1
|
Charmouh AP, Porsborg PS, Hansen LT, Besenbacher S, Boeg Winge S, Almstrup K, Hobolth A, Bataillon T, Schierup MH. Estimating Gene Conversion Tract Length and Rate From PacBio HiFi Data. Mol Biol Evol 2025; 42:msaf019. [PMID: 39982809 PMCID: PMC11844249 DOI: 10.1093/molbev/msaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 02/23/2025] Open
Abstract
Gene conversions are broadly defined as the transfer of genetic material from a "donor" to an "acceptor" sequence and can happen both in meiosis and mitosis. They are a subset of noncrossover (NCO) events and, like crossover (CO) events, gene conversion can generate new combinations of alleles and counteract mutation load by reverting germline mutations through GC-biased gene conversion. Estimating gene conversion rate and the distribution of gene conversion tract lengths remains challenging. We present a new method for estimating tract length, rate, and detection probability of NCO events directly in HiFi PacBio long read data. The method can be used to make inference from sequencing of gametes from a single individual. The method is unbiased even under low single nucleotide variant (SNV) densities and does not necessitate any demographic or evolutionary assumptions. We test the accuracy and robustness of our method using simulated datasets where we vary length of tracts, number of tracts, the genomic SNV density, and levels of correlation between SNV density and NCO event position. Our simulations show that under low SNV densities, like those found in humans, only a minute fraction (∼2%) of NCO events are expected to become visible as gene conversions by moving at least 1 SNV. We finally illustrate our method by applying it to PacBio sequencing data from human sperm.
Collapse
Affiliation(s)
- Anders Poulsen Charmouh
- Bioinformatics Research Centre, Aarhus University, University City 81, DK-8000 Aarhus C, Denmark
| | - Peter Sørud Porsborg
- Bioinformatics Research Centre, Aarhus University, University City 81, DK-8000 Aarhus C, Denmark
| | - Lasse Thorup Hansen
- Department of Mathematics, Aarhus University, Ny Munkegade 118, DK-8000 Aarhus C, Denmark
| | - Søren Besenbacher
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Sofia Boeg Winge
- Department of Growth and Reproduction, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Kristian Almstrup
- Department of Growth and Reproduction, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Asger Hobolth
- Department of Mathematics, Aarhus University, Ny Munkegade 118, DK-8000 Aarhus C, Denmark
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, University City 81, DK-8000 Aarhus C, Denmark
| | - Mikkel Heide Schierup
- Bioinformatics Research Centre, Aarhus University, University City 81, DK-8000 Aarhus C, Denmark
| |
Collapse
|
2
|
Schwarzkopf EJ, Brandt N, Smukowski Heil C. The recombination landscape of introgression in yeast. PLoS Genet 2025; 21:e1011585. [PMID: 39937775 PMCID: PMC11845044 DOI: 10.1371/journal.pgen.1011585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/21/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
Meiotic recombination is an evolutionary force that acts by breaking up genomic linkage, increasing the efficacy of selection. Recombination is initiated with a double-strand break which is resolved via a crossover, which involves the reciprocal exchange of genetic material between homologous chromosomes, or a non-crossover, which results in small tracts of non-reciprocal exchange of genetic material. Crossover and non-crossover rates vary between species, populations, individuals, and across the genome. In recent years, recombination rate has been associated with the distribution of ancestry derived from past interspecific hybridization (introgression) in a variety of species. We explore this interaction of recombination and introgression by sequencing spores and detecting crossovers and non-crossovers from two crosses of the yeast Saccharomyces uvarum. One cross is between strains which each contain introgression from their sister species, S. eubayanus, while the other cross has no introgression present. We find that the recombination landscape is significantly different between S. uvarum crosses, and that some of these differences can be explained by the presence of introgression in one cross. Crossovers are significantly reduced in heterozygous introgression compared to syntenic regions in the cross without introgression. This translates to reduced allele shuffling within introgressed regions, and an overall reduction of shuffling on most chromosomes with introgression compared to the syntenic regions and chromosomes without introgression. Our results suggest that hybridization can significantly influence the recombination landscape, and that the reduction in allele shuffling contributes to the initial purging of introgression in the generations following a hybridization event.
Collapse
Affiliation(s)
- Enrique J. Schwarzkopf
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Nathan Brandt
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
3
|
Lacy KD, Hart T, Kronauer DJC. Co-inheritance of recombined chromatids maintains heterozygosity in a parthenogenetic ant. Nat Ecol Evol 2024; 8:1522-1533. [PMID: 39014144 PMCID: PMC11310076 DOI: 10.1038/s41559-024-02455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024]
Abstract
According to Mendel's second law, chromosomes segregate randomly in meiosis. Non-random segregation is primarily known for cases of selfish meiotic drive in females, in which particular alleles bias their own transmission into the oocyte. Here we report a rare example of unselfish meiotic drive for crossover inheritance in the clonal raider ant, Ooceraea biroi, in which both alleles are co-inherited at all loci across the entire genome. This species produces diploid offspring parthenogenetically via fusion of two haploid nuclei from the same meiosis. This process should cause rapid genotypic degeneration due to loss of heterozygosity, which results if crossover recombination is followed by random (Mendelian) segregation of chromosomes. However, by comparing whole genomes of mothers and daughters, we show that loss of heterozygosity is exceedingly rare, raising the possibility that crossovers are infrequent or absent in O. biroi meiosis. Using a combination of cytology and whole-genome sequencing, we show that crossover recombination is, in fact, common but that loss of heterozygosity is avoided because crossover products are faithfully co-inherited. This results from a programmed violation of Mendel's law of segregation, such that crossover products segregate together rather than randomly. This discovery highlights an extreme example of cellular 'memory' of crossovers, which could be a common yet cryptic feature of chromosomal segregation.
Collapse
Affiliation(s)
- Kip D Lacy
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA.
| | - Taylor Hart
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
4
|
Schwarzkopf EJ, Brandt N, Heil CS. The recombination landscape of introgression in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574263. [PMID: 39026729 PMCID: PMC11257466 DOI: 10.1101/2024.01.04.574263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Meiotic recombination is an evolutionary force that acts by breaking up genomic linkage, increasing the efficacy of selection. Recombination is initiated with a double-strand break which is resolved via a crossover, which involves the reciprocal exchange of genetic material between homologous chromosomes, or a non-crossover, which results in small tracts of non-reciprocal exchange of genetic material. Crossover and non-crossover rates vary between species, populations, individuals, and across the genome. In recent years, recombination rate has been associated with the distribution of ancestry derived from past interspecific hybridization (introgression) in a variety of species. We explore this interaction of recombination and introgression by sequencing spores and detecting crossovers and non-crossovers from two crosses of the yeast Saccharomyces uvarum. One cross is between strains which each contain introgression from their sister species, S. eubayanus, while the other cross has no introgression present. We find that the recombination landscape is significantly different between S. uvarum crosses, and that some of these differences can be explained by the presence of introgression in one cross. Crossovers are reduced and non-crossovers are increased in heterozygous introgression compared to syntenic regions in the cross without introgression. This translates to reduced allele shuffling within introgressed regions, and an overall reduction of shuffling on most chromosomes with introgression compared to the syntenic regions and chromosomes without introgression. Our results suggest that hybridization can significantly influence the recombination landscape, and that the reduction in allele shuffling contributes to the initial purging of introgression in the generations following a hybridization event.
Collapse
Affiliation(s)
| | - Nathan Brandt
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | | |
Collapse
|
5
|
Schweiger R, Lee S, Zhou C, Yang TP, Smith K, Li S, Sanghvi R, Neville M, Mitchell E, Nessa A, Wadge S, Small KS, Campbell PJ, Sudmant PH, Rahbari R, Durbin R. Insights into non-crossover recombination from long-read sperm sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602249. [PMID: 39005338 PMCID: PMC11245106 DOI: 10.1101/2024.07.05.602249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Meiotic recombination is a fundamental process that generates genetic diversity by creating new combinations of existing alleles. Although human crossovers have been studied at the pedigree, population and single-cell level, the more frequent non-crossover events that lead to gene conversion are harder to study, particularly at the individual level. Here we show that single high-fidelity long sequencing reads from sperm can capture both crossovers and non-crossovers, allowing effectively arbitrary sample sizes for analysis from one male. Using fifteen sperm samples from thirteen donors we demonstrate variation between and within donors for the rates of different types of recombination. Intriguingly, we observe a tendency for non-crossover gene conversions to occur upstream of nearby PRDM9 binding sites, whereas crossover locations have a slight downstream bias. We further provide evidence for two distinct non-crossover processes. One gives rise to the vast majority of non-crossovers with mean conversion tract length under 50bp, which we suggest is an outcome of standard PRDM9-induced meiotic recombination. In contrast ~2% of non-crossovers have much longer mean tract length, and potentially originate from the same process as complex events with more than two haplotype switches, which is not associated with PRDM9 binding sites and is also seen in somatic cells.
Collapse
Affiliation(s)
- Regev Schweiger
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom
| | - Sangjin Lee
- Wellcome Sanger Institute, Cancer Ageing and Somatic Mutation, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Chenxi Zhou
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom
| | - Tsun-Po Yang
- Wellcome Sanger Institute, Cancer Ageing and Somatic Mutation, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Katie Smith
- Wellcome Sanger Institute, Cancer Ageing and Somatic Mutation, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Stacy Li
- Department of Integrative Biology, University of California Berkeley, Berkeley, USA
| | - Rashesh Sanghvi
- Wellcome Sanger Institute, Cancer Ageing and Somatic Mutation, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Matthew Neville
- Wellcome Sanger Institute, Cancer Ageing and Somatic Mutation, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Emily Mitchell
- Wellcome Sanger Institute, Cancer Ageing and Somatic Mutation, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Ayrun Nessa
- Kings College London, Department of Twin Research & Genetic Epidemiology, London, United Kingdom
| | - Sam Wadge
- Kings College London, Department of Twin Research & Genetic Epidemiology, London, United Kingdom
| | - Kerrin S Small
- Kings College London, Department of Twin Research & Genetic Epidemiology, London, United Kingdom
| | - Peter J Campbell
- Wellcome Sanger Institute, Cancer Ageing and Somatic Mutation, Hinxton, Cambridge CB10 1SA, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Peter H Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, USA
| | - Raheleh Rahbari
- Wellcome Sanger Institute, Cancer Ageing and Somatic Mutation, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom
- Wellcome Sanger Institute, Cancer Ageing and Somatic Mutation, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
6
|
Lacy KD, Hart T, Kronauer DJ. Unselfish meiotic drive maintains heterozygosity in a parthenogenetic ant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579553. [PMID: 38405725 PMCID: PMC10888755 DOI: 10.1101/2024.02.09.579553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
According to Mendel's second law, chromosomes segregate randomly in meiosis. Nonrandom segregation is primarily known for cases of selfish meiotic drive in females, in which particular alleles bias their own transmission into the oocyte1,2. Here, we report a rare example of unselfish meiotic drive for crossover inheritance in the clonal raider ant, Ooceraea biroi. This species produces diploid offspring parthenogenetically via fusion of two haploid nuclei from the same meiosis3. This process should cause rapid genotypic degeneration due to loss of heterozygosity, which results if crossover recombination is followed by random (Mendelian) segregation of chromosomes4,5. However, by comparing whole genomes of mothers and daughters, we show that loss of heterozygosity is exceedingly rare, raising the possibility that crossovers are infrequent or absent in O. biroi meiosis. Using a combination of cytology and whole genome sequencing, we show that crossover recombination is, in fact, common, but that loss of heterozygosity is avoided because crossover products are faithfully co-inherited. This results from a programmed violation of Mendel's law of segregation, such that crossover products segregate together rather than randomly. This discovery highlights an extreme example of cellular "memory" of crossovers, which could be a common yet cryptic feature of chromosomal segregation.
