1
|
Mehlgarten C, Prochaska H, Hammermeister A, Abdel-Fattah W, Wagner M, Krutyhołowa R, Jun SE, Kim GT, Glatt S, Breunig KD, Stark MJR, Schaffrath R. Use of a Yeast tRNase Killer Toxin to Diagnose Kti12 Motifs Required for tRNA Modification by Elongator. Toxins (Basel) 2017; 9:E272. [PMID: 28872616 PMCID: PMC5618205 DOI: 10.3390/toxins9090272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 01/23/2023] Open
Abstract
Saccharomyces cerevisiae cells are killed by zymocin, a tRNase ribotoxin complex from Kluyveromyces lactis, which cleaves anticodons and inhibits protein synthesis. Zymocin's action requires specific chemical modification of uridine bases in the anticodon wobble position (U34) by the Elongator complex (Elp1-Elp6). Hence, loss of anticodon modification in mutants lacking Elongator or related KTI (K. lactis Toxin Insensitive) genes protects against tRNA cleavage and confers resistance to the toxin. Here, we show that zymocin can be used as a tool to genetically analyse KTI12, a gene previously shown to code for an Elongator partner protein. From a kti12 mutant pool of zymocin survivors, we identify motifs in Kti12 that are functionally directly coupled to Elongator activity. In addition, shared requirement of U34 modifications for nonsense and missense tRNA suppression (SUP4; SOE1) strongly suggests that Kti12 and Elongator cooperate to assure proper tRNA functioning. We show that the Kti12 motifs are conserved in plant ortholog DRL1/ELO4 from Arabidopsis thaliana and seem to be involved in binding of cofactors (e.g., nucleotides, calmodulin). Elongator interaction defects triggered by mutations in these motifs correlate with phenotypes typical for loss of U34 modification. Thus, tRNA modification by Elongator appears to require physical contact with Kti12, and our preliminary data suggest that metabolic signals may affect proper communication between them.
Collapse
Affiliation(s)
- Constance Mehlgarten
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
| | - Heike Prochaska
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
| | - Alexander Hammermeister
- Institut für Biologie, FG Mikrobiologie, Universität Kassel, Heirich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Wael Abdel-Fattah
- Institut für Biologie, FG Mikrobiologie, Universität Kassel, Heirich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Melanie Wagner
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
| | - Rościsław Krutyhołowa
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Krakow, Poland.
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland.
| | - Sang Eun Jun
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714, Korea.
| | - Gyung-Tae Kim
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714, Korea.
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Krakow, Poland.
| | - Karin D Breunig
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
| | - Michael J R Stark
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - Raffael Schaffrath
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
- Institut für Biologie, FG Mikrobiologie, Universität Kassel, Heirich-Plett-Str. 40, 34132 Kassel, Germany.
| |
Collapse
|
2
|
The Promiscuous sumA Missense Suppressor from Salmonella enterica Has an Intriguing Mechanism of Action. Genetics 2017; 205:577-588. [DOI: 10.1534/genetics.116.196550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/28/2016] [Indexed: 11/18/2022] Open
Abstract
Abstract
While most missense suppressors have very narrow specificities and only suppress the allele against which they were isolated, the sumA missense suppressor from Salmonella enterica serovar Typhimurium is a promiscuous or broad-acting missense suppressor that suppresses numerous missense mutants. The sumA missense suppressor was identified as a glyV tRNA Gly3(GAU/C) missense suppressor that can recognize GAU or GAC aspartic acid codons and insert a glycine amino acid instead of aspartic acid. In addition to rescuing missense mutants caused by glycine to aspartic acid changes as expected, sumA could also rescue a number of other missense mutants as well by changing a neighboring (contacting) aspartic acid to glycine, which compensated for the other amino acid change. Thus the ability of sumA to rescue numerous missense mutants was due in part to the large number of glycine codons in genes that can be mutated to an aspartic acid codon and in part to the general tolerability and/or preference for glycine amino acids in proteins. Because the glyV tRNA Gly3(GAU/C) missense suppressor has also been extensively characterized in Escherichia coli as the mutA mutator, we demonstrated that all gain-of-function mutants isolated in a glyV tRNA Gly3(GAU/C) missense suppressor are transferable to a wild-type background and thus the increased mutation rates, which occur in glyV tRNA Gly3(GAU/C) missense suppressors, are not due to the suppression of these mutants.
