yan Y, Kozak CA. Rmcf2, a xenotropic provirus in the Asian mouse species Mus castaneus, blocks infection by polytropic mouse gammaretroviruses. J Virol 2005; 79:9677-84. [PMID: 16014929 PMCID: PMC1181588 DOI: 10.1128/jvi.79.15.9677-9684.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cells from the Asian wild mouse species Mus castaneus are resistant to infection by the polytropic host range group of mouse gammaretroviruses. Two factors are responsible for this resistance: a defective XPR1 cell surface receptor for polytropic murine leukemia viruses (P-MLVs), and a resistance factor detectable only in interspecies hybrids between M. castaneus and mice with an XPR1 variant that permits infection by xenotropic MLVs (X-MLVs) as well as P-MLVs. This second novel virus resistance phenotype has been associated with expression of viral Env glycoprotein; Northern blotting with specific hybridization probes identified a spliced X-MLV env message unique to virus-resistant mice. These observations suggest that resistance is due to expression of one or more endogenous X-MLV envelope genes that interfere with infection by exogenous P-MLVs. M. castaneus contains multiple X-MLV proviruses, but serial backcrosses reduced this proviral content and permitted identification of a single proviral env sequence inherited with resistance. The resistance phenotype and the provirus were mapped to the same site on distal chromosome 18. The provirus was shown to be a full-length provirus highly homologous to previously described X-MLVs. Use of viral pseudotypes confirmed that this resistance gene, termed Rmcf2, prevents entry of P-MLVs. Rmcf2 resembles the virus resistance genes Fv4 and Rmcf in that it produces Env glycoprotein but fails to produce infectious virus; the proviruses associated with all three resistance genes have fatal defects. This type of provirus Env-mediated resistance represents an important defense mechanism in wild mouse populations exposed to endemic infections.
Collapse
Affiliation(s)
- Tiyun Wu
- Laboratory of Molecular Microbiology, National Institute and Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA
| | | | | |
Collapse
|
40
|
Tucker RM, Roark CL, Santiago-Raber ML, Izui S, Kotzin BL. Association between nuclear antigens and endogenous retrovirus in the generation of autoantibody responses in murine lupus. ACTA ACUST UNITED AC 2004; 50:3626-36. [PMID: 15529369 DOI: 10.1002/art.20623] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE (NZB x NZW)F(1) (NZB/NZW) mice and other strains of mice with experimental lupus frequently produce autoantibodies to both chromatin constituents and murine leukemia virus envelope gp70. These autoantibody responses are involved in the glomerulonephritis that develops in these mice. This study was undertaken to explore possible connections between these 2 antigen systems. METHODS We used monoclonal antibodies (mAb) derived from unmanipulated NZB/NZW mice to investigate the specificity of anti-gp70 and antichromatin autoantibodies for chromatin constituents, recombinant gp70, NZB retroviruses, and retrovirally infected cells. NZB mice were also immunized with retroviral particles and followed up for study of autoantibody responses. RESULTS Spontaneous autoantibody production in NZB/NZW mice reflects high-level autoimmune responses to nuclear antigens and gp70 that do not cross-react with the other antigen. However, both types of autoantibodies have the capability to bind to the endogenous xenotropic virions NZB-X1 or NZB-X2. The mAbs to recombinant gp70 cross-reacted only with the NZB-X2 virus, whereas the antichromatin mAb frequently bound to both retroviruses. The binding of antichromatin autoantibodies was mediated by nuclear material complexed to the retrovirus, and studies showed that this material can be acquired through the budding process. Immunization with NZB-X1 or NZB-X2 virions induced strong responses to gp70 and was much more effective than chromatin at inducing autoantibody responses to chromatin and double-stranded DNA in NZB mice. CONCLUSION These studies suggest that retroviral virions may harbor nuclear antigens and may link together the autoimmune responses to the disparate antigens, chromatin and gp70.