Collapse
Affiliation(s)
- Kip D. Lacy
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Taylor Hart
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Daniel J.C. Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
7
|
Schrider DR. Allelic gene conversion softens selective sweeps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570141. [PMID: 38106127 PMCID: PMC10723294 DOI: 10.1101/2023.12.05.570141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The prominence of positive selection, in which beneficial mutations are favored by natural selection and rapidly increase in frequency, is a subject of intense debate. Positive selection can result in selective sweeps, in which the haplotype(s) bearing the adaptive allele "sweep" through the population, thereby removing much of the genetic diversity from the region surrounding the target of selection. Two models of selective sweeps have been proposed: classical sweeps, or "hard sweeps", in which a single copy of the adaptive allele sweeps to fixation, and "soft sweeps", in which multiple distinct copies of the adaptive allele leave descendants after the sweep. Soft sweeps can be the outcome of recurrent mutation to the adaptive allele, or the presence of standing genetic variation consisting of multiple copies of the adaptive allele prior to the onset of selection. Importantly, soft sweeps will be common when populations can rapidly adapt to novel selective pressures, either because of a high mutation rate or because adaptive alleles are already present. The prevalence of soft sweeps is especially controversial, and it has been noted that selection on standing variation or recurrent mutations may not always produce soft sweeps. Here, we show that the inverse is true: selection on single-origin de novo mutations may often result in an outcome that is indistinguishable from a soft sweep. This is made possible by allelic gene conversion, which "softens" hard sweeps by copying the adaptive allele onto multiple genetic backgrounds, a process we refer to as a "pseudo-soft" sweep. We carried out a simulation study examining the impact of gene conversion on sweeps from a single de novo variant in models of human, Drosophila, and Arabidopsis populations. The fraction of simulations in which gene conversion had produced multiple haplotypes with the adaptive allele upon fixation was appreciable. Indeed, under realistic demographic histories and gene conversion rates, even if selection always acts on a single-origin mutation, sweeps involving multiple haplotypes are more likely than hard sweeps in large populations, especially when selection is not extremely strong. Thus, even when the mutation rate is low or there is no standing variation, hard sweeps are expected to be the exception rather than the rule in large populations. These results also imply that the presence of signatures of soft sweeps does not necessarily mean that adaptation has been especially rapid or is not mutation limited.
Collapse
Affiliation(s)
- Daniel R Schrider
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
8
|
Li H, Berent E, Hadjipanteli S, Galey M, Muhammad-Lahbabi N, Miller DE, Crown KN. Heterozygous inversion breakpoints suppress meiotic crossovers by altering recombination repair outcomes. PLoS Genet 2023; 19:e1010702. [PMID: 37053290 PMCID: PMC10128924 DOI: 10.1371/journal.pgen.1010702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/25/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023] Open
Abstract
Heterozygous chromosome inversions suppress meiotic crossover (CO) formation within an inversion, potentially because they lead to gross chromosome rearrangements that produce inviable gametes. Interestingly, COs are also severely reduced in regions nearby but outside of inversion breakpoints even though COs in these regions do not result in rearrangements. Our mechanistic understanding of why COs are suppressed outside of inversion breakpoints is limited by a lack of data on the frequency of noncrossover gene conversions (NCOGCs) in these regions. To address this critical gap, we mapped the location and frequency of rare CO and NCOGC events that occurred outside of the dl-49 chrX inversion in D. melanogaster. We created full-sibling wildtype and inversion stocks and recovered COs and NCOGCs in the syntenic regions of both stocks, allowing us to directly compare rates and distributions of recombination events. We show that COs outside of the proximal inversion breakpoint are distributed in a distance-dependent manner, with strongest suppression near the inversion breakpoint. We find that NCOGCs occur evenly throughout the chromosome and, importantly, are not suppressed near inversion breakpoints. We propose a model in which COs are suppressed by inversion breakpoints in a distance-dependent manner through mechanisms that influence DNA double-strand break repair outcome but not double-strand break formation. We suggest that subtle changes in the synaptonemal complex and chromosome pairing might lead to unstable interhomolog interactions during recombination that permits NCOGC formation but not CO formation.
Collapse
Affiliation(s)
- Haosheng Li
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Erica Berent
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Savannah Hadjipanteli
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Miranda Galey
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Nigel Muhammad-Lahbabi
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, United States of America
| | - K Nicole Crown
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
9
|
Koury SA. Predicting recombination suppression outside chromosomal inversions in Drosophila melanogaster using crossover interference theory. Heredity (Edinb) 2023; 130:196-208. [PMID: 36721031 PMCID: PMC10076299 DOI: 10.1038/s41437-023-00593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/02/2023] Open
Abstract
Recombination suppression in chromosomal inversion heterozygotes is a well-known but poorly understood phenomenon. Surprisingly, recombination suppression extends far outside of inverted regions where there are no intrinsic barriers to normal chromosome pairing, synapsis, double-strand break formation, or recovery of crossover products. The interference hypothesis of recombination suppression proposes heterozygous inversion breakpoints possess chiasma-like properties such that recombination suppression extends from these breakpoints in a process analogous to crossover interference. This hypothesis is qualitatively consistent with chromosome-wide patterns of recombination suppression extending to both inverted and uninverted regions of the chromosome. The present study generated quantitative predictions for this hypothesis using a probabilistic model of crossover interference with gamma-distributed inter-event distances. These predictions were then tested with experimental genetic data (>40,000 meioses) on crossing-over in intervals that are external and adjacent to four common inversions of Drosophila melanogaster. The crossover interference model accurately predicted the partially suppressed recombination rates in euchromatic intervals outside inverted regions. Furthermore, assuming interference does not extend across centromeres dramatically improved model fit and partially accounted for excess recombination observed in pericentromeric intervals. Finally, inversions with breakpoints closest to the centromere had the greatest excess of recombination in pericentromeric intervals, an observation that is consistent with negative crossover interference previously documented near Drosophila melanogaster centromeres. In conclusion, the experimental data support the interference hypothesis of recombination suppression, validate a mathematical framework for integrating distance-dependent effects of structural heterozygosity on crossover distribution, and highlight the need for improved modeling of crossover interference in pericentromeric regions.
Collapse
Affiliation(s)
- Spencer A Koury
- Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY, 11794, USA.
- 2613 Ashwood Ave, Nashville, TN, 37212, USA.
| |
Collapse
|
10
|
Setter D, Ebdon S, Jackson B, Lohse K. Estimating the rates of crossover and gene conversion from individual genomes. Genetics 2022; 222:iyac100. [PMID: 35771626 PMCID: PMC9434185 DOI: 10.1093/genetics/iyac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/14/2022] Open
Abstract
Recombination can occur either as a result of crossover or gene conversion events. Population genetic methods for inferring the rate of recombination from patterns of linkage disequilibrium generally assume a simple model of recombination that only involves crossover events and ignore gene conversion. However, distinguishing the 2 processes is not only necessary for a complete description of recombination, but also essential for understanding the evolutionary consequences of inversions and other genomic partitions in which crossover (but not gene conversion) is reduced. We present heRho, a simple composite likelihood scheme for coestimating the rate of crossover and gene conversion from individual diploid genomes. The method is based on analytic results for the distance-dependent probability of heterozygous and homozygous states at 2 loci. We apply heRho to simulations and data from the house mouse Mus musculus castaneus, a well-studied model. Our analyses show (1) that the rates of crossover and gene conversion can be accurately coestimated at the level of individual chromosomes and (2) that previous estimates of the population scaled rate of recombination ρ=4Ner under a pure crossover model are likely biased.
Collapse
Affiliation(s)
- Derek Setter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sam Ebdon
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Ben Jackson
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
11
|
Wall JD, Robinson JA, Cox LA. High-Resolution Estimates of Crossover and Noncrossover Recombination from a Captive Baboon Colony. Genome Biol Evol 2022; 14:evac040. [PMID: 35325119 PMCID: PMC9048888 DOI: 10.1093/gbe/evac040] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Homologous recombination has been extensively studied in humans and a handful of model organisms. Much less is known about recombination in other species, including nonhuman primates. Here, we present a study of crossovers (COs) and noncrossover (NCO) recombination in olive baboons (Papio anubis) from two pedigrees containing a total of 20 paternal and 17 maternal meioses, and compare these results to linkage disequilibrium (LD) based recombination estimates from 36 unrelated olive baboons. We demonstrate how COs, combined with LD-based recombination estimates, can be used to identify genome assembly errors. We also quantify sex-specific differences in recombination rates, including elevated male CO and reduced female CO rates near telomeres. Finally, we add to the increasing body of evidence suggesting that while most NCO recombination tracts in mammals are short (e.g., <500 bp), there is a non-negligible fraction of longer (e.g., >1 kb) NCO tracts. For NCO tracts shorter than 10 kb, we fit a mixture of two (truncated) geometric distributions model to the NCO tract length distribution and estimate that >99% of all NCO tracts are very short (mean 24 bp), but the remaining tracts can be quite long (mean 4.3 kb). A single geometric distribution model for NCO tract lengths is incompatible with the data, suggesting that LD-based methods for estimating NCO recombination rates that make this assumption may need to be modified.