Collapse
|
3
|
Mistranslation: from adaptations to applications. Biochim Biophys Acta Gen Subj 2017; 1861:3070-3080. [PMID: 28153753 DOI: 10.1016/j.bbagen.2017.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The conservation of the genetic code indicates that there was a single origin, but like all genetic material, the cell's interpretation of the code is subject to evolutionary pressure. Single nucleotide variations in tRNA sequences can modulate codon assignments by altering codon-anticodon pairing or tRNA charging. Either can increase translation errors and even change the code. The frozen accident hypothesis argued that changes to the code would destabilize the proteome and reduce fitness. In studies of model organisms, mistranslation often acts as an adaptive response. These studies reveal evolutionary conserved mechanisms to maintain proteostasis even during high rates of mistranslation. SCOPE OF REVIEW This review discusses the evolutionary basis of altered genetic codes, how mistranslation is identified, and how deviations to the genetic code are exploited. We revisit early discoveries of genetic code deviations and provide examples of adaptive mistranslation events in nature. Lastly, we highlight innovations in synthetic biology to expand the genetic code. MAJOR CONCLUSIONS The genetic code is still evolving. Mistranslation increases proteomic diversity that enables cells to survive stress conditions or suppress a deleterious allele. Genetic code variants have been identified by genome and metagenome sequence analyses, suppressor genetics, and biochemical characterization. GENERAL SIGNIFICANCE Understanding the mechanisms of translation and genetic code deviations enables the design of new codes to produce novel proteins. Engineering the translation machinery and expanding the genetic code to incorporate non-canonical amino acids are valuable tools in synthetic biology that are impacting biomedical research. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
|
4
|
Chien CY, Chen BR, Chou CK, Sclafani RA, Su JY. The yeast Cdc8 exhibits both deoxythymidine monophosphate and diphosphate kinase activities. FEBS Lett 2009; 583:2281-6. [PMID: 19540237 DOI: 10.1016/j.febslet.2009.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 12/01/2022]
Abstract
The existence of multifunctional enzymes in the nucleotide biosynthesis pathways is believed to be one of the important mechanisms to facilitate the synthesis and the efficient supply of deoxyribonucleotides for DNA replication. Here, we used the bacterially expressed yeast thymidylate kinase (encoded by the CDC8 gene) to demonstrate that the purified Cdc8 protein possessed thymidylate-specific nucleoside diphosphate kinase activity in addition to thymidylate kinase activity. The yeast endogenous nucleoside diphosphate kinase is encoded by YNK1, which appears to be non-essential. Our results suggest that Cdc8 has dual enzyme activities and could duplicate the function of Ynk1 in thymidylate synthesis. We also discuss the importance of the coordinated expression of CDC8 during the cell cycle progression in yeast.
Collapse
Affiliation(s)
- Chia-Yi Chien
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
5
|
Studte P, Zink S, Jablonowski D, Bär C, von der Haar T, Tuite MF, Schaffrath R. tRNA and protein methylase complexes mediate zymocin toxicity in yeast. Mol Microbiol 2008; 69:1266-77. [PMID: 18657261 DOI: 10.1111/j.1365-2958.2008.06358.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modification of Saccharomyces cerevisiae tRNA anticodons at the wobble uridine (U34) position is required for tRNA cleavage by the zymocin tRNase killer toxin from Kluyveromyces lactis. Hence, U34 modification defects including lack of the U34 tRNA methyltransferase Trm9 protect against tRNA cleavage and zymocin. Using zymocin as a tool, we have identified toxin-resistant mutations in TRM9 that are likely to affect the U34 methylation reaction. Most strikingly, C-terminal truncations in Trm9 abolish interaction with Trm112, a protein shown to individually purify with Lys9 and two more methylases, Trm11 and Mtq2. Downregulation of a GAL1-TRM112 allele protects against zymocin whereas LYS9, TRM11 and MTQ2 are dosage suppressors of zymocin. Based on immune precipitation studies, the latter scenario correlates with competition for Trm112 and in excess, some of these Trm112 partners interfere with formation of the toxin-relevant Trm9.Trm112 complex. In contrast to trm11Delta or lys9Delta cells, trm112Delta and mtq2Delta null mutants are zymocin resistant. In line with the identified role that methylation of Sup45 by Mtq2 has for translation termination by the release factor dimer Sup45.Sup35, we observe that SUP45 overexpression and sup45 mutants suppress zymocin. Intriguingly, this suppression correlates with upregulated levels of tRNA species targeted by zymocin's tRNase activity.