Collapse
Affiliation(s)
- Rebecca M Tucker
- University of Colorado Health Sciences Center and National Jewish Medical and Research Center, Denver, Colorado
| | | | | | | | | |
Collapse
|
41
|
Boonyaratanakornkit J, Chew A, Ryu DDY, Greenhalgh DG, Cho K. Murine endogenous retroviruses and their transcriptional potentials. Mamm Genome 2004; 15:914-23. [PMID: 15672595 DOI: 10.1007/s00335-004-2409-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jerry Boonyaratanakornkit
- Biochemistry and Molecular Biology Graduate Group, University of California at Davis, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
42
|
Stevens A, Bock M, Ellis S, LeTissier P, Bishop KN, Yap MW, Taylor W, Stoye JP. Retroviral capsid determinants of Fv1 NB and NR tropism. J Virol 2004; 78:9592-8. [PMID: 15331691 PMCID: PMC514981 DOI: 10.1128/jvi.78.18.9592-9598.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The specificity determinants for susceptibility to resistance by the Fv1 n and b alleles map to amino acid 110 of the murine leukemia virus CA protein. To study the interaction between Fv1 and CA, we examined changes in CA resulting in the loss of susceptibility to Fv1 resistance in naturally occurring NB- and NR-tropic viruses. A variety of amino acid changes affecting Fv1 tropism were identified, at CA positions 82, 92 to 95, 105, 114, and 117, and they all were mapped to the apparent exterior of virion-associated CA. These amino acids may form a binding surface for Fv1.
Collapse
Affiliation(s)
- Anthony Stevens
- Division of Virology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hughes JF, Coffin JM. Human endogenous retrovirus K solo-LTR formation and insertional polymorphisms: implications for human and viral evolution. Proc Natl Acad Sci U S A 2004; 101:1668-72. [PMID: 14757818 PMCID: PMC341815 DOI: 10.1073/pnas.0307885100] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are a potential source of genetic diversity in the human genome. Although many of these elements have been inactivated over time by the accumulation of deleterious mutations or internal recombination leading to solo-LTR formation, several members of the HERV-K family have been identified that remain nearly intact and probably represent recent integration events. To determine whether HERV-K elements have caused recent changes in the human genome, we have undertaken a study of the level of HERV-K polymorphism that exists in the human population. By using a high-resolution unblotting technique, we analyzed 13 human-specific HERV-K elements in 18 individuals. We found that solo LTRs have formed at five of these loci. These results enable the estimation of HERV solo-LTR formation in the human genome and indicate that these events occur much more frequently than described in inbred mice. Detailed sequence analysis of one provirus shows that solo-LTR formation occurred at least three separate times in recent history. An unoccupied preintegration site also was present at this locus in two individuals, indicating that although the age of this provirus is estimated to be approximately 1.2 million years, it has not yet become fixed in the human population.