Collapse
Affiliation(s)
- Jeffrey D. Wall
- Institute for Human Genetics, University of California San Francisco, USA
| | | | - Laura A. Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, USA
| |
Collapse
|
12
|
Hatkevich T, Miller DE, Turcotte CA, Miller MC, Sekelsky J. A pathway for error-free non-homologous end joining of resected meiotic double-strand breaks. Nucleic Acids Res 2021; 49:879-890. [PMID: 33406239 PMCID: PMC7826270 DOI: 10.1093/nar/gkaa1205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
Programmed DNA double-strand breaks (DSBs) made during meiosis are repaired by recombination with the homologous chromosome to generate, at selected sites, reciprocal crossovers that are critical for the proper separation of homologs in the first meiotic division. Backup repair processes can compensate when the normal meiotic recombination processes are non-functional. We describe a novel backup repair mechanism that occurs when the homologous chromosome is not available in Drosophila melanogaster meiosis. In the presence of a previously described mutation (Mcm5A7) that disrupts chromosome pairing, DSB repair is initiated by homologous recombination but is completed by non-homologous end joining (NHEJ). Remarkably, this process yields precise repair products. Our results provide support for a recombination intermediate recently proposed in mouse meiosis, in which an oligonucleotide bound to the Spo11 protein that catalyzes DSB formation remains bound after resection. We propose that this oligonucleotide functions as a primer for fill-in synthesis to allow scarless repair by NHEJ. We argue that this is a conserved repair mechanism that is likely to be invoked to overcome occasional challenges in normal meiosis.
Collapse
Affiliation(s)
- Talia Hatkevich
- Curriculum in Genetics and Molecular Biology, 120 Mason Farm Road, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Danny E Miller
- Department of Pediatrics, Division of Medical Genetics, University of Washington, Seattle, Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Carolyn A Turcotte
- Curriculum in Genetics and Molecular Biology, 120 Mason Farm Road, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Margaret C Miller
- Department of Biology, University of North Carolina, 120 South Road, Chapel Hill, NC 27599, USA
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, 120 Mason Farm Road, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Biology, University of North Carolina, 120 South Road, Chapel Hill, NC 27599, USA.,Integrative Program in Biological and Genome Sciences, 250 Bell Tower Drive, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Abstract
Accurately inferring the genome-wide landscape of recombination rates in natural populations is a central aim in genomics, as patterns of linkage influence everything from genetic mapping to understanding evolutionary history. Here, we describe recombination landscape estimation using recurrent neural networks (ReLERNN), a deep learning method for estimating a genome-wide recombination map that is accurate even with small numbers of pooled or individually sequenced genomes. Rather than use summaries of linkage disequilibrium as its input, ReLERNN takes columns from a genotype alignment, which are then modeled as a sequence across the genome using a recurrent neural network. We demonstrate that ReLERNN improves accuracy and reduces bias relative to existing methods and maintains high accuracy in the face of demographic model misspecification, missing genotype calls, and genome inaccessibility. We apply ReLERNN to natural populations of African Drosophila melanogaster and show that genome-wide recombination landscapes, although largely correlated among populations, exhibit important population-specific differences. Lastly, we connect the inferred patterns of recombination with the frequencies of major inversions segregating in natural Drosophila populations.
Collapse
Affiliation(s)
- Jeffrey R Adrion
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR
| | - Jared G Galloway
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR
| | - Andrew D Kern
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR
| |
Collapse
|
14
|
Miller DE. Synaptonemal Complex-Deficient Drosophila melanogaster Females Exhibit Rare DSB Repair Events, Recurrent Copy-Number Variation, and an Increased Rate of de Novo Transposable Element Movement. G3 (BETHESDA, MD.) 2020; 10:525-537. [PMID: 31882405 PMCID: PMC7003089 DOI: 10.1534/g3.119.400853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/23/2019] [Indexed: 01/11/2023]
Abstract
Genetic stability depends on the maintenance of a variety of chromosome structures and the precise repair of DNA breaks. During meiosis, programmed double-strand breaks (DSBs) made in prophase I are normally repaired as gene conversions or crossovers. DSBs can also be made by other mechanisms, such as the movement of transposable elements (TEs), which must also be resolved. Incorrect repair of these DNA lesions can lead to mutations, copy-number changes, translocations, and/or aneuploid gametes. In Drosophila melanogaster, as in most organisms, meiotic DSB repair occurs in the presence of a rapidly evolving multiprotein structure called the synaptonemal complex (SC). Here, whole-genome sequencing is used to investigate the fate of meiotic DSBs in D. melanogaster mutant females lacking functional SC, to assay for de novo CNV formation, and to examine the role of the SC in transposable element movement in flies. The data indicate that, in the absence of SC, copy-number variation still occurs and meiotic DSB repair by gene conversion occurs infrequently. Remarkably, an 856-kilobase de novo CNV was observed in two unrelated individuals of different genetic backgrounds and was identical to a CNV recovered in a previous wild-type study, suggesting that recurrent formation of large CNVs occurs in Drosophila. In addition, the rate of novel TE insertion was markedly higher than wild type in one of two SC mutants tested, suggesting that SC proteins may contribute to the regulation of TE movement and insertion in the genome. Overall, this study provides novel insight into the role that the SC plays in genome stability and provides clues as to why the sequence, but not structure, of SC proteins is rapidly evolving.
Collapse
Affiliation(s)
- Danny E Miller
- Division of Medical Genetics, Department of Medicine, and
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98105, and
- Seattle Children's Hospital, Seattle, Washington 98105
| |
Collapse
|
15
|
The Effects on Neutral Variability of Recurrent Selective Sweeps and Background Selection. Genetics 2019; 212:287-303. [PMID: 30923166 DOI: 10.1534/genetics.119.301951] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Levels of variability and rates of adaptive evolution may be affected by hitchhiking, the effect of selection on evolution at linked sites. Hitchhiking can be caused either by "selective sweeps" or by background selection, involving the spread of new favorable alleles or the elimination of deleterious mutations, respectively. Recent analyses of population genomic data have fitted models where both these processes act simultaneously, to infer the parameters of selection. Here, we investigate the consequences of relaxing a key assumption of some of these studies, that the time occupied by a selective sweep is negligible compared with the neutral coalescent time. We derive a new expression for the expected level of neutral variability in the presence of recurrent selective sweeps and background selection. We also derive approximate integral expressions for the effects of recurrent selective sweeps. The accuracy of the theoretical predictions was tested against multilocus simulations, with selection, recombination, and mutation parameters that are realistic for Drosophila melanogaster In the presence of crossing over, there is approximate agreement between the theoretical and simulation results. We show that the observed relationships between the rate of crossing over, and the level of synonymous site diversity and rate of adaptive evolution in Drosophila are probably mainly caused by background selection, whereas selective sweeps and population size changes are needed to produce the observed distortions of the site frequency spectrum.
Collapse
|
16
|
Female Meiosis: Synapsis, Recombination, and Segregation in Drosophila melanogaster. Genetics 2018; 208:875-908. [PMID: 29487146 PMCID: PMC5844340 DOI: 10.1534/genetics.117.300081] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
A century of genetic studies of the meiotic process in Drosophila melanogaster females has been greatly augmented by both modern molecular biology and major advances in cytology. These approaches, and the findings they have allowed, are the subject of this review. Specifically, these efforts have revealed that meiotic pairing in Drosophila females is not an extension of somatic pairing, but rather occurs by a poorly understood process during premeiotic mitoses. This process of meiotic pairing requires the function of several components of the synaptonemal complex (SC). When fully assembled, the SC also plays a critical role in maintaining homolog synapsis and in facilitating the maturation of double-strand breaks (DSBs) into mature crossover (CO) events. Considerable progress has been made in elucidating not only the structure, function, and assembly of the SC, but also the proteins that facilitate the formation and repair of DSBs into both COs and noncrossovers (NCOs). The events that control the decision to mature a DSB as either a CO or an NCO, as well as determining which of the two CO pathways (class I or class II) might be employed, are also being characterized by genetic and genomic approaches. These advances allow a reconsideration of meiotic phenomena such as interference and the centromere effect, which were previously described only by genetic studies. In delineating the mechanisms by which the oocyte controls the number and position of COs, it becomes possible to understand the role of CO position in ensuring the proper orientation of homologs on the first meiotic spindle. Studies of bivalent orientation have occurred in the context of numerous investigations into the assembly, structure, and function of the first meiotic spindle. Additionally, studies have examined the mechanisms ensuring the segregation of chromosomes that have failed to undergo crossing over.
Collapse
|
17
|
Crown KN, Miller DE, Sekelsky J, Hawley RS. Local Inversion Heterozygosity Alters Recombination throughout the Genome. Curr Biol 2018; 28:2984-2990.e3. [PMID: 30174188 DOI: 10.1016/j.cub.2018.07.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/06/2018] [Accepted: 07/02/2018] [Indexed: 11/28/2022]
Abstract
Crossovers (COs) are formed during meiosis by the repair of programmed DNA double-strand breaks (DSBs) and are required for the proper segregation of chromosomes. More DSBs are made than COs, and the remaining DSBs are repaired as noncrossovers (NCOs). The distribution of recombination events along a chromosome occurs in a stereotyped pattern that is shaped by CO-promoting and CO-suppressing forces, collectively referred to as crossover patterning mechanisms. Chromosome inversions are structural aberrations that, when heterozygous, disrupt the recombination landscape by suppressing crossing over. In Drosophila species, the local suppression of COs by heterozygous inversions triggers an increase in crossing over on freely recombining chromosomes termed the interchromosomal (IC) effect [1, 2]. The molecular mechanism(s) by which heterozygous inversions suppress COs, whether noncrossover gene conversions (NCOGCs) are similarly affected, and what mediates the increase in COs in the rest of the genome remain open questions. By sequencing whole genomes of individual offspring from mothers containing heterozygous inversions, we show that, although COs are suppressed by inversions, NCOGCs occur throughout inversions at higher than wild-type frequencies. We confirm that CO frequency increases on the freely recombining chromosomes, yet CO interference remains intact. Intriguingly, NCOGCs do not increase in frequency on the freely recombining chromosomes and the total number of DSBs is approximately the same per genome. Together, our data show that heterozygous inversions change the recombination landscape by altering the relative proportions of COs and NCOGCs and suggest that DSB fate may be plastic until a CO assurance checkpoint has been satisfied.