Collapse
Affiliation(s)
- Patrick Studte
- Institut für Biologie, Bereich Genetik, Martin-Luther-Universität, Halle-Wittenberg, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Bär C, Zabel R, Liu S, Stark MJR, Schaffrath R. A versatile partner of eukaryotic protein complexes that is involved in multiple biological processes: Kti11/Dph3. Mol Microbiol 2008; 69:1221-33. [PMID: 18627462 DOI: 10.1111/j.1365-2958.2008.06350.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Kluyveromyces lactis killer toxin zymocin insensitive 11 (KTI11) gene from Saccharomyces cerevisiae is allelic with the diphthamide synthesis 3 (DPH3) locus. Here, we present evidence that the KTI11 gene product is a versatile partner of proteins and operates in multiple biological processes. Notably, Kti11 immune precipitates contain Elp2 and Elp5, two subunits of the Elongator complex which is involved in transcription, tRNA modification and zymocin toxicity. KTI11 deletion phenocopies Elongator-minus cells and causes antisuppression of nonsense and missense suppressor tRNAs (SUP4, SOE1), zymocin resistance and protection against the tRNase attack of zymocin. In addition and unlike Elongator mutants, kti11 mutants resist diphtheria toxin (DT), protect against ADP-ribosylation of eukaryotic translation elongation factor 2 (eEF2) by DT and induce resistance against sordarin, an eEF2 poisoning antifungal. The latter phenotype applies to all diphthamide mutants (dph1-dph5) tested and Kti11/Dph3 physically interacts with diphthamide synthesis factors Dph1 and Dph2, presumably as part of a trimeric complex. Moreover, we present a separation of function mutation in KTI11, kti11-1, which dissociates zymocin resistance from DT sensitivity. It encodes a C-terminal Kti11 truncation that almost entirely abolishes Elongator interaction without affecting association with Kti13, another Kti11 partner protein.
Collapse
Affiliation(s)
- Christian Bär
- Biologicum, Institut für Genetik, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
7
|
Zabel R, Bär C, Mehlgarten C, Schaffrath R. Yeast alpha-tubulin suppressor Ats1/Kti13 relates to the Elongator complex and interacts with Elongator partner protein Kti11. Mol Microbiol 2008; 69:175-87. [PMID: 18466297 DOI: 10.1111/j.1365-2958.2008.06273.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The alpha-tubulin suppressor 1 (ATS1) gene and the killer toxin-insensitive 13 (KTI13) locus from Saccharomyces cerevisiae are allelic. The Ats1/Kti13 gene product interacts with the cell polarity factor Nap1 and promotes growth inhibition of S. cerevisiae by zymocin, a tRNAse toxin complex from Kluyveromyces lactis. Kti13 removal causes zymocin resistance, a trait that is typical of defects in the Elongator complex. Here, we show that Kti13 co-purifies with the Elongator partner protein Kti11 and that the Kti11 interaction, not the Nap1 partnership, requires the C-terminus of Kti13. Moreover, Kti13 functionally relates to roles of the Elongator complex in tRNA wobble uridine modification, tRNA suppression of nonsense (SUP4) and missense (SOE1) mutations and tRNA restriction by zymocin. Also, inactivation of Kti13 or Elongator rescues the thermosensitive growth defect of secretory mutants (sec2-59(ts), sec12-4(ts)), suggesting that Kti13 and Elongator affect secretion processes that depend on the GTP exchange factors Sec2 and Sec12 respectively. Distinct from tandem deletions in KTI13 and Elongator genes, a kti13Delta kti11Delta double deletion induces synthetic sickness or lethality. In sum, our data suggest that Kti13 and Kti11 support Elongator functions and that they both share Elongator-independent role(s) that are important for cell viability.
