1
|
Cha S, Hong CP, Kang HA, Hahn JS. Differential activation mechanisms of two isoforms of Gcr1 transcription factor generated from spliced and un-spliced transcripts in Saccharomyces cerevisiae. Nucleic Acids Res 2021; 49:745-759. [PMID: 33367825 PMCID: PMC7826247 DOI: 10.1093/nar/gkaa1221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022] Open
Abstract
Gcr1, an important transcription factor for glycolytic genes in Saccharomyces cerevisiae, was recently revealed to have two isoforms, Gcr1U and Gcr1S, produced from un-spliced and spliced transcripts, respectively. In this study, by generating strains expressing only Gcr1U or Gcr1S using the CRISPR/Cas9 system, we elucidate differential activation mechanisms of these two isoforms. The Gcr1U monomer forms an active complex with its coactivator Gcr2 homodimer, whereas Gcr1S acts as a homodimer without Gcr2. The USS domain, 55 residues at the N-terminus existing only in Gcr1U, inhibits dimerization of Gcr1U and even acts in trans to inhibit Gcr1S dimerization. The Gcr1S monomer inhibits the metabolic switch from fermentation to respiration by directly binding to the ALD4 promoter, which can be restored by overexpression of the ALD4 gene, encoding a mitochondrial aldehyde dehydrogenase required for ethanol utilization. Gcr1U and Gcr1S regulate almost the same target genes, but show unique activities depending on growth phase, suggesting that these isoforms play differential roles through separate activation mechanisms depending on environmental conditions.
Collapse
Affiliation(s)
- Seungwoo Cha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Chang Pyo Hong
- Theragen Bio Co., Ltd, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Hyun Ah Kang
- Department of Life Science, College of Natural Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Hossain MA, Claggett JM, Edwards SR, Shi A, Pennebaker SL, Cheng MY, Hasty J, Johnson TL. Posttranscriptional Regulation of Gcr1 Expression and Activity Is Crucial for Metabolic Adjustment in Response to Glucose Availability. Mol Cell 2017; 62:346-358. [PMID: 27153533 DOI: 10.1016/j.molcel.2016.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/03/2016] [Accepted: 04/11/2016] [Indexed: 12/20/2022]
Abstract
The transcription factor Gcr1 controls expression of over 75% of the genes in actively growing yeast. Yet despite its widespread effects, regulation of Gcr1 itself remains poorly understood. Here, we show that posttranscriptional Gcr1 regulation is nutrient dependent. Moreover, GCR1 RNA contains a long, highly conserved intron, which allows the cell to generate multiple RNA and protein isoforms whose levels change upon glucose depletion. Intriguingly, an isoform generated by intron retention is exported from the nucleus, and its translation is initiated from a conserved, intronic translation start site. Expression of gene products from both the spliced and unspliced RNAs is essential, as cells expressing only one isoform cannot adjust their metabolic program in response to environmental changes. Finally, we show that the Gcr1 proteins form dimers, providing an elegant mechanism by which this one gene, through its regulation, can perform the repertoire of transcriptional activities necessary for fine-tuned environmental response.
Collapse
Affiliation(s)
- Munshi Azad Hossain
- Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Julia M Claggett
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samantha R Edwards
- Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aishan Shi
- Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sara L Pennebaker
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Melodyanne Y Cheng
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- Molecular Biology Section, Division of Biological Sciences, San Diego Center for Systems Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tracy L Johnson
- Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Haw R, Devi Yarragudi A, Uemura H. Isolation of GCR1, a major transcription factor of glycolytic genes in Saccharomyces cerevisiae, from Kluyveromyces lactis. Yeast 2001; 18:729-35. [PMID: 11378900 DOI: 10.1002/yea.718] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To study the function of GCR1, a gene involved in the expression of glycolytic genes in Saccharomyces cerevisiae, a Kluyveromyces lactis gene that complements the growth defect of a S. cerevisiae Deltagcr1 mutant was isolated. Introduction of this gene into the Deltagcr1 mutant also restored the activities of glycolytic enzymes. DNA sequencing of KlGCR1 predicted an open reading frame of a 767 amino acid protein with an overall identity of 33% and similarity of 48% to Gcr1p from S. cerevisiae. Its DDBJ/EMBL/GenBank Accession No. is AB046391.
Collapse
Affiliation(s)
- R Haw
- Department of Molecular Biology, National Institute of Bioscience and Human Technology, Higashi 1-1, Tsukuba, Ibaraki, 305-8566 Japan
| | | | | |
Collapse
|
4
|
Fortes P, Kufel J, Fornerod M, Polycarpou-Schwarz M, Lafontaine D, Tollervey D, Mattaj IW. Genetic and physical interactions involving the yeast nuclear cap-binding complex. Mol Cell Biol 1999; 19:6543-53. [PMID: 10490594 PMCID: PMC84624 DOI: 10.1128/mcb.19.10.6543] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/1999] [Accepted: 07/12/1999] [Indexed: 11/20/2022] Open
Abstract
Yeast strains lacking the yeast nuclear cap-binding complex (yCBC) are viable, although impaired in growth. We have taken advantage of this observation to carry out a genetic screen for components that show synthetic lethality (SL) with a cbp20-Delta cbp80-Delta double mutation. One set of SL interactions was due to mutations that were complemented by components of U1 small nuclear RNP (snRNP) and the yeast splicing commitment complex. These interactions confirm the role of yCBC in commitment complex formation. Physical interaction of yCBC with the commitment complex components Mud10p and Mud2p, which may directly mediate yCBC function, was demonstrated. Unexpectedly, we identified multiple SL mutations that were complemented by Cbf5p and Nop58p. These are components of the two major classes of yeast small nucleolar RNPs, which function in the maturation of rRNA precursors. Mutants lacking yCBC were found to be defective in rRNA processing. Analysis of the yCBC deletion phenotype suggests that this is likely to be due to a defect in the splicing of a subset of ribosomal protein mRNA precursors.