Collapse
Affiliation(s)
- K Nicole Crown
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Danny E Miller
- Stowers Institute for Medical Research, Kansas City, MO, USA; MD-PhD Physician Scientist Training Program, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeff Sekelsky
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO, USA; MD-PhD Physician Scientist Training Program, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
18
|
Comeron JM. Background selection as null hypothesis in population genomics: insights and challenges from Drosophila studies. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0471. [PMID: 29109230 PMCID: PMC5698629 DOI: 10.1098/rstb.2016.0471] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2017] [Indexed: 12/11/2022] Open
Abstract
The consequences of selection at linked sites are multiple and widespread across the genomes of most species. Here, I first review the main concepts behind models of selection and linkage in recombining genomes, present the difficulty in parametrizing these models simply as a reduction in effective population size (Ne) and discuss the predicted impact of recombination rates on levels of diversity across genomes. Arguments are then put forward in favour of using a model of selection and linkage with neutral and deleterious mutations (i.e. the background selection model, BGS) as a sensible null hypothesis for investigating the presence of other forms of selection, such as balancing or positive. I also describe and compare two studies that have generated high-resolution landscapes of the predicted consequences of selection at linked sites in Drosophila melanogaster. Both studies show that BGS can explain a very large fraction of the observed variation in diversity across the whole genome, thus supporting its use as null model. Finally, I identify and discuss a number of caveats and challenges in studies of genetic hitchhiking that have been often overlooked, with several of them sharing a potential bias towards overestimating the evidence supporting recent selective sweeps to the detriment of a BGS explanation. One potential source of bias is the analysis of non-equilibrium populations: it is precisely because models of selection and linkage predict variation in Ne across chromosomes that demographic dynamics are not expected to be equivalent chromosome- or genome-wide. Other challenges include the use of incomplete genome annotations, the assumption of temporally stable recombination landscapes, the presence of genes under balancing selection and the consequences of ignoring non-crossover (gene conversion) recombination events. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’.
Collapse
Affiliation(s)
- Josep M Comeron
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA .,Interdisciplinary Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
19
|
Stevison LS, Sefick S, Rushton C, Graze RM. Recombination rate plasticity: revealing mechanisms by design. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160459. [PMID: 29109222 PMCID: PMC5698621 DOI: 10.1098/rstb.2016.0459] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
For over a century, scientists have known that meiotic recombination rates can vary considerably among individuals, and that environmental conditions can modify recombination rates relative to the background. A variety of external and intrinsic factors such as temperature, age, sex and starvation can elicit 'plastic' responses in recombination rate. The influence of recombination rate plasticity on genetic diversity of the next generation has interesting and important implications for how populations evolve. Further, many questions remain regarding the mechanisms and molecular processes that contribute to recombination rate plasticity. Here, we review 100 years of experimental work on recombination rate plasticity conducted in Drosophila melanogaster We categorize this work into four major classes of experimental designs, which we describe via classic studies in D. melanogaster Based on these studies, we highlight molecular mechanisms that are supported by experimental results and relate these findings to studies in other systems. We synthesize lessons learned from this model system into experimental guidelines for using recent advances in genotyping technologies, to study recombination rate plasticity in non-model organisms. Specifically, we recommend (1) using fine-scale genome-wide markers, (2) collecting time-course data, (3) including crossover distribution measurements, and (4) using mixed effects models to analyse results. To illustrate this approach, we present an application adhering to these guidelines from empirical work we conducted in Drosophila pseudoobscuraThis article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Laurie S Stevison
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Stephen Sefick
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chase Rushton
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Rita M Graze
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
20
|
Estimating the parameters of background selection and selective sweeps in Drosophila in the presence of gene conversion. Proc Natl Acad Sci U S A 2017; 114:E4762-E4771. [PMID: 28559322 DOI: 10.1073/pnas.1619434114] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We used whole-genome resequencing data from a population of Drosophila melanogaster to investigate the causes of the negative correlation between the within-population synonymous nucleotide site diversity (πS ) of a gene and its degree of divergence from related species at nonsynonymous nucleotide sites (KA ). By using the estimated distributions of mutational effects on fitness at nonsynonymous and UTR sites, we predicted the effects of background selection at sites within a gene on πS and found that these could account for only part of the observed correlation between πS and KA We developed a model of the effects of selective sweeps that included gene conversion as well as crossing over. We used this model to estimate the average strength of selection on positively selected mutations in coding sequences and in UTRs, as well as the proportions of new mutations that are selectively advantageous. Genes with high levels of selective constraint on nonsynonymous sites were found to have lower strengths of positive selection and lower proportions of advantageous mutations than genes with low levels of constraint. Overall, background selection and selective sweeps within a typical gene reduce its synonymous diversity to ∼75% of its value in the absence of selection, with larger reductions for genes with high KA Gene conversion has a major effect on the estimates of the parameters of positive selection, such that the estimated strength of selection on favorable mutations is greatly reduced if it is ignored.
Collapse
|
21
|
Flynn JM, Chain FJ, Schoen DJ, Cristescu ME. Spontaneous Mutation Accumulation inDaphnia pulexin Selection-Free vs. Competitive Environments. Mol Biol Evol 2016; 34:160-173. [DOI: 10.1093/molbev/msw234] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
22
|
Miles A, Iqbal Z, Vauterin P, Pearson R, Campino S, Theron M, Gould K, Mead D, Drury E, O'Brien J, Ruano Rubio V, MacInnis B, Mwangi J, Samarakoon U, Ranford-Cartwright L, Ferdig M, Hayton K, Su XZ, Wellems T, Rayner J, McVean G, Kwiatkowski D. Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum. Genome Res 2016; 26:1288-99. [PMID: 27531718 PMCID: PMC5052046 DOI: 10.1101/gr.203711.115] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/28/2016] [Indexed: 12/14/2022]
Abstract
The malaria parasite Plasmodium falciparum has a great capacity for evolutionary adaptation to evade host immunity and develop drug resistance. Current understanding of parasite evolution is impeded by the fact that a large fraction of the genome is either highly repetitive or highly variable and thus difficult to analyze using short-read sequencing technologies. Here, we describe a resource of deep sequencing data on parents and progeny from genetic crosses, which has enabled us to perform the first genome-wide, integrated analysis of SNP, indel and complex polymorphisms, using Mendelian error rates as an indicator of genotypic accuracy. These data reveal that indels are exceptionally abundant, being more common than SNPs and thus the dominant mode of polymorphism within the core genome. We use the high density of SNP and indel markers to analyze patterns of meiotic recombination, confirming a high rate of crossover events and providing the first estimates for the rate of non-crossover events and the length of conversion tracts. We observe several instances of meiotic recombination within copy number variants associated with drug resistance, demonstrating a mechanism whereby fitness costs associated with resistance mutations could be compensated and greater phenotypic plasticity could be acquired.
Collapse
Affiliation(s)
- Alistair Miles
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, United Kingdom; Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Zamin Iqbal
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Paul Vauterin
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Richard Pearson
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, United Kingdom; Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Susana Campino
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Michel Theron
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Kelda Gould
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Daniel Mead
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Eleanor Drury
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | | | | | - Bronwyn MacInnis
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Jonathan Mwangi
- Department of Biochemistry, Medical School, Mount Kenya University, 01000 Thika, Kenya; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Upeka Samarakoon
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Lisa Ranford-Cartwright
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Karen Hayton
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892-9806, USA
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892-9806, USA
| | - Thomas Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892-9806, USA
| | - Julian Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Gil McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom; Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
| | - Dominic Kwiatkowski
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford OX3 7BN, United Kingdom; Malaria Programme, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| |
Collapse
|
23
|
Korunes KL, Noor MAF. Gene conversion and linkage: effects on genome evolution and speciation. Mol Ecol 2016; 26:351-364. [DOI: 10.1111/mec.13736] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/07/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022]
|
24
|
Elevated Linkage Disequilibrium and Signatures of Soft Sweeps Are Common in Drosophila melanogaster. Genetics 2016; 203:863-80. [PMID: 27098909 DOI: 10.1534/genetics.115.184002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 03/25/2016] [Indexed: 12/20/2022] Open
Abstract
The extent to which selection and demography impact patterns of genetic diversity in natural populations of Drosophila melanogaster is yet to be fully understood. We previously observed that linkage disequilibrium (LD) at scales of ∼10 kb in the Drosophila Genetic Reference Panel (DGRP), consisting of 145 inbred strains from Raleigh, North Carolina, measured both between pairs of sites and as haplotype homozygosity, is elevated above neutral demographic expectations. We also demonstrated that signatures of strong and recent soft sweeps are abundant. However, the extent to which these patterns are specific to this derived and admixed population is unknown. It is also unclear whether these patterns are a consequence of the extensive inbreeding performed to generate the DGRP data. Here we analyze LD statistics in a sample of >100 fully-sequenced strains from Zambia; an ancestral population to the Raleigh population that has experienced little to no admixture and was generated by sequencing haploid embryos rather than inbred strains. We find an elevation in long-range LD and haplotype homozygosity compared to neutral expectations in the Zambian sample, thus showing the elevation in LD is not specific to the DGRP data set. This elevation in LD and haplotype structure remains even after controlling for possible confounders including genomic inversions, admixture, population substructure, close relatedness of individual strains, and recombination rate variation. Furthermore, signatures of partial soft sweeps similar to those found in the DGRP as well as partial hard sweeps are common in Zambia. These results suggest that while the selective forces and sources of adaptive mutations may differ in Zambia and Raleigh, elevated long-range LD and signatures of soft sweeps are generic in D. melanogaster.
Collapse
|
25
|
Whole-Genome Analysis of Individual Meiotic Events in Drosophila melanogaster Reveals That Noncrossover Gene Conversions Are Insensitive to Interference and the Centromere Effect. Genetics 2016; 203:159-71. [PMID: 26944917 PMCID: PMC4858771 DOI: 10.1534/genetics.115.186486] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/29/2016] [Indexed: 11/18/2022] Open
Abstract
A century of genetic analysis has revealed that multiple mechanisms control the distribution of meiotic crossover events. In Drosophila melanogaster, two significant positional controls are interference and the strongly polar centromere effect. Here, we assess the factors controlling the distribution of crossovers (COs) and noncrossover gene conversions (NCOs) along all five major chromosome arms in 196 single meiotic divisions to generate a more detailed understanding of these controls on a genome-wide scale. Analyzing the outcomes of single meiotic events allows us to distinguish among different classes of meiotic recombination. In so doing, we identified 291 NCOs spread uniformly among the five major chromosome arms and 541 COs (including 52 double crossovers and one triple crossover). We find that unlike COs, NCOs are insensitive to the centromere effect and do not demonstrate interference. Although the positions of COs appear to be determined predominately by the long-range influences of interference and the centromere effect, each chromosome may display a different pattern of sensitivity to interference, suggesting that interference may not be a uniform global property. In addition, unbiased sequencing of a large number of individuals allows us to describe the formation of de novo copy number variants, the majority of which appear to be mediated by unequal crossing over between transposable elements. This work has multiple implications for our understanding of how meiotic recombination is regulated to ensure proper chromosome segregation and maintain genome stability.
