1
|
Cranz-Mileva S, Reilly E, Chalhoub N, Patel R, Atanassova T, Cao W, Ellison C, Zaratiegui M. Transposon Removal Reveals Their Adaptive Fitness Contribution. Genome Biol Evol 2024; 16:evae010. [PMID: 38245838 PMCID: PMC10836971 DOI: 10.1093/gbe/evae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
Transposable elements are molecular parasites that persist in their host genome by generating new copies to outpace natural selection. Transposable elements exert a large influence on host genome evolution, in some cases providing adaptive changes. Here we measure the fitness effect of the transposable element insertions in the fission yeast Schizosaccharomyces pombe type strain by removing all insertions of its only native transposable element family, the long terminal repeat retrotransposon Tf2. We show that Tf2 elements provide a positive fitness contribution to its host. Tf2 ablation results in changes to the regulation of a mitochondrial gene and, consistently, the fitness effect are sensitive to growth conditions. We propose that Tf2 influences host fitness in a directed manner by dynamically rewiring the transcriptional response to metabolic stress.
Collapse
Affiliation(s)
- Susanne Cranz-Mileva
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Eve Reilly
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Noor Chalhoub
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Rohan Patel
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Tania Atanassova
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Weihuan Cao
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Christopher Ellison
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Mikel Zaratiegui
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
2
|
Zong W, Wang J, Zhao R, Niu N, Su Y, Hu Z, Liu X, Hou X, Wang L, Wang L, Zhang L. Associations of genome-wide structural variations with phenotypic differences in cross-bred Eurasian pigs. J Anim Sci Biotechnol 2023; 14:136. [PMID: 37805653 PMCID: PMC10559557 DOI: 10.1186/s40104-023-00929-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND During approximately 10,000 years of domestication and selection, a large number of structural variations (SVs) have emerged in the genome of pig breeds, profoundly influencing their phenotypes and the ability to adapt to the local environment. SVs (≥ 50 bp) are widely distributed in the genome, mainly in the form of insertion (INS), mobile element insertion (MEI), deletion (DEL), duplication (DUP), inversion (INV), and translocation (TRA). While studies have investigated the SVs in pig genomes, genome-wide association studies (GWAS)-based on SVs have been rarely conducted. RESULTS Here, we obtained a high-quality SV map containing 123,151 SVs from 15 Large White and 15 Min pigs through integrating the power of several SV tools, with 53.95% of the SVs being reported for the first time. These high-quality SVs were used to recover the population genetic structure, confirming the accuracy of genotyping. Potential functional SV loci were then identified based on positional effects and breed stratification. Finally, GWAS were performed for 36 traits by genotyping the screened potential causal loci in the F2 population according to their corresponding genomic positions. We identified a large number of loci involved in 8 carcass traits and 6 skeletal traits on chromosome 7, with FKBP5 containing the most significant SV locus for almost all traits. In addition, we found several significant loci in intramuscular fat, abdominal circumference, heart weight, and liver weight, etc. CONCLUSIONS: We constructed a high-quality SV map using high-coverage sequencing data and then analyzed them by performing GWAS for 25 carcass traits, 7 skeletal traits, and 4 meat quality traits to determine that SVs may affect body size between European and Chinese pig breeds.
Collapse
Affiliation(s)
- Wencheng Zong
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jinbu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Runze Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Naiqi Niu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanfang Su
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ziping Hu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinhua Hou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ligang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lixian Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Longchao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
3
|
Nucleosome-positioning sequence repeats impact chromatin silencing in yeast minichromosomes. Genetics 2014; 198:1015-29. [PMID: 25189873 DOI: 10.1534/genetics.114.169508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic gene expression occurs in the context of structurally distinct chromosomal domains such as the relatively open, gene-rich, and transcriptionally active euchromatin and the condensed and gene-poor heterochromatin where its specific chromatin environment inhibits transcription. To study gene silencing by heterochromatin, we created a minichromosome reporter system where the gene silencer elements were used to repress the URA3 reporter gene. The minichromosome reporters were propagated in yeast Saccharomyces cerevisiae at a stable copy number. Conduction of gene silencing through nucleosome arrays was studied by placing various repeats of clone-601 DNA with high affinity for histones between the silencer and reporter in the yeast minichromosomes. High-resolution chromatin mapping with micrococcal nuclease showed that the clone-601 nucleosome positioning downstream of the HML-E gene silencing element was not significantly altered by chromatin silencing. Using URA3 reporter assays, we observed that gene silencing was conducted through arrays of up to eight nucleosomes. We showed that the shorter nucleosome repeat lengths, typical of yeast (167 and 172 bp), were more efficient in conducting silencing in vivo compared to the longer repeats (207 bp) typical of higher eukaryotes. Both the longer and the shorter repeat lengths were able to conduct silencing in minichromosomes independently of clone-601 nucleosome positioning orientations vs. the silencer element. We suggest that the shorter nucleosome linkers are more suitable for conducting gene silencing than the long repeats in yeast due to their higher propensity to support native-like chromatin higher-order folding.