Collapse
Affiliation(s)
- René Zabel
- Biologicum, Institut für Biologie, Institutsbereich Genetik, Martin-Luther-Universität, Halle-Wittenberg, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | | | | | |
Collapse
|
8
|
Jablonowski D, Zink S, Mehlgarten C, Daum G, Schaffrath R. tRNAGlu wobble uridine methylation by Trm9 identifies Elongator's key role for zymocin-induced cell death in yeast. Mol Microbiol 2006; 59:677-88. [PMID: 16390459 DOI: 10.1111/j.1365-2958.2005.04972.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zymocin-induced cell death in Saccharomyces cerevisiae requires the toxin-target (TOT) effector Elongator, a protein complex with functions in transcription, exocytosis and tRNA modification. In line with the latter, trm9Delta cells lacking a tRNA methylase specific for wobble uridine (U(34)) residues survive zymocin and in excess, the Trm9 substrate tRNA(Glu) copies zymocin protection of Elongator mutants. Phenotypes typical of a tot3/elp3Delta Elongator mutant are absent from trm9Delta cells but copied in a tot3Deltatrm9Delta double mutant suggesting that Elongator acts upstream of Trm9. Consistent with Elongator-dependent tRNA modification being more important to mRNA decoding than Trm9, SUP4 and SOE1TRNA suppressors are highly sensitive to loss of Elongator and tRNA U(34) hypomodification. As Trm9 overexpression counteracts the effect of high-copy tRNA(Glu), zymocin suppression by high-copy tRNA(Glu) may reflect tRNA hypomethylation of trm9Delta cells. Thus, Trm9 methylation may enable recognition of tRNA by zymocin, a notion supported by a dramatic reduction of tRNA(Glu) levels in zymocin-treated cells and by cytotoxic zymocin residues conserved between bacterial nucleases and a tRNA modifying GTPase. In sum, Trm9 is a bona fideTOT pathway component whose methylation may be hijacked by zymocin to target tRNA function and eventually, mRNA translation.
Collapse
Affiliation(s)
- Daniel Jablonowski
- Biologicum, Institut für Genetik, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Saale, Germany
| | | | | | | | | |
Collapse
|
9
|
Kimata Y, Yanagida M. Suppression of a mitotic mutant by tRNA-Ala anticodon mutations that produce a dominant defect in late mitosis. J Cell Sci 2005; 117:2283-93. [PMID: 15126629 DOI: 10.1242/jcs.01078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cold-sensitive dominant mutants scn1 and scn2 of Schizosaccharomyces pombe were isolated by their ability to suppress temperature-sensitive cut9-665 defective in an essential subunit (human Apc6/budding yeast Cdc16 ortholog) of anaphase promoting complex/cyclosome (APC/C). APC/C mutants were defective in metaphase/anaphase transition, whereas single scn mutants showed the delay in anaphase spindle elongation at 20 degrees C. The scn mutants lost viability because of chromosome missegregation, and were sensitive to a tubulin poison. To understand the scn phenotypes, mutant genes were identified. Surprisingly, scn1 and scn2 have the same substitution in the anticodon of two different tRNA-Ala (UGC) genes. UGC was altered to UGU so that the binding of the tRNA-Ala to the ACA Thr codon in mRNA became possible. As cut9-665 contained an Ala535Thr substitution, wild-type Cut9 protein was probably produced in scn mutants. Indeed, plasmid carrying tRNA-Ala (UGU) conferred cold-sensitivity to wild-type and suppressed cut9-665 in a dominant fashion. The previously identified scn1(+) (renamed as scn3(+)) turned out to be a high copy suppressor for scn1 and scn2. These are the first tRNA mutants that cause a mitotic defect.