Collapse
|
26
|
Rare recombination events generate sequence diversity among balancer chromosomes in Drosophila melanogaster. Proc Natl Acad Sci U S A 2016; 113:E1352-61. [PMID: 26903656 DOI: 10.1073/pnas.1601232113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiply inverted balancer chromosomes that suppress exchange with their homologs are an essential part of the Drosophila melanogaster genetic toolkit. Despite their widespread use, the organization of balancer chromosomes has not been characterized at the molecular level, and the degree of sequence variation among copies of balancer chromosomes is unknown. To map inversion breakpoints and study potential diversity in descendants of a structurally identical balancer chromosome, we sequenced a panel of laboratory stocks containing the most widely used X chromosome balancer, First Multiple 7 (FM7). We mapped the locations of FM7 breakpoints to precise euchromatic coordinates and identified the flanking sequence of breakpoints in heterochromatic regions. Analysis of SNP variation revealed megabase-scale blocks of sequence divergence among currently used FM7 stocks. We present evidence that this divergence arose through rare double-crossover events that replaced a female-sterile allele of the singed gene (sn(X2)) on FM7c with a sequence from balanced chromosomes. We propose that although double-crossover events are rare in individual crosses, many FM7c chromosomes in the Bloomington Drosophila Stock Center have lost sn(X2) by this mechanism on a historical timescale. Finally, we characterize the original allele of the Bar gene (B(1)) that is carried on FM7, and validate the hypothesis that the origin and subsequent reversion of the B(1) duplication are mediated by unequal exchange. Our results reject a simple nonrecombining, clonal mode for the laboratory evolution of balancer chromosomes and have implications for how balancer chromosomes should be used in the design and interpretation of genetic experiments in Drosophila.
Collapse
|
27
|
Yin J. Hypothesis testing of meiotic recombination rates from population genetic data. BMC Genet 2014; 15:122. [PMID: 25433522 PMCID: PMC4267743 DOI: 10.1186/s12863-014-0122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/28/2014] [Indexed: 11/10/2022] Open
Abstract
Background Meiotic recombination, one of the central biological processes studied in population genetics, comes in two known forms: crossovers and gene conversions. A number of previous studies have shown that when one of these two events is nonexistent in the genealogical model, the point estimation of the corresponding recombination rate by population genetic methods tends to be inflated. Therefore, it has become necessary to obtain statistical evidence from population genetic data about whether one of the two recombination events is absent. Results In this paper, we formulate this problem in a hypothesis testing framework and devise a testing procedure based on the likelihood ratio test (LRT). However, because the null value (i.e., zero) lies on the boundary of the parameter space, the regularity conditions for the large‐sample approximation to the distribution of the LRT statistic do not apply. In turn, the standard chi‐squared approximation is inaccurate. To address this critical issue, we propose a parametric bootstrap procedure to obtain an approximate p‐value for the observed test statistic. Coalescent simulations are conducted to show that our approach yields accurate null p‐values that closely follow the theoretical prediction while the estimated alternative p‐values tend to concentrate closer to zero. Finally, the method is demonstrated on a real biological data set from the telomere of the X chromosome of African Drosophila melanogaster. Conclusions Our methodology provides a necessary complement to the existing procedures of estimating meiotic recombination rates from population genetic data. Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0122-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junming Yin
- Department of Management Information Systems, Eller College of Management, University of Arizona, Tucson, 85721, USA.
| |
Collapse
|
28
|
Charlesworth B, Campos JL. The relations between recombination rate and patterns of molecular variation and evolution in Drosophila. Annu Rev Genet 2014; 48:383-403. [PMID: 25251853 DOI: 10.1146/annurev-genet-120213-092525] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic recombination affects levels of variability and the efficacy of selection because natural selection acting at one site affects evolutionary processes at linked sites. The variation in local recombination rates across the Drosophila genome provides excellent material for testing hypotheses concerning the evolutionary consequences of recombination. The current state of knowledge from studies of Drosophila genomics and population genetics is reviewed here. Selection at linked sites has influenced the relations between recombination rates and patterns of molecular variation and evolution, such that higher rates of recombination are associated with both higher levels of variability and a greater efficacy of selection. It seems likely that background selection against deleterious mutations is a major factor contributing to these patterns in genome regions in which crossing over is rare or absent, whereas selective sweeps of positively selected mutations probably play an important role in regions with crossing over.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; , ,
| | | |
Collapse
|
29
|
Eliminating both canonical and short-patch mismatch repair in Drosophila melanogaster suggests a new meiotic recombination model. PLoS Genet 2014; 10:e1004583. [PMID: 25188408 PMCID: PMC4154643 DOI: 10.1371/journal.pgen.1004583] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/08/2014] [Indexed: 01/31/2023] Open
Abstract
In most meiotic systems, recombination is essential to form connections between homologs that ensure their accurate segregation from one another. Meiotic recombination is initiated by DNA double-strand breaks that are repaired using the homologous chromosome as a template. Studies of recombination in budding yeast have led to a model in which most early repair intermediates are disassembled to produce noncrossovers. Selected repair events are stabilized so they can proceed to form double-Holliday junction (dHJ) intermediates, which are subsequently resolved into crossovers. This model is supported in yeast by physical isolation of recombination intermediates, but the extent to which it pertains to animals is unknown. We sought to test this model in Drosophila melanogaster by analyzing patterns of heteroduplex DNA (hDNA) in recombination products. Previous attempts to do this have relied on knocking out the canonical mismatch repair (MMR) pathway, but in both yeast and Drosophila the resulting recombination products are complex and difficult to interpret. We show that, in Drosophila, this complexity results from a secondary, short-patch MMR pathway that requires nucleotide excision repair. Knocking out both canonical and short-patch MMR reveals hDNA patterns that reveal that many noncrossovers arise after both ends of the break have engaged with the homolog. Patterns of hDNA in crossovers could be explained by biased resolution of a dHJ; however, considering the noncrossover and crossover results together suggests a model in which a two-end engagement intermediate with unligated HJs can be disassembled by a helicase to a produce noncrossover or nicked by a nuclease to produce a crossover. While some aspects of this model are similar to the model from budding yeast, production of both noncrossovers and crossovers from a single, late intermediate is a fundamental difference that has important implications for crossover control. During meiosis, breaks are introduced into the DNA, then repaired to give either crossovers between homologous chromosomes (these help to ensure correct segregation of these chromosomes from one another), or non-crossover products. Meiotic break repair mechanisms have been best studied in budding yeast, leading to detailed molecular models. Technical limitations have prevented directly testing these models in multi-cellular organisms. One approach that has been tried is to map segments of DNA that are mismatched, since different models predict different arrangements. Mismatches are usually repaired quickly, so analyzing these patterns requires eliminating mismatch repair processes. Although others have knocked out the primary mismatch repair system, we have now, for the first time in an animal, identified the secondary repair pathway and eliminated it and the primary pathway simultaneously. We then analyzed mismatches produced during meiosis. Though the results can be fit to the most popular current model from yeast, if some modifications are made, we also consider a simpler model that incorporates elements of the current model and of earlier models.
Collapse
|
30
|
Abstract
Although the analysis of linkage disequilibrium (LD) plays a central role in many areas of population genetics, the sampling variance of LD is known to be very large with high sensitivity to numbers of nucleotide sites and individuals sampled. Here we show that a genome-wide analysis of the distribution of heterozygous sites within a single diploid genome can yield highly informative patterns of LD as a function of physical distance. The proposed statistic, the correlation of zygosity, is closely related to the conventional population-level measure of LD, but is agnostic with respect to allele frequencies and hence likely less prone to outlier artifacts. Application of the method to several vertebrate species leads to the conclusion that >80% of recombination events are typically resolved by gene-conversion-like processes unaccompanied by crossovers, with the average lengths of conversion patches being on the order of one to several kilobases in length. Thus, contrary to common assumptions, the recombination rate between sites does not scale linearly with distance, often even up to distances of 100 kb. In addition, the amount of LD between sites separated by <200 bp is uniformly much greater than can be explained by the conventional neutral model, possibly because of the nonindependent origin of mutations within this spatial scale. These results raise questions about the application of conventional population-genetic interpretations to LD on short spatial scales and also about the use of spatial patterns of LD to infer demographic histories.
Collapse
|
31
|
Kan Y, Ruis B, Lin S, Hendrickson EA. The mechanism of gene targeting in human somatic cells. PLoS Genet 2014; 10:e1004251. [PMID: 24699519 PMCID: PMC3974634 DOI: 10.1371/journal.pgen.1004251] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/03/2014] [Indexed: 12/24/2022] Open
Abstract
Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB) repair known as homologous recombination (HR). The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells. Gene targeting is important for basic research and clinical applications. In the laboratory, gene targeting is used to knockout genes so that loss-of-function phenotypes can be assessed. In the clinic, gene targeting is the gold standard to which most gene therapy approaches aspire. One of the most promising tools for gene targeting in humans is recombinant adeno-associated virus (rAAV). The mechanism by which rAAV performs gene targeting has, however, remained obscure. Here, we surprisingly demonstrate that the normally single-stranded rAAV performs gene targeting via double-stranded intermediates, which are mechanistically indistinguishable from standard plasmid-mediated gene targeting. Moreover, we establish the double-strand break (DSB) repair model as the paradigm to describe human gene targeting, and delineate the dynamics of crossovers in this model. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted such that the chromosome becomes the “attacker” instead of the “attackee”. Finally, we confirm that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations advance our understanding of the mechanism of human gene targeting and should readily lend themselves to developing improvements to existing methodologies.