Collapse
|
4
|
Lesage P, Todeschini AL. Happy together: the life and times of Ty retrotransposons and their hosts. Cytogenet Genome Res 2005; 110:70-90. [PMID: 16093660 DOI: 10.1159/000084940] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 03/18/2004] [Indexed: 11/19/2022] Open
Abstract
The aim of this review is to describe the level of intimacy between Ty retrotransposons (Ty1-Ty5) and their host the yeast Saccharomyces cerevisiae. The effects of Ty location in the genome and of host proteins on the expression and mobility of Ty elements are highlighted. After a brief overview of Ty diversity and evolution, we describe the factors that dictate Ty target-site preference and the impact of targeting on Ty and adjacent gene expression. Studies on Ty3 and Ty5 have been especially informative in unraveling the role of host factors (Pol III machinery and silencing proteins, respectively) and integrase in controlling the specificity of integration. In contrast, not much is known regarding Ty1, Ty2 and Ty4, except that their insertion depends on the transcriptional competence of the adjacent Pol III gene and might be influenced by some chromatin components. This review also brings together recent findings on the regulation of Ty1 retrotransposition. A large number of host proteins (over 30) involved in a wide range of cellular processes controls either directly or indirectly Ty1 mobility, primarily at post-transcriptional steps. We focus on several genes for which more detailed analyses have permitted the elaboration of regulatory models. In addition, this review describes new data revealing that repression of Ty1 mobility also involves two forms of copy number control that act at both the trancriptional and post-transcriptional levels. Since S. cerevisiae lacks the conserved pathways for copy number control via transcriptional and post-transcriptional gene silencing found in other eukaryotes, Ty1 copy number control must be via another mechanism whose features are outlined. Ty1 response to stress also implicates activation at both transcriptional and postranscriptional steps of Ty1. Finally, we provide several insights in the role of Ty elements in chromosome evolution and yeast adaptation and discuss the factors that might limit Ty ectopic recombination.
Collapse
Affiliation(s)
- P Lesage
- Institut de Biologie Physico-Chimique, CNRS UPR 9073, Paris, France.
| | | |
Collapse
|
5
|
Bryk M, Banerjee M, Conte D, Curcio MJ. The Sgs1 helicase of Saccharomyces cerevisiae inhibits retrotransposition of Ty1 multimeric arrays. Mol Cell Biol 2001; 21:5374-88. [PMID: 11463820 PMCID: PMC87260 DOI: 10.1128/mcb.21.16.5374-5388.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ty1 retrotransposons in the yeast Saccharomyces cerevisiae are maintained in a genetically competent but transpositionally dormant state. When located in the ribosomal DNA (rDNA) locus, Ty1 elements are transcriptionally silenced by the specialized heterochromatin that inhibits rDNA repeat recombination. In addition, transposition of all Ty1 elements is repressed at multiple posttranscriptional levels. Here, we demonstrate that Sgs1, a RecQ helicase required for genome stability, inhibits the mobility of Ty1 elements by a posttranslational mechanism. Using an assay for the mobility of Ty1 cDNA via integration or homologous recombination, we found that the mobility of both euchromatic and rDNA-Ty1 elements was increased 32- to 79-fold in sgs1Delta mutants. Increased Ty1 mobility was not due to derepression of silent rDNA-Ty1 elements, since deletion of SGS1 reduced the mitotic stability of rDNA-Ty1 elements but did not stimulate their transcription. Furthermore, deletion of SGS1 did not significantly increase the levels of total Ty1 RNA, protein, or cDNA and did not alter the level or specificity of Ty1 integration. Instead, Ty1 cDNA molecules recombined at a high frequency in sgs1Delta mutants, resulting in transposition of heterogeneous Ty1 multimers. Formation of Ty1 multimers required the homologous recombination protein Rad52 but did not involve recombination between Ty1 cDNA and genomic Ty1 elements. Therefore, Ty1 multimers that transpose at a high frequency in sgs1Delta mutants are formed by intermolecular recombination between extrachromosomal Ty1 cDNA molecules before or during integration. Our data provide the first evidence that the host cell promotes retrotransposition of monomeric Ty1 elements by repressing cDNA recombination.