Collapse
Affiliation(s)
- Jennifer F Hughes
- Department of Molecular Biology and Microbiology and Program in Genetics, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
44
|
Jung YT, Wu T, Kozak CA. Characterization of recombinant nonecotropic murine leukemia viruses from the wild mouse species Mus spretus. J Virol 2004; 77:12773-81. [PMID: 14610199 PMCID: PMC262560 DOI: 10.1128/jvi.77.23.12773-12781.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The wild mouse species most closely related to the common laboratory strains contain proviral env genes of the xenotropic/polytropic subgroup of mouse leukemia viruses (MLVs). To determine if the polytropic proviruses of Mus spretus contain functional genes, we inoculated neonates with Moloney MLV (MoMLV) or amphotropic MLV (A-MLV) and screened for viral recombinants with altered host ranges. Thymus and spleen cells from MoMLV-inoculated mice were plated on Mus dunni cells and mink cells, since these cells do not support the replication of MoMLV, and cells from A-MLV-inoculated mice were plated on ferret cells. All MoMLV-inoculated mice produced ecotropic viruses that resembled their MoMLV progenitor, although some isolates, unlike MoMLV, grew to high titers in M. dunni cells. All of the MoMLV-inoculated mice also produced nonecotropic virus that was infectious for mink cells. Sequencing of three MoMLV- and two A-MLV-derived nonecotropic recombinants confirmed that these viruses contained substantial substitutions that included the regions of env encoding the surface (SU) protein and the 5' end of the transmembrane (TM) protein. The 5' recombination breakpoint for one of the A-MLV recombinants was identified in RNase H. The M. spretus-derived env substitutions were nearly identical to the corresponding regions in prototypical laboratory mouse polytropic proviruses, but the wild mouse infectious viruses had a more restricted host range. The M. spretus proviruses contributing to these recombinants were also sequenced. The seven sequenced proviruses were 99% identical to one another and to the recombinants; only two of the seven had obvious fatal defects. We conclude that the M. spretus proviruses are likely to be recent germ line acquisitions and that they contain functional genes that can contribute to the production of replication-competent virus.
Collapse
Affiliation(s)
- Yong Tae Jung
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0460, USA
| | | | | |
Collapse
|
45
|
DeMartini JC, Carlson JO, Leroux C, Spencer T, Palmarini M. Endogenous retroviruses related to jaagsiekte sheep retrovirus. Curr Top Microbiol Immunol 2003; 275:117-37. [PMID: 12596897 DOI: 10.1007/978-3-642-55638-8_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ovine betaretroviruses consist of exogenous viruses [jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus, (ENTV)] associated with neoplastic diseases of the respiratory tract and 15-20 endogenous viruses (enJSRV) stably integrated in the ovine and caprine genome. Phylogenetic analysis of this group of retroviruses suggests that the enJSRV can be considered as 'modern' endogenous retroviruses with active, exogenous counterparts. Sequence analysis of JSRV, ENTV and enJSRV suggests that enJSRV do not directly contribute to the pathogenesis of ovine pulmonary adenocarcinoma (OPA) or enzootic nasal tumor through large-scale recombination events, but small-scale recombination or complementation of gene function cannot be excluded; experiments involving enJSRV-free sheep, which have not been found, would be needed to investigate this possibility. Evidence of expression of enJSRV structural proteins in tissues of the reproductive tract and lung implies that they do not have a primary role in disease. However, experimental exploitation of exogenous/endogenous retrovirus sequence differences by producing chimeras has been useful in establishing the determinants of JSRV Env-induced transformation. Even if enJSRV do not have a direct role in OPA, their expression during ontogeny or in neonatal life may impact the likelihood of exogenous JSRV infection and disease outcome via the induction of immunological tolerance. Aside from any role in disease, enJSRV loci may serve as useful genetic markers in the sheep and their frequent expression in the reproductive tract of the ewe may portend an important physiologic role in sheep.
Collapse
Affiliation(s)
- J C DeMartini
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1619, USA.