Collapse
Affiliation(s)
- Yinan Kan
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Brian Ruis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Sherry Lin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Eric A. Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
32
|
Double-strand break repair assays determine pathway choice and structure of gene conversion events in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2014; 4:425-32. [PMID: 24368780 PMCID: PMC3962482 DOI: 10.1534/g3.113.010074] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Double-strand breaks (DSBs) must be accurately and efficiently repaired to maintain genome integrity. Depending on the organism receiving the break, the genomic location of the DSB, and the cell-cycle phase in which it occurs, a DSB can be repaired by homologous recombination (HR), nonhomologous end-joining (NHEJ), or single-strand annealing (SSA). Two novel DSB repair assays were developed to determine the contributions of these repair pathways and to finely resolve repair event structures in Drosophila melanogaster. Rad51-dependent homologous recombination is the preferred DSB repair pathway in mitotically dividing cells, and the pathway choice between HR and SSA occurs after end resection and before Rad51-dependent strand invasion. HR events are associated with long gene conversion tracts and are both bidirectional and unidirectional, consistent with repair via the synthesis-dependent strand annealing pathway. Additionally, HR between diverged sequences is suppressed in Drosophila, similar to levels reported in human cells. Junction analyses of rare NHEJ events reveal that canonical NHEJ is utilized in this system.
Collapse
|
33
|
Gjini E, Haydon DT, David Barry J, Cobbold CA. Revisiting the diffusion approximation to estimate evolutionary rates of gene family diversification. J Theor Biol 2014; 341:111-22. [PMID: 24120993 DOI: 10.1016/j.jtbi.2013.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/21/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022]
Abstract
Genetic diversity in multigene families is shaped by multiple processes, including gene conversion and point mutation. Because multi-gene families are involved in crucial traits of organisms, quantifying the rates of their genetic diversification is important. With increasing availability of genomic data, there is a growing need for quantitative approaches that integrate the molecular evolution of gene families with their higher-scale function. In this study, we integrate a stochastic simulation framework with population genetics theory, namely the diffusion approximation, to investigate the dynamics of genetic diversification in a gene family. Duplicated genes can diverge and encode new functions as a result of point mutation, and become more similar through gene conversion. To model the evolution of pairwise identity in a multigene family, we first consider all conversion and mutation events in a discrete manner, keeping track of their details and times of occurrence; second we consider only the infinitesimal effect of these processes on pairwise identity accounting for random sampling of genes and positions. The purely stochastic approach is closer to biological reality and is based on many explicit parameters, such as conversion tract length and family size, but is more challenging analytically. The population genetics approach is an approximation accounting implicitly for point mutation and gene conversion, only in terms of per-site average probabilities. Comparison of these two approaches across a range of parameter combinations reveals that they are not entirely equivalent, but that for certain relevant regimes they do match. As an application of this modelling framework, we consider the distribution of nucleotide identity among VSG genes of African trypanosomes, representing the most prominent example of a multi-gene family mediating parasite antigenic variation and within-host immune evasion.
Collapse
Affiliation(s)
- Erida Gjini
- Instituto Gulbenkian de Ciência Oeiras, Portugal.
| | - Daniel T Haydon
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom; Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - J David Barry
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Christina A Cobbold
- School of Mathematics and Statistics, College of Science and Engineering, University of Glasgow, Glasgow, United Kingdom; The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
34
|
Lee YCG, Langley CH, Begun DJ. Differential strengths of positive selection revealed by hitchhiking effects at small physical scales in Drosophila melanogaster. Mol Biol Evol 2013; 31:804-16. [PMID: 24361994 DOI: 10.1093/molbev/mst270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The long time scale of adaptive evolution makes it difficult to directly observe the spread of most beneficial mutations through natural populations. Therefore, inferring attributes of beneficial mutations by studying the genomic signals left by directional selection is an important component of population genetics research. One kind of signal is a trough in nearby neutral genetic variation due to selective fixation of initially rare alleles, a phenomenon known as "genetic hitchhiking." Accumulated evidence suggests that a considerable fraction of substitutions in the Drosophila genome results from positive selection, most of which are expected to have small selection coefficients and influence the population genetics of sites in the immediate vicinity. Using Drosophila melanogaster population genomic data, we found that the heterogeneity in synonymous polymorphism surrounding different categories of coding fixations is readily observable even within 25 bp of focal substitutions, which we interpret as the result of small-scale hitchhiking effects. The strength of natural selection on different sites appears to be quite heterogeneous. Particularly, neighboring fixations that changed amino acid polarities in a way that maintained the overall polarities of a protein were under stronger selection than other categories of fixations. Interestingly, we found that substitutions in slow-evolving genes are associated with stronger hitchhiking effects. This is consistent with the idea that adaptive evolution may involve few substitutions with large effects or many substitutions with small effects. Because our approach only weakly depends on the numbers of recent nonsynonymous substitutions, it can provide a complimentary view to the adaptive evolution inferred by other divergence-based evolutionary genetic methods.
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis
| | | | | |
Collapse
|
35
|
Rockmill B, Lefrançois P, Voelkel-Meiman K, Oke A, Roeder GS, Fung JC. High throughput sequencing reveals alterations in the recombination signatures with diminishing Spo11 activity. PLoS Genet 2013; 9:e1003932. [PMID: 24204324 PMCID: PMC3814317 DOI: 10.1371/journal.pgen.1003932] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 09/16/2013] [Indexed: 12/03/2022] Open
Abstract
Spo11 is the topoisomerase-like enzyme responsible for the induction of the meiosis-specific double strand breaks (DSBs), which initiates the recombination events responsible for proper chromosome segregation. Nineteen PCR-induced alleles of SPO11 were identified and characterized genetically and cytologically. Recombination, spore viability and synaptonemal complex (SC) formation were decreased to varying extents in these mutants. Arrest by ndt80 restored these events in two severe hypomorphic mutants, suggesting that ndt80-arrested nuclei are capable of extended DSB activity. While crossing-over, spore viability and synaptonemal complex (SC) formation defects correlated, the extent of such defects was not predictive of the level of heteroallelic gene conversions (prototrophs) exhibited by each mutant. High throughput sequencing of tetrads from spo11 hypomorphs revealed that gene conversion tracts associated with COs are significantly longer and gene conversion tracts unassociated with COs are significantly shorter than in wild type. By modeling the extent of these tract changes, we could account for the discrepancy in genetic measurements of prototrophy and crossover association. These findings provide an explanation for the unexpectedly low prototroph levels exhibited by spo11 hypomorphs and have important implications for genetic studies that assume an unbiased recovery of prototrophs, such as measurements of CO homeostasis. Our genetic and physical data support previous observations of DSB-limited meioses, in which COs are disproportionally maintained over NCOs (CO homeostasis). Most eukaryotes depend on the meiotic division to segregate each pair of chromosomes properly into their gametes. Chromosome segregation mistakes happening during meiosis are responsible for most miscarriages as well as many diseases such as Down's and Kleinfelter's syndromes in humans. Proper chromosome segregation during meiosis depends on efficient and regulated recombination events that link homologous chromosomes prior to the first meiotic division. These linkages are initiated at double-stranded breaks (DSBs) in chromosomal DNA by Spo11 and associated proteins. We isolated a valuable new set of SPO11 alleles in yeast with a wide range of Spo11 activity. Genetic analysis and high throughput sequencing of tetrads from these mutants has revealed unexpected features of meiotic recombination. First, Spo11 DSBs likely continue to form throughout a pachytene arrest in cells compromised for Spo11 activity. Second, the number of recombination initiation events in a given meiosis influences the repair outcome of those events. In addition, our results provide support for crossover homeostasis – a phenomenon in which crossovers are disproportionately maintained over other types of repair in the face of a decrease in DSBs.
Collapse
Affiliation(s)
- Beth Rockmill
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Philippe Lefrançois
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Karen Voelkel-Meiman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Ashwini Oke
- Department of Obstetrics, Gynecology and Reproductive Sciences and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - G. Shirleen Roeder
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Jennifer C. Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Molecular population genetics of inversion breakpoint regions in Drosophila pseudoobscura. G3-GENES GENOMES GENETICS 2013; 3:1151-63. [PMID: 23665879 PMCID: PMC3704243 DOI: 10.1534/g3.113.006122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Paracentric inversions in populations can have a profound effect on the pattern and organization of nucleotide variability along a chromosome. Regions near inversion breakpoints are expected to have greater levels of differentiation because of reduced genetic exchange between different gene arrangements whereas central regions in the inverted segments are predicted to have lower levels of nucleotide differentiation due to greater levels of genetic flux among different karyotypes. We used the inversion polymorphism on the third chromosome of Drosophila pseudoobscura to test these predictions with an analysis of nucleotide diversity of 18 genetic markers near and away from inversion breakpoints. We tested hypotheses about how the presence of different chromosomal arrangements affects the pattern and organization of nucleotide variation. Overall, markers in the distal segment of the chromosome had greater levels of nucleotide heterozygosity than markers within the proximal segment of the chromosome. In addition, our results rejected the hypothesis that the breakpoints of derived inversions will have lower levels of nucleotide variability than breakpoints of ancestral inversions, even when strains with gene conversion events were removed. High levels of linkage disequilibrium were observed within all 11 breakpoint regions as well as between the ends of most proximal and distal breakpoints. The central region of the chromosome had the greatest levels of linkage disequilibrium compared with the proximal and distal regions because this is the region that experiences the highest level of recombination suppression. These data do not fully support the idea that genetic exchange is the sole force that influences genetic variation on inverted chromosomes.
Collapse
|
37
|
Leushkin EV, Bazykin GA. Short indels are subject to insertion-biased gene conversion. Evolution 2013; 67:2604-13. [PMID: 24033170 DOI: 10.1111/evo.12129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/05/2013] [Indexed: 11/29/2022]
Abstract
Recombination between homologous loci is accompanied by formation of heteroduplexes. Repairing mismatches in heteroduplexes often leads to single nucleotide substitutions in a process known as gene conversion. Gene conversion was shown to be GC-biased in different organisms; that is, a W(A or T)→S(G or C) substitution is more likely in this process than a S→W substitution. Here, we show that the insertion/deletion ratio for short noncoding indels that reach fixation between species is positively correlated with the recombination rate in Drosophila melanogaster, Homo sapiens, and Saccharomyces cerevisiae. This correlation is both due to an increase of the fixation rate of insertions and decrease of the fixation rate of deletions in regions of high recombination. Whole-genome data on indel polymorphism and divergence in D. melanogaster rule out mutation biases and selection as the cause of this trend, pointing to insertion-biased gene conversion as the most likely explanation. The bias toward insertions is the strongest for single-nucleotide indels, and decreases with indel length. In regions of high recombination rate this bias leads to an up to ∼5-fold excess of fixed short insertions over deletions, and substantially affects the evolution of DNA segments.