Collapse
Affiliation(s)
- M Bryk
- Molecular Genetics Program, Wadsworth Center and School of Public Health, State University of New York at Albany, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
6
|
Davis ES, Shafer BK, Strathern JN. The Saccharomyces cerevisiae RDN1 locus is sequestered from interchromosomal meiotic ectopic recombination in a SIR2-dependent manner. Genetics 2000; 155:1019-32. [PMID: 10880466 PMCID: PMC1461158 DOI: 10.1093/genetics/155.3.1019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Meiotic ectopic recombination occurs at similar frequencies among many sites in the yeast genome, suggesting that all loci are similarly accessible to homology searching. In contrast, we found that his3 sequences integrated in the RDN1 (rDNA) locus were unusually poor participants in meiotic recombination with his3 sequences at other sites. We show that the low rate of meiotic ectopic recombination resulted from the poor ability of RDN1::his3 to act as a donor sequence. SIR2 partially repressed interchromosomal meiotic ectopic recombination at RDN1, consistent with its role in regulating recombination, gene expression, and retrotransposition within RDN1. We propose that RDN1 is physically sequestered from meiotic homology searching mechanisms.
Collapse
Affiliation(s)
- E S Davis
- Gene Regulation and Chromosome Biology Laboratory, National Institutes of Health, National Cancer Institute, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA.
| | | | | |
Collapse
|
7
|
Garfinkel DJ, Curcio MJ, Smith V. 7 Ty Mutagenesis. METHODS IN MICROBIOLOGY 1998. [DOI: 10.1016/s0580-9517(08)70328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Ke N, Irwin PA, Voytas DF. The pheromone response pathway activates transcription of Ty5 retrotransposons located within silent chromatin of Saccharomyces cerevisiae. EMBO J 1997; 16:6272-80. [PMID: 9321406 PMCID: PMC1326311 DOI: 10.1093/emboj/16.20.6272] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Saccharomyces retrotransposon Ty5 integrates preferentially into transcriptionally inactive regions (silent chromatin) at the HM loci and telomeres. We found that silent chromatin represses basal Ty5 transcription, indicating that these elements are encompassed by silent chromatin in their native genomic context. Because transcription is a requirement for transposition, integration into silent chromatin would appear to prevent subsequent rounds of replication. Using plasmid-borne Ty5-lacZ constructs, we found that Ty5 expression is haploid specific and is repressed 10-fold in diploid strains. Ty5 transcription is also regulated by the pheromone response pathway and is induced approximately 20-fold upon pheromone treatment. Deletion analysis of the Ty5 LTR promoter revealed that a 33 bp region with three perfect matches to the pheromone response element is responsible for both mating pheromone and cell-type regulation. Transcriptional repression of Ty5 by silent chromatin can be reversed by pheromone treatment, which leads to transcription and transposition. Ty5 replication, therefore, is normally repressed by silent chromatin and appears to be induced during mating. This is the first example of transcriptional activation of a gene that naturally resides within silent chromatin.