| | | | | | | | | |
Collapse
|
46
|
Jung YT, Lyu MS, Buckler-White A, Kozak CA. Characterization of a polytropic murine leukemia virus proviral sequence associated with the virus resistance gene Rmcf of DBA/2 mice. J Virol 2002; 76:8218-24. [PMID: 12134027 PMCID: PMC155147 DOI: 10.1128/jvi.76.16.8218-8224.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DBA/2 mouse Rmcf gene is responsible for in vivo and in vitro resistance to infection by the polytropic mink cell focus-forming (MCF) virus subgroup of murine leukemia viruses (MLVs). Previous studies suggested that Rmcf resistance is mediated by expression of an interfering MCF MLV envelope (Env) gene. To characterize this env gene, we examined resistance in crosses between Rmcf(r) DBA/2 mice and Mus castaneus, a species that lacks endogenous MCF env sequences. In backcross progeny, inheritance of Rmcf resistance correlated with inheritance of a specific endogenous MCF virus env-containing 4.6-kb EcoRI fragment. This fragment was present in the DBA/2N substrain with Rmcf-mediated resistance but not in virus-susceptible DBA/2J substrain mice. This fragment contains a provirus with a 5' long terminal repeat and the 5' half of env; the gag and pol genes have been partially deleted. The Env sequence is identical to that of a highly immunogenic viral glycoprotein expressed in the DBA/2 cell line L5178Y and closely resembles the env genes of modified polytropic proviruses. The coding sequence for the full-length Rmcf Env surface subunit was amplified from DNAs from virus-resistant backcross mice and was cloned into an expression vector. NIH 3T3 and BALB 3T3 cells stably transfected with this construct showed significant resistance to infection by MCF MLV but not by amphotropic MLV. This study identifies an Rmcf-linked MCF provirus and indicates that, like the ecotropic virus resistance gene Fv4, Rmcf may mediate resistance through an interference mechanism.
Collapse
Affiliation(s)
- Yong Tae Jung
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0460, USA
| | | | | | | |
Collapse
|
47
|
Angel JM, Richie ER. Tlag2, anN-methyl-N-nitrosourea susceptibility locus, maps to mouse chromosome 4. Mol Carcinog 2002. [DOI: 10.1002/mc.10026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Abstract
Embedded in the genomes of all vertebrates are the proviral remnants of previous retroviral infections. Although the overwhelming majority has suffered inactivating mutations, current research suggests that members of one family of human retroelements may still be capable of movement.
Collapse
Affiliation(s)
- J P Stoye
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
49
|
Mendoza LM, Villaflor G, Eden P, Roopenian D, Shastri N. Distinguishing self from nonself: immunogenicity of the murine H47 locus is determined by a single amino acid substitution in an unusual peptide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4438-45. [PMID: 11254699 DOI: 10.4049/jimmunol.166.7.4438] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Histocompatibility (H) Ags are responsible for chronic graft rejection and graft vs host disease in solid tissue and bone marrow transplantation among MHC-matched individuals. Here we defined the molecular basis of self-nonself discrimination for the murine chromosome 7 encoded H47 histocompatibility locus, known by its trait of graft-rejection for over 40 years. H47 encodes a novel, highly conserved cell surface protein containing the SCILLYIVI (SII9) nonapeptide in its transmembrane region. The p7 isoleucine-to-phenylalanine substitution in SII9 defined the antigenic polymorphism and T cell specificity. Despite absence of the canonical consensus motif and weak binding to D(b) MHC I, both H47 peptides were presented to CTLs. However, unlike all the other known H loci, the relative immunogenicity of both H47 alleles varied dramatically and was profoundly influenced by neighboring H loci. The results provide insights into the peptide universe that defines nonself and the basis of histoincompatibility.
Collapse
Affiliation(s)
- L M Mendoza
- Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
50
|
Taylor BA, Rowe L, Grieco D. Close linkage of Mdm-1, a gene amplified and overexpressed in a transformed 3T3 cell line, with gamma interferon (Ifg) on chromosome 10 of the mouse. Mamm Genome 2001; 3:700-4. [PMID: 10712011 DOI: 10.1007/bf00444365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Mdm-1 gene was mapped to the distal end of Chromosome (Chr) 10. An extensive series of restriction fragment variants was identified among conventional and exotic inbred strains of mice. Mapping was carried out with recombinant inbred strains and an intersubspecific testcross. No recombinants were observed between Mdm-1 and the gamma interferon locus (Ifg). These two loci appear to be in linkage disequilibrium among inbred strains. Data from the testcross place Mdm-1 approximately 11 centimorgans distal to the steel (Sl) locus. Because of its extensive polymorphism, Mdm-1 is a useful genetic marker for distal Chr 10.
Collapse
Affiliation(s)
- B A Taylor
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | |
Collapse
|