Collapse
Affiliation(s)
- Yuu Kimata
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University. Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8501, Japan
| | | |
Collapse
|
10
|
Abstract
Rpb5-H147R is an AT-GC transition replacing CAC(His) by CGC(Arg) at a conserved and critical position of ABC27 (Rpb5p), one of the five common and essential subunits shared by all three eukaryotic RNA polymerases. This mutation is viable at 25 degrees C, but has a lethal phenotype at 34 degrees C. A search for dosage-dependent suppressors identified five distinct clones that all bear a copy of the tRNA(His)GUG gene. Suppression was also observed with a small genomic insert bearing this tRNA gene and no other coding sequences, under conditions where there is a sevenfold increase in the cellular concentration of tRNA(His)GUG. Overexpressing tRNA(Arg)ICG, which normally decodes the suppressed CGC codon, counteracted suppression. Suppression is codon specific because it was abolished when replacing CGC by its synonymous codons CGA, CGU, or AGA, but was not detectably affected by several nucleotide substitutions modifying the surrounding sequence and is thus largely insensitive to the nucleotide context. It is proposed that overexpressing tRNA(His)GUG extends its decoding properties from CAC(His) to the noncognate CGC(Arg) codon through an illegitimate U x G pairing at the middle base of the anticodon. Accordingly, tRNA(His)GUG would compete with tRNA(Arg)ICG for chain elongation and generate a significant level of misreading errors under normal growth conditions.
Collapse
Affiliation(s)
- F Navarro
- Service de Biochimie & Génétique Moléculaire, Gif sur Yvette, France
| | | |
Collapse
|
11
|
Chiu YH, Morris NR. Genetic and molecular analysis of a tRNA(Leu) missense suppressor of nudC3, a mutation that blocks nuclear migration in Aspergillus nidulans. Genetics 1997; 145:707-14. [PMID: 9055080 PMCID: PMC1207855 DOI: 10.1093/genetics/145.3.707] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
NudC encodes a protein of unknown biochemical function that is required for nuclear migration. In an attempt to define its function by identifying interacting proteins, a screen for extragenic suppressors of the temperature-sensitive nudC3 mutation was undertaken that identified nine snc genes. Here we demonstrate that nudC3 has a missense mutation at amino acid 146 that causes leucine to be replaced by proline and that sncB69 encodes a mutant tRNA(Leu) that corrects the mutation. The sncB69 mutation deletes a single nucleotide in the anticodon of a tRNA(Leu) that changes its normal 5'CAG3' leucine anticodon to the proline anticodon 5'CCG3', which presumably allows incorporation of leucine at the mutant nudC3 proline codon 146 and thereby causes suppression of the nudC3 mutant phenotype.
Collapse
Affiliation(s)
- Y H Chiu
- Department of Microbiology and Molecular Genetics, Rutgers-The State University of New Jersey, New Brunswick 08901, USA
| | | |
Collapse
|
12
|
Cowles CR, Emr SD, Horazdovsky BF. Mutations in the VPS45 gene, a SEC1 homologue, result in vacuolar protein sorting defects and accumulation of membrane vesicles. J Cell Sci 1994; 107 ( Pt 12):3449-59. [PMID: 7706396 DOI: 10.1242/jcs.107.12.3449] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genetic analyses of vacuolar protein sorting in Saccharomyces cerevisiae have uncovered a large number of mutants (vps) that missort and secrete vacuolar hydrolases. A small subset of vps mutants exhibit a temperature-conditional growth phenotype and show a severe defect in the localization of soluble vacuolar proteins, yet maintain a near-normal vacuole structure. Here, we report on the cloning and characterization of the gene affected in one of these mutants, VPS45, which has been found to encode a member of a protein family that includes the yeast proteins Sec1p, Sly1p and Vps33p, as well as n-Sec1, UNC18 and Rop from other eukaryotic organisms. These proteins are thought to participate in vesicle-mediated protein transport events. Polyclonal antiserum raised against a TrpE-Vps45 fusion protein specifically detects a stable 67 kDa protein in labeled yeast cell extracts. Subcellular fractionation studies demonstrate that the majority of Vps45p is associated with a high-speed membrane pellet fraction that includes Golgi, transport vesicles and, potentially, endosomal membranes. Significantly, this fraction lacks ER, vacuole and plasma membranes. Overexpression of Vps45p saturates the sites with which Vps45p associates. A vps45 null mutant accumulates vesicles, many of which were found to be present in large clusters. This accumulation of potential transport vesicles indicates that Vps45p may facilitate the targeting and/or fusion of these vesicles in the vacuolar protein sorting pathway.