Collapse
Affiliation(s)
- Evgeny V Leushkin
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskye Gory 1-73, Moscow, 119992, Russia; Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoi Karetny pereulok, 19, Moscow, 127994, Russia.
| | | |
Collapse
|
38
|
Terekhanova NV, Bazykin GA, Neverov A, Kondrashov AS, Seplyarskiy VB. Prevalence of multinucleotide replacements in evolution of primates and Drosophila. Mol Biol Evol 2013; 30:1315-25. [PMID: 23447710 PMCID: PMC3649671 DOI: 10.1093/molbev/mst036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Evolution of sequences mostly involves independent changes at different sites. However, substitutions at neighboring sites may co-occur as multinucleotide replacement events (MNRs). Here, we compare noncoding sequences of several species of primates, and of three species of Drosophila fruit flies, in a phylogenetic analysis of the replacements that occurred between species at nearby nucleotide sites. Both in primates and in Drosophila, the frequency of single-nucleotide replacements is substantially elevated within 10 nucleotides from other replacements that occurred on the same lineage but not on another lineage. The data imply that dinucleotide replacements (DNRs) affecting sites at distances of up to 10 nucleotides from each other are responsible for 2.3% of single-nucleotide replacements in primate genomes and for 5.6% in Drosophila genomes. Among these DNRs, 26% and 69%, respectively, are in fact parts of replacements of three or more trinucleotide replacements (TNRs). The plurality of MNRs affect nearby nucleotides, so that at least six times as many DNRs affect two adjacent nucleotide sites than sites 10 nucleotides apart. Still, approximately 60% of DNRs, and approximately 90% of TNRs, span distances more than two (or three) nucleotides. MNRs make a major contribution to the observed clustering of substitutions: In the human–chimpanzee comparison, DNRs are responsible for 50% of cases when two nearby replacements are observed on the human lineage, and TNRs are responsible for 83% of cases when three replacements at three immediately adjacent sites are observed on the human lineage. The prevalence of MNRs matches that is observed in data on de novo mutations and is also observed in the regions with the lowest sequence conservation, suggesting that MNRs mainly have mutational origin; however, epistatic selection and/or gene conversion may also play a role.
Collapse
Affiliation(s)
- Nadezhda V Terekhanova
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | |
Collapse
|
39
|
Padhukasahasram B, Rannala B. Meiotic gene-conversion rate and tract length variation in the human genome. Eur J Hum Genet 2013:ejhg201330. [PMID: 23443031 DOI: 10.1038/ejhg.2013.30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/17/2012] [Accepted: 01/10/2013] [Indexed: 01/11/2023] Open
Abstract
Meiotic recombination occurs in the form of two different mechanisms called crossing-over and gene-conversion and both processes have an important role in shaping genetic variation in populations. Although variation in crossing-over rates has been studied extensively using sperm-typing experiments, pedigree studies and population genetic approaches, our knowledge of variation in gene-conversion parameters (ie, rates and mean tract lengths) remains far from complete. To explore variability in population gene-conversion rates and its relationship to crossing-over rate variation patterns, we have developed and validated using coalescent simulations a comprehensive Bayesian full-likelihood method that can jointly infer crossing-over and gene-conversion rates as well as tract lengths from population genomic data under general variable rate models with recombination hotspots. Here, we apply this new method to SNP data from multiple human populations and attempt to characterize for the first time the fine-scale variation in gene-conversion parameters along the human genome. We find that the estimated ratio of gene-conversion to crossing-over rates varies considerably across genomic regions as well as between populations. However, there is a great degree of uncertainty associated with such estimates. We also find substantial evidence for variation in the mean conversion tract length. The estimated tract lengths did not show any negative relationship with the local heterozygosity levels in our analysis.European Journal of Human Genetics advance online publication, 27 February 2013; doi:10.1038/ejhg.2013.30.
Collapse
Affiliation(s)
- Badri Padhukasahasram
- 1] Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, MI, USA [2] Genome Center and Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
| | - Bruce Rannala
- Genome Center and Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
40
|
Comeron JM, Ratnappan R, Bailin S. The many landscapes of recombination in Drosophila melanogaster. PLoS Genet 2012; 8:e1002905. [PMID: 23071443 PMCID: PMC3469467 DOI: 10.1371/journal.pgen.1002905] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 07/02/2012] [Indexed: 01/06/2023] Open
Abstract
Recombination is a fundamental biological process with profound evolutionary implications. Theory predicts that recombination increases the effectiveness of selection in natural populations. Yet, direct tests of this prediction have been restricted to qualitative trends due to the lack of detailed characterization of recombination rate variation across genomes and within species. The use of imprecise recombination rates can also skew population genetic analyses designed to assess the presence and mode of selection across genomes. Here we report the first integrated high-resolution description of genomic and population variation in recombination, which also distinguishes between the two outcomes of meiotic recombination: crossing over (CO) and gene conversion (GC). We characterized the products of 5,860 female meioses in Drosophila melanogaster by genotyping a total of 139 million informative SNPs and mapped 106,964 recombination events at a resolution down to 2 kilobases. This approach allowed us to generate whole-genome CO and GC maps as well as a detailed description of variation in recombination among individuals of this species. We describe many levels of variation in recombination rates. At a large-scale (100 kb), CO rates exhibit extreme and highly punctuated variation along chromosomes, with hot and coldspots. We also show extensive intra-specific variation in CO landscapes that is associated with hotspots at low frequency in our sample. GC rates are more uniformly distributed across the genome than CO rates and detectable in regions with reduced or absent CO. At a local scale, recombination events are associated with numerous sequence motifs and tend to occur within transcript regions, thus suggesting that chromatin accessibility favors double-strand breaks. All these non-independent layers of variation in recombination across genomes and among individuals need to be taken into account in order to obtain relevant estimates of recombination rates, and should be included in a new generation of population genetic models of the interaction between selection and linkage.
Collapse
Affiliation(s)
- Josep M Comeron
- Department of Biology, University of Iowa, Iowa City, Iowa, USA.
| | | | | |
Collapse
|
41
|
Gjini E, Haydon DT, Barry JD, Cobbold CA. The impact of mutation and gene conversion on the local diversification of antigen genes in African trypanosomes. Mol Biol Evol 2012; 29:3321-31. [PMID: 22735079 PMCID: PMC3472502 DOI: 10.1093/molbev/mss166] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Patterns of genetic diversity in parasite antigen gene families hold important information about their potential to generate antigenic variation within and between hosts. The evolution of such gene families is typically driven by gene duplication, followed by point mutation and gene conversion. There is great interest in estimating the rates of these processes from molecular sequences for understanding the evolution of the pathogen and its significance for infection processes. In this study, a series of models are constructed to investigate hypotheses about the nucleotide diversity patterns between closely related gene sequences from the antigen gene archive of the African trypanosome, the protozoan parasite causative of human sleeping sickness in Equatorial Africa. We use a hidden Markov model approach to identify two scales of diversification: clustering of sequence mismatches, a putative indicator of gene conversion events with other lower-identity donor genes in the archive, and at a sparser scale, isolated mismatches, likely arising from independent point mutations. In addition to quantifying the respective probabilities of occurrence of these two processes, our approach yields estimates for the gene conversion tract length distribution and the average diversity contributed locally by conversion events. Model fitting is conducted using a Bayesian framework. We find that diversifying gene conversion events with lower-identity partners occur at least five times less frequently than point mutations on variant surface glycoprotein (VSG) pairs, and the average imported conversion tract is between 14 and 25 nucleotides long. However, because of the high diversity introduced by gene conversion, the two processes have almost equal impact on the per-nucleotide rate of sequence diversification between VSG subfamily members. We are able to disentangle the most likely locations of point mutations and conversions on each aligned gene pair.
Collapse
Affiliation(s)
- Erida Gjini
- School of Mathematics and Statistics, College of Science and Engineering, University of Glasgow, Glasgow, United Kingdom.
| | | | | | | |
Collapse
|
42
|
Croucher NJ, Harris SR, Barquist L, Parkhill J, Bentley SD. A high-resolution view of genome-wide pneumococcal transformation. PLoS Pathog 2012; 8:e1002745. [PMID: 22719250 PMCID: PMC3375284 DOI: 10.1371/journal.ppat.1002745] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/27/2012] [Indexed: 01/03/2023] Open
Abstract
Transformation is an important mechanism of microbial evolution through which bacteria have been observed to rapidly adapt in response to clinical interventions; examples include facilitating vaccine evasion and the development of penicillin resistance in the major respiratory pathogen Streptococcus pneumoniae. To characterise the process in detail, the genomes of 124 S. pneumoniae isolates produced through in vitro transformation were sequenced and recombination events detected. Those recombinations importing the selected marker were independent of unselected events elsewhere in the genome, the positions of which were not significantly affected by local sequence similarity between donor and recipient or mismatch repair processes. However, both types of recombinations were sometimes mosaic, with multiple non-contiguous segments originating from the same molecule of donor DNA. The lengths of the unselected events were exponentially distributed with a mean of 2.3 kb, implying that recombinations are stochastically resolved with a fixed per base probability of 4.4×10(-4) bp(-1). This distribution of recombination sizes, coupled with an observed under representation of large insertions within transferred sequence, suggests transformation has the potential to reduce the size of bacterial genomes, and is unlikely to act as an efficient mechanism for the uptake of accessory genomic loci.
Collapse
Affiliation(s)
- Nicholas J Croucher
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
43
|
Bessoltane N, Toffano-Nioche C, Solignac M, Mougel F. Fine scale analysis of crossover and non-crossover and detection of recombination sequence motifs in the honeybee (Apis mellifera). PLoS One 2012; 7:e36229. [PMID: 22567142 PMCID: PMC3342173 DOI: 10.1371/journal.pone.0036229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/28/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Meiotic exchanges are non-uniformly distributed across the genome of most studied organisms. This uneven distribution suggests that recombination is initiated by specific signals and/or regulations. Some of these signals were recently identified in humans and mice. However, it is unclear whether or not sequence signals are also involved in chromosomal recombination of insects. METHODOLOGY We analyzed recombination frequencies in the honeybee, in which genome sequencing provided a large amount of SNPs spread over the entire set of chromosomes. As the genome sequences were obtained from a pool of haploid males, which were the progeny of a single queen, an oocyte method (study of recombination on haploid males that develop from unfertilized eggs and hence are the direct reflect of female gametes haplotypes) was developed to detect recombined pairs of SNP sites. Sequences were further compared between recombinant and non-recombinant fragments to detect recombination-specific motifs. CONCLUSIONS Recombination events between adjacent SNP sites were detected at an average distance of 92 bp and revealed the existence of high rates of recombination events. This study also shows the presence of conversion without crossover (i. e. non-crossover) events, the number of which largely outnumbers that of crossover events. Furthermore the comparison of sequences that have undergone recombination with sequences that have not, led to the discovery of sequence motifs (CGCA, GCCGC, CCGCA), which may correspond to recombination signals.