Collapse
Affiliation(s)
- P Fortes
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
López MC, Smerage JB, Baker HV. Multiple domains of repressor activator protein 1 contribute to facilitated binding of glycolysis regulatory protein 1. Proc Natl Acad Sci U S A 1998; 95:14112-7. [PMID: 9826662 PMCID: PMC24335 DOI: 10.1073/pnas.95.24.14112] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The function of repressor activator protein 1 (Rap1p) at glycolytic enzyme gene upstream activating sequence (UAS) elements in Saccharomyces cerevisiae is to facilitate binding of glycolysis regulatory protein 1 (Gcr1p) at adjacent sites. Rap1p has a modular domain structure. In its amino terminus there is an asymmetric DNA-bending domain, which is distinct from its DNA-binding domain, which resides in the middle of the protein. In the carboxyl terminus of Rap1p lie its silencing and putative activation domains. We carried out a molecular dissection of Rap1p to identify domains contributing to its ability to facilitate binding of Gcr1p. We prepared full-length and three truncated versions of Rap1p and tested their ability to facilitate binding of Gcr1p by gel shift assay. The ability to detect ternary complexes containing Rap1p.DNA. Gcr1p depended on the presence of binding sites for both proteins in the probe DNA. The DNA-binding domain of Rap1p, although competent to bind DNA, was unable to facilitate binding of Gcr1p. Full-length Rap1p and the amino- and carboxyl-truncated versions of Rap1p were each able to facilitate binding of Gcr1p at an appropriately spaced binding site. Under these conditions, Gcr1p displayed an approximately 4-fold greater affinity for Rap1p-bound DNA than for otherwise identical free DNA. When spacing between Rap1p- and Gcr1p-binding sites was altered by insertion of five nucleotides, the ability to form ternary Rap1p.DNA.Gcr1p complexes was inhibited by all but the DNA-binding domain of Rap1p itself; however, the ability of each individual protein to bind the DNA probe was unaffected.
Collapse
Affiliation(s)
- M C López
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Box 100266, JHMHC, Gainesville, FL 32610-0266, USA
| | | | | |
Collapse
|
6
|
Uemura H, Koshio M, Inoue Y, Lopez MC, Baker HV. The role of Gcr1p in the transcriptional activation of glycolytic genes in yeast Saccharomyces cerevisiae. Genetics 1997; 147:521-32. [PMID: 9335590 PMCID: PMC1208175 DOI: 10.1093/genetics/147.2.521] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To study the interdependence of Gcr1p and Rap1p, we prepared a series of synthetic regulatory sequences that contained various numbers and combinations of CT-boxes (Gcr1p-binding sites) and RPG-boxes (Rap1p-binding sites). The ability of the synthetic oligonucleotides to function as regulatory sequences was tested using an ENO1-lacZ reporter gene. As observed previously, synthetic oligonucleotides containing both CT- and RPG-boxes conferred strong UAS activity. Likewise, a lone CT-box did not show any UAS activity. By contrast, oligonucleotides containing tandem Ct-boxes but no RPG-box conferred strong promoter activity. This UAS activity was not dependent on position or orientation of the oligonucleotides in the 5' noncoding region. However, it was dependent on both GCR1 and GCR2. These results suggest that the ability of Gcr1p to bind Gcr1p-binding sites in vivo is not absolutely dependent on Rap1p. Eleven independent mutants of GCR1 were isolated that conferred weak UAS activity to a single CT-box. Five mutants has single mutations in Gcr1p's DNA-binding domain and displayed slightly higher affinity for the CT-box. These results support the hypothesis that Gcr1p and Gcr2p play the central role in glycolytic gene expression and that the function of Rap1p is to facilitate the binding of Gcr1p to its target.
Collapse
Affiliation(s)
- H Uemura
- Department of Molecular Biology, National Institute of Bioscience and Human-Technology, Tsukuba Research Center, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
7
|
Deminoff SJ, Tornow J, Santangelo GM. Unigenic evolution: a novel genetic method localizes a putative leucine zipper that mediates dimerization of the Saccharomyces cerevisiae regulator Gcr1p. Genetics 1995; 141:1263-74. [PMID: 8601472 PMCID: PMC1206865 DOI: 10.1093/genetics/141.4.1263] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The GCR1 gene of Saccharomyces cerevisiae encodes a transcriptional activator that complexes with Rap1p and, through UASRPG elements (Rap1p DNA binding sites), stimulates efficient expression of glycolytic and translational component genes. To map the functionally important domains in Gcr1p, we combined multiple rounds of random mutagenesis in vitro with in vivo selection of functional genes to locate conserved, or hypomutable, regions. We name this method unigenic evolution, a statistical analysis of mutations in evolutionary variants of a single gene in an otherwise isogenic background. Examination of the distribution of 315 mutations in 24 variant alleles allowed the localization of four hypomutable regions in GCR1 (A, B, C, and D). Dispensable N-terminal (intronic) and C-terminal portions of the evolved region of GCR1 were included in the analysis as controls and were, as expected, not hypomutable. The analysis of several insertion, deletion, and point mutations, combined with a comparison of the hypomutability and hydrophobicity plots of Gcr1p, suggested that some of the hypomutable regions may individually or in combination correspond to functionally important surface domains. In particular, we determined that region D contains a putative leucine zipper and is necessary and sufficient for Gcr1p homodimerization.
Collapse
Affiliation(s)
- S J Deminoff
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg 39406-5018, USA
| | | | | |
Collapse
|