Collapse
Affiliation(s)
- C R Cowles
- Division of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, La Jolla 92093-0668
| | | | | |
Collapse
|
13
|
Two Saccharomyces cerevisiae genes which control sensitivity to G1 arrest induced by Kluyveromyces lactis toxin. Mol Cell Biol 1994. [PMID: 8065362 DOI: 10.1128/mcb.14.9.6306] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Kluyveromyces lactis toxin causes an arrest of sensitive yeast cells in the G1 phase of the cell division cycle. Two complementary genetic approaches have been undertaken in the yeast Saccharomyces cerevisiae to understand the mode of action of this toxin. First, two sequences conferring toxin resistance specifically in high copy number have been isolated and shown to encode a tRNA(Glu3) and a novel polypeptide. Disruption of the latter sequence in the yeast genome conferred toxin resistance and revealed that it was nonessential, while the effect of the tRNA(Glu)3 was highly specific and mediated resistance by affecting the toxin's target. An alpha-specific, copy number-independent suppressor of toxin sensitivity was also isolated and identified as MATa, consistent with the observation that diploid cells are partially resistant to the toxin. Second, in a comprehensive screen for toxin-resistant mutants, representatives of 13 complementation groups have been obtained and characterized to determine whether they are altered in the toxin's intracellular target. Of 10 genes found to affect the target process, one (KTI12) was found to encode the novel polypeptide previously identified as a multicopy resistance determinant. Thus, both loss of KTI12 function and elevated KTI12 copy number can cause resistance to the K. lactis toxin.
Collapse
|
14
|
Butler AR, White JH, Folawiyo Y, Edlin A, Gardiner D, Stark MJ. Two Saccharomyces cerevisiae genes which control sensitivity to G1 arrest induced by Kluyveromyces lactis toxin. Mol Cell Biol 1994; 14:6306-16. [PMID: 8065362 PMCID: PMC359157 DOI: 10.1128/mcb.14.9.6306-6316.1994] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Kluyveromyces lactis toxin causes an arrest of sensitive yeast cells in the G1 phase of the cell division cycle. Two complementary genetic approaches have been undertaken in the yeast Saccharomyces cerevisiae to understand the mode of action of this toxin. First, two sequences conferring toxin resistance specifically in high copy number have been isolated and shown to encode a tRNA(Glu3) and a novel polypeptide. Disruption of the latter sequence in the yeast genome conferred toxin resistance and revealed that it was nonessential, while the effect of the tRNA(Glu)3 was highly specific and mediated resistance by affecting the toxin's target. An alpha-specific, copy number-independent suppressor of toxin sensitivity was also isolated and identified as MATa, consistent with the observation that diploid cells are partially resistant to the toxin. Second, in a comprehensive screen for toxin-resistant mutants, representatives of 13 complementation groups have been obtained and characterized to determine whether they are altered in the toxin's intracellular target. Of 10 genes found to affect the target process, one (KTI12) was found to encode the novel polypeptide previously identified as a multicopy resistance determinant. Thus, both loss of KTI12 function and elevated KTI12 copy number can cause resistance to the K. lactis toxin.