Collapse
Affiliation(s)
- N Ke
- Department of Zoology and Genetics, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
9
|
Lauermann V, Hermankova M, Boeke JD. Increased length of long terminal repeats inhibits Ty1 transposition and leads to the formation of tandem multimers. Genetics 1997; 145:911-22. [PMID: 9093846 PMCID: PMC1207896 DOI: 10.1093/genetics/145.4.911] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Ty1 retrotransposon of Saccharomyces cerevisiae is bounded by long-terminal repeats (LTRs). We have constructed a variety of Ty1 elements in which the LTR length has been increased from the normal length of 334 bp to > 2 kb. Although small insertions in the LTR have minimal effects on transposition frequency, larger insertions dramatically reduce it. Nevertheless, elements with long LTRs are incorporated into the genome at a low frequency. Most of these rare insertion events represent Ty1 tandem (head to tail) multimers.
Collapse
Affiliation(s)
- V Lauermann
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
10
|
Devine SE, Boeke JD. Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNA polymerase III. Genes Dev 1996; 10:620-33. [PMID: 8598291 DOI: 10.1101/gad.10.5.620] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Retroviruses and their relatives, the LTR-containing retrotransposons, integrate newly replicated cDNA copies of their genomes into the genomes of their hosts using element-encoded integrases. Although target site selection is not well understood for this general class of elements, it is becoming clear that some elements target their integration events to very specific regions of their host genomes. Evidence is accumulating that the yeast retrotransposon Ty1 behaves in this manner. Ty1 is found frequently adjacent to tRNA genes in the yeast genome and experimental evidence implicates these regions as preferred integration sites. To determine the basis for Ty1 targeting, we developed an in vivo integration assay using a Ty1 donor plasmid and a second target plasmid that could be used to measure the relative frequency of Ty1 integration into sequences cloned from various regions of the yeast genome. Targets containing genes transcribed by RNA polymerase III (Pol III) were up to several hundredfold more active as integration targets than "cold" sequences lacking such genes. High-frequency targeting was dependent on Pol III transcription, and integration was "region specific," occurring exclusively upstream of the transcription start sites of these genes. Thus, Ty1 has evolved a powerful targeting mechanism, requiring Pol III transcription to integrate its DNA at very specific locations within the yeast genome.
Collapse
MESH Headings
- Base Sequence
- Chromosomes, Fungal
- Cloning, Molecular
- DNA, Ribosomal
- Genes, Fungal
- Molecular Sequence Data
- Plasmids
- Promoter Regions, Genetic
- RNA Polymerase III/metabolism
- RNA, Ribosomal, 5S/genetics
- RNA, Small Nuclear/genetics
- RNA, Transfer, Gly/genetics
- Retroelements/genetics
- Saccharomyces cerevisiae/genetics
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- S E Devine
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
11
|
Sharon G, Burkett TJ, Garfinkel DJ. Efficient homologous recombination of Ty1 element cDNA when integration is blocked. Mol Cell Biol 1994; 14:6540-51. [PMID: 7523854 PMCID: PMC359184 DOI: 10.1128/mcb.14.10.6540-6551.1994] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Integration of the yeast retrotransposon Ty1 into the genome requires the self-encoded integrase (IN) protein and specific terminal nucleotides present on full-length Ty1 cDNA. Ty1 mutants with defects in IN, the conserved termini of Ty1 cDNA, or priming plus-strand DNA synthesis, however, were still able to efficiently insert into the genome when the elements were expressed from the GAL1 promoter present on a multicopy plasmid. As with normal transposition, formation of the exceptional insertions required an RNA intermediate, Ty1 reverse transcriptase, and Ty1 protease. In contrast to Ty1 transposition, at least 70% of the chromosomal insertions consisted of complex multimeric Ty1 elements. Ty1 cDNA was transferred to the inducing plasmid as well as to the genome, and transfer required the recombination and repair gene RAD52. Furthermore, multimeric insertions occurred without altering the levels of total Ty1 RNA, virus-like particle-associated RNA or cDNA, Ty1 capsid proteins, or IN. These results suggest that Ty1 cDNA is utilized much more efficiently for homologous recombination when IN-mediated integration is blocked.
Collapse
Affiliation(s)
- G Sharon
- Laboratory of Eukaryotic Gene Expression, NCI-Frederick Cancer Research and Development Center, ABL-Basic Research Program, Maryland 21702-1201
| | | | | |
Collapse
|