Collapse
Affiliation(s)
- Nadia Bessoltane
- Laboratoire Evolution Génomes Spéciation, CNRS, Gif-sur-Yvette, France
- Université Paris-Sud and CNRS, Institut de Génétique et Microbiologie, UMR8621, Orsay, France
| | - Claire Toffano-Nioche
- Université Paris-Sud and CNRS, Institut de Génétique et Microbiologie, UMR8621, Orsay, France
| | - Michel Solignac
- Laboratoire Evolution Génomes Spéciation, CNRS, Gif-sur-Yvette, France
- Université Paris Sud, Orsay, France
| | - Florence Mougel
- Laboratoire Evolution Génomes Spéciation, CNRS, Gif-sur-Yvette, France
- Université Paris Sud, Orsay, France
| |
Collapse
|
44
|
A Whole-Chromosome Analysis of Meiotic Recombination in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2012; 2:249-60. [PMID: 22384403 PMCID: PMC3284332 DOI: 10.1534/g3.111.001396] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/01/2011] [Indexed: 11/18/2022]
Abstract
Although traditional genetic assays have characterized the pattern of crossing over across the genome in Drosophila melanogaster, these assays could not precisely define the location of crossovers. Even less is known about the frequency and distribution of noncrossover gene conversion events. To assess the specific number and positions of both meiotic gene conversion and crossover events, we sequenced the genomes of male progeny from females heterozygous for 93,538 X chromosomal single-nucleotide and InDel polymorphisms. From the analysis of the 30 F1 hemizygous X chromosomes, we detected 15 crossover and 5 noncrossover gene conversion events. Taking into account the nonuniform distribution of polymorphism along the chromosome arm, we estimate that most oocytes experience 1 crossover event and 1.6 gene conversion events per X chromosome pair per meiosis. An extrapolation to the entire genome would predict approximately 5 crossover events and 8.6 conversion events per meiosis. Mean gene conversion tract lengths were estimated to be 476 base pairs, yielding a per nucleotide conversion rate of 0.86 × 10(-5) per meiosis. Both of these values are consistent with estimates of conversion frequency and tract length obtained from studies of rosy, the only gene for which gene conversion has been studied extensively in Drosophila. Motif-enrichment analysis revealed a GTGGAAA motif that was enriched near crossovers but not near gene conversions. The low-complexity and frequent occurrence of this motif may in part explain why, in contrast to mammalian systems, no meiotic crossover hotspots have been found in Drosophila.
Collapse
|
45
|
A crossover hotspot near his-3 in Neurospora crassa is a preferential recombination termination site. Mol Genet Genomics 2011; 287:155-65. [PMID: 22203161 DOI: 10.1007/s00438-011-0668-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
Abstract
During analysis of 148 unselected Neurospora crassa octads, an above average rate of crossing over was detected within a 360-base region near the 3' end of his-3, suggesting a hotspot for crossing over about 1.8 kb away from the recombination initiation site within cog. Homozygous deletion of the 360-base region increases exchanges in his-3 and on the far side of his-3 from cog, with the heterozygote showing an intermediate increase. We conclude that recombination events initiated at cog terminate within the 360-base sequence more often than in other sections of the cog-his-3 interval and, since some of these terminations will be resolved as crossovers, a cluster of crossovers at this location is the outcome. Removal of this termination site increases the chance that an event will reach his-3, resulting in recombination within the gene, or extend past it to yield a crossover on the other side of his-3. The deleted sequence has substantial predicted secondary structure, including a complex predicted stem-loop, suggesting that DNA secondary structure may be responsible for the termination.
Collapse
|
46
|
Koroteev MV, Miller J. Scale-free duplication dynamics: a model for ultraduplication. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:061919. [PMID: 22304128 DOI: 10.1103/physreve.84.061919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 07/04/2011] [Indexed: 05/31/2023]
Abstract
Empirical studies of the genome-wide length distribution of duplicated sequences have revealed an algebraic tail common to nearly all clades. The decay of the tail is often well approximated by a single exponent that takes values within a limited range. We propose and study here scale-free duplication dynamics, a class of model for genome sequence evolution that generates the observed shapes of this distribution. A transition between self-similar and non-self-similar regimes is exhibited. Our model accounts plausibly for the observed form of the algebraic tail, which is not produced by standard models for generating long-range sequence correlations.
Collapse
Affiliation(s)
- M V Koroteev
- Physics and Biology Unit, Okinawa Institute of Science and Technology Suzaki 12-22, Uruma, Okinawa 904-2234, Japan
| | | |
Collapse
|
47
|
Abstract
Meiotic recombination is a fundamental cellular mechanism in sexually reproducing organisms and its different forms, crossing over and gene conversion both play an important role in shaping genetic variation in populations. Here, we describe a coalescent-based full-likelihood Markov chain Monte Carlo (MCMC) method for jointly estimating the crossing-over, gene-conversion, and mean tract length parameters from population genomic data under a Bayesian framework. Although computationally more expensive than methods that use approximate likelihoods, the relative efficiency of our method is expected to be optimal in theory. Furthermore, it is also possible to obtain a posterior sample of genealogies for the data using this method. We first check the performance of the new method on simulated data and verify its correctness. We also extend the method for inference under models with variable gene-conversion and crossing-over rates and demonstrate its ability to identify recombination hotspots. Then, we apply the method to two empirical data sets that were sequenced in the telomeric regions of the X chromosome of Drosophila melanogaster. Our results indicate that gene conversion occurs more frequently than crossing over in the su-w and su-s gene sequences while the local rates of crossing over as inferred by our program are not low. The mean tract lengths for gene-conversion events are estimated to be ∼70 bp and 430 bp, respectively, for these data sets. Finally, we discuss ideas and optimizations for reducing the execution time of our algorithm.
Collapse
|
48
|
Stevison LS, Hoehn KB, Noor MAF. Effects of inversions on within- and between-species recombination and divergence. Genome Biol Evol 2011; 3:830-41. [PMID: 21828374 PMCID: PMC3171675 DOI: 10.1093/gbe/evr081] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Chromosomal inversions disrupt recombination in heterozygotes by both reducing crossing-over within inverted regions and increasing it elsewhere in the genome. The reduction of recombination in inverted regions facilitates the maintenance of hybridizing species, as outlined by various models of chromosomal speciation. We present a comprehensive comparison of the effects of inversions on recombination rates and on nucleotide divergence. Within an inversion differentiating Drosophila pseudoobscura and Drosophila persimilis, we detected one double recombinant among 9,739 progeny from F1 hybrids screened, consistent with published double-crossover frequencies observed within species. Despite similar rates of exchange within and between species, we found no sequence-based evidence of ongoing gene exchange between species within this inversion, but significant exchange was inferred within species. We also observed greater differentiation at regions near inversion breakpoints between species versus within species. Moreover, we observed strong “interchromosomal effect” (higher recombination in inversion heterozygotes between species) with up to 9-fold higher recombination rates along collinear segments of chromosome two in hybrids. Further, we observed that regions most susceptible to changes in recombination rates corresponded to regions with lower recombination rates in homokaryotypes. Finally, we showed that interspecies nucleotide divergence is lower in regions with greater increases in recombination rate, potentially resulting from greater interspecies exchange. Overall, we have identified several similarities and differences between inversions segregating within versus between species in their effects on recombination and divergence. We conclude that these differences are most likely due to lower frequency of heterokaryotypes and to fitness consequences from the accumulation of various incompatibilities between species. Additionally, we have identified possible effects of inversions on interspecies gene exchange that had not been considered previously.
Collapse
|
49
|
The Rate and Tract Length of Gene Conversion between Duplicated Genes. Genes (Basel) 2011; 2:313-31. [PMID: 24710193 PMCID: PMC3924818 DOI: 10.3390/genes2020313] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/11/2011] [Accepted: 03/17/2011] [Indexed: 11/26/2022] Open
Abstract
Interlocus gene conversion occurs such that a certain length of DNA fragment is non-reciprocally transferred (copied and pasted) between paralogous regions. To understand the rate and tract length of gene conversion, there are two major approaches. One is based on mutation-accumulation experiments, and the other uses natural DNA sequence variation. In this review, we overview the two major approaches and discuss their advantages and disadvantages. In addition, to demonstrate the importance of statistical analysis of empirical and evolutionary data for estimating tract length, we apply a maximum likelihood method to several data sets.
Collapse
|
50
|
Marsolier-Kergoat MC. A simple model for the influence of meiotic conversion tracts on GC content. PLoS One 2011; 6:e16109. [PMID: 21249197 PMCID: PMC3020949 DOI: 10.1371/journal.pone.0016109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 12/10/2010] [Indexed: 11/19/2022] Open
Abstract
A strong correlation between GC content and recombination rate is observed in many eukaryotes, which is thought to be due to conversion events linked to the repair of meiotic double-strand breaks. In several organisms, the length of conversion tracts has been shown to decrease exponentially with increasing distance from the sites of meiotic double-strand breaks. I show here that this behavior leads to a simple analytical model for the evolution and the equilibrium state of the GC content of sequences devoid of meiotic double-strand break sites. In the yeast Saccharomyces cerevisiae, meiotic double-strand breaks are practically excluded from protein-coding sequences. A good fit was observed between the predictions of the model and the variations of the average GC content of the third codon position (GC3) of S. cerevisiae genes. Moreover, recombination parameters that can be extracted by fitting the data to the model coincide with experimentally determined values. These results thus indicate that meiotic recombination plays an important part in determining the fluctuations of GC content in yeast coding sequences. The model also accounted for the different patterns of GC variations observed in the genes of Candida species that exhibit a variety of sexual lifestyles, and hence a wide range of meiotic recombination rates. Finally, the variations of the average GC3 content of human and chicken coding sequences could also be fitted by the model. These results suggest the existence of a widespread pattern of GC variation in eukaryotic genes due to meiotic recombination, which would imply the generality of two features of meiotic recombination: its association with GC-biased gene conversion and the quasi-exclusion of meiotic double-strand breaks from coding sequences. Moreover, the model points out to specific constraints on protein fragments encoded by exon terminal sequences, which are the most affected by the GC bias.
Collapse
|