Collapse
Affiliation(s)
- A R Butler
- Department of Biochemistry, University of Dundee, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Reijo RA, Cho DS, Huffaker TC. Deletion of a single-copy tRNA affects microtubule function in Saccharomyces cerevisiae. Genetics 1993; 135:955-62. [PMID: 8307335 PMCID: PMC1205756 DOI: 10.1093/genetics/135.4.955] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
rts1-1 was identified as an extragenic suppressor of tub2-104, a cold-sensitive allele of the sole gene encoding beta-tubulin in the yeast, Saccharomyces cerevisiae. In addition, rts1-1 cells are heat sensitive and resistant to the microtubule-destabilizing drug, benomyl. The rts1-1 mutation is a deletion of approximately 5 kb of genomic DNA on chromosome X that includes one open reading frame and three tRNA genes. Dissection of this region shows that heat sensitivity is due to deletion of the open reading frame (HIT1). Suppression and benomyl resistance are caused by deletion of the gene encoding a tRNA(Arg)AGG (HSX1). Northern analysis of rts1-1 cells indicates that HSX1 is the only gene encoding this tRNA. Deletion of HSX1 does not suppress the tub2-104 mutation by misreading at the AGG codons in TUB2. It also does not suppress by interfering with the protein arginylation that targets certain proteins for degradation. These results leave open the prospect that this tRNA(Arg)AGG plays a novel role in the cell.
Collapse
Affiliation(s)
- R A Reijo
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|
16
|
Mortimer RK, Contopoulou CR, King JS. Genetic and physical maps of Saccharomyces cerevisiae, Edition 11. Yeast 1992; 8:817-902. [PMID: 1413997 DOI: 10.1002/yea.320081002] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- R K Mortimer
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
17
|
Hollingsworth RE, Ostroff RM, Klein MB, Niswander LA, Sclafani RA. Molecular genetic studies of the Cdc7 protein kinase and induced mutagenesis in yeast. Genetics 1992; 132:53-62. [PMID: 1398063 PMCID: PMC1205129 DOI: 10.1093/genetics/132.1.53] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Saccharomyces cerevisiae CDC7 gene encodes a protein kinase that functions in DNA replication, repair, and meiotic recombination. The sequence of several temperature-sensitive (ts) cdc7 mutations was determined and correlated with protein kinase consensus domain structure. The positions of these ts alleles suggests some general principles for predicting ts protein kinase mutations. Pedigree segregation lag analysis demonstrated that all of the mutant proteins are less active or less stable than wild-type Cdc7p. Two new mutations were constructed, one by site-directed and the other by insertional mutagenesis. All of the cdc7 mutants were assayed for induced mutagenesis in response to mutagenic agents at the permissive temperature. Some cdc7 mutants were found to be hypomutable, while others are hypermutable. The differences in mutability are observed most clearly when log phase cells are used. Both hypo- and hypermutability are recessive to wild type. Cdc7p may participate in DNA repair by phosphorylating repair enzymes or by altering chromatin structure to allow accessibility to DNA lesions.
Collapse
Affiliation(s)
- R E Hollingsworth
- University of Colorado Health Sciences Center, Department of Biochemistry, Biophysics and Genetics, Denver 80262
| | | | | | | | | |
Collapse
|
18
|
Su JY, Sclafani RA. Molecular cloning and expression of the human deoxythymidylate kinase gene in yeast. Nucleic Acids Res 1991; 19:823-7. [PMID: 2017365 PMCID: PMC333717 DOI: 10.1093/nar/19.4.823] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
(Deoxy)thymidylate (dTMP) kinase is an enzyme which phosphorylates dTMP to dTDP in the presence of ATP and magnesium. This enzyme is important in cellular DNA synthesis because the synthesis of dTTP, either via the de novo pathway or through the exogenous supply of thymidine, requires the activity of this enzyme. It has been suggested that the activities of the enzymes involved in DNA precursor biosynthesis, such as thymidine kinase, thymidylate synthase, thymidylate kinase, and dihydrofolate reductase, are subjected to cell cycle regulation. Here we describe the cloning of a human dTMP kinase cDNA by functional complementation of a yeast dTMP kinase temperature-sensitive mutant at the non-permissive temperature. The nucleotide sequence of the cloned human cDNA is predicted to encode a 24 KD protein that shows considerable homology with the yeast and vaccinia virus dTMP kinase enzymes. The human enzyme activity has been investigated by expressing it in yeast. In this work, we demonstrate that the cloned human cDNA, when expressed in yeast, produces dTMP kinase activity.
Collapse
Affiliation(s)
- J Y Su
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262
| | | |
Collapse
|
19
|
New nucleotide sequence data on the EMBL file server. Nucleic Acids Res 1990; 18:7201-7. [PMID: 2263510 PMCID: PMC332850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|