1
|
Deacon TW. A degenerative process underlying hierarchic transitions in evolution. Biosystems 2022; 222:104770. [PMID: 36075549 DOI: 10.1016/j.biosystems.2022.104770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
This paper describes an evolutionary process likely involved in hierarchic transitions in biological evolution at many levels, from genetics to social organization. It is related to the evolutionary process described as contingent neutral evolution (CNE). It involves a sequence of stages initiated by the spontaneous appearance of functional redundancy. This redundancy can be the result of gene duplication, symbiosis, cell-cell interactions, environmental supports, etc. The availability of redundant sources of biological functionality relaxes purifying selection and allows degenerative changes to accumulate in one or more of the duplicates, potentially degrading or otherwise fractionating its function. This degeneration will be effectively neutral so long as another maintains functional integrity. Sexual recombination can potentially sample different combinations of these sub functional alternatives, with the result that favorable synergistic interactions between independently degenerate duplicates will have a non-negligible probability of being uncovered. The expression of such a synergistic combinatorial effect will result in the irreversible degradation of any remaining autonomous functionality, thereby initiating selection to prevent breakup of co-dependency. This becomes relevant to the evolution of hierarchic transitions when two or more organisms reciprocally duplicate functions that each other requires. If the resulting relaxation of selection reliably persists for an extended evolutionary period it will tend to produce complementary degenerative effects in each organism, leading to their irreversible codependency and purifying selection to avoid loss of integrity of their higher order functional unity. This provides a partial inversion of Darwinian logic that explains how the potential costs of the loss of organism autonomy can be mitigated, enabling the incremental transition to a synergistic higher order unit of evolution.
Collapse
|
2
|
New Transcriptome-Based SNP Markers for Noug ( Guizotia abyssinica) and Their Conversion to KASP Markers for Population Genetics Analyses. Genes (Basel) 2020; 11:genes11111373. [PMID: 33233626 PMCID: PMC7709008 DOI: 10.3390/genes11111373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
The development and use of genomic resources are essential for understanding the population genetics of crops for their efficient conservation and enhancement. Noug (Guizotia abyssinica) is an economically important oilseed crop in Ethiopia and India. The present study sought to develop new DNA markers for this crop. Transcriptome sequencing was conducted on two genotypes and 628 transcript sequences containing 959 single nucleotide polymorphisms (SNPs) were developed. A competitive allele-specific PCR (KASP) assay was developed for the SNPs and used for genotyping of 24 accessions. A total of 554 loci were successfully genotyped across the accessions, and 202 polymorphic loci were used for population genetics analyses. Polymorphism information content (PIC) of the loci varied from 0.01 to 0.37 with a mean of 0.24, and about 49% of the loci showed significant deviation from the Hardy-Weinberg equilibrium. The mean expected heterozygosity was 0.27 suggesting moderately high genetic variation within accessions. Low but significant differentiation existed among accessions (FST = 0.045, p < 0.0001). Landrace populations from isolated areas may have useful mutations and should be conserved and used in breeding this crop. The genomic resources developed in this study were shown to be useful for population genetics research and can also be used in, e.g., association genetics.
Collapse
|
3
|
Park S, Ruhlman TA, Weng ML, Hajrah NH, Sabir JS, Jansen RK. Contrasting Patterns of Nucleotide Substitution Rates Provide Insight into Dynamic Evolution of Plastid and Mitochondrial Genomes of Geranium. Genome Biol Evol 2017; 9:1766-1780. [PMID: 28854633 PMCID: PMC5570028 DOI: 10.1093/gbe/evx124] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 12/25/2022] Open
Abstract
Geraniaceae have emerged as a model system for investigating the causes and consequences of variation in plastid and mitochondrial genomes. Incredible structural variation in plastid genomes (plastomes) and highly accelerated evolutionary rates have been reported in selected lineages and functional groups of genes in both plastomes and mitochondrial genomes (mitogenomes), and these phenomena have been implicated in cytonuclear incompatibility. Previous organelle genome studies have included limited sampling of Geranium, the largest genus in the family with over 400 species. This study reports on rates and patterns of nucleotide substitutions in plastomes and mitogenomes of 17 species of Geranium and representatives of other Geraniaceae. As detected across other angiosperms, substitution rates in the plastome are 3.5 times higher than the mitogenome in most Geranium. However, in the branch leading to Geranium brycei/Geranium incanum mitochondrial genes experienced significantly higher dN and dS than plastid genes, a pattern that has only been detected in one other angiosperm. Furthermore, rate accelerations differ in the two organelle genomes with plastomes having increased dN and mitogenomes with increased dS. In the Geranium phaeum/Geranium reflexum clade, duplicate copies of clpP and rpoA genes that experienced asymmetric rate divergence were detected in the single copy region of the plastome. In the case of rpoA, the branch leading to G. phaeum/G. reflexum experienced positive selection or relaxation of purifying selection. Finally, the evolution of acetyl-CoA carboxylase is unusual in Geraniaceae because it is only the second angiosperm family where both prokaryotic and eukaryotic ACCases functionally coexist in the plastid.
Collapse
Affiliation(s)
- Seongjun Park
- Department of Integrative Biology, University of Texas at Austin
| | | | - Mao-Lun Weng
- Department of Integrative Biology, University of Texas at Austin
- Department of Biology and Microbiology, South Dakota State University
| | - Nahid H. Hajrah
- Genomic and Biotechnology Research Group, Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamal S.M. Sabir
- Genomic and Biotechnology Research Group, Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin
- Genomic and Biotechnology Research Group, Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Liu J, Jiang J, Wang Z, He Y, Zhang Q. Origin and evolution of GATA2a and GATA2b in teleosts: insights from tongue sole, Cynoglossus semilaevis. PeerJ 2016; 4:e1790. [PMID: 27019782 PMCID: PMC4806627 DOI: 10.7717/peerj.1790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/20/2016] [Indexed: 12/31/2022] Open
Abstract
Background. Following the two rounds of whole-genome duplication that occurred during deuterostome evolution, a third genome duplication occurred in the lineage of teleost fish and is considered to be responsible for much of the biological diversification within the lineage. GATA2, a member of GATA family of transcription factors, is an important regulator of gene expression in hematopoietic cell in mammals, yet the role of this gene or its putative paralogs in ray-finned fishes remains relatively unknown. Methods. In this study, we attempted to identify GATA2 sequences from the transcriptomes and genomes of multiple teleosts using the bioinformatic tools MrBayes, MEME, and PAML. Following identification, comparative analysis of genome structure, molecular evolution rate, and expression by real-time qPCR were used to predict functional divergence of GATA2 paralogs and their relative transcription in organs of female and male tongue soles (Cynoglossus semilaevis). Results. Two teleost GATA2 genes were identified in the transcriptomes of tongue sole and Japanese flounder (Paralichthysolivaceus). Synteny and phylogenetic analysis confirmed that the two genes likely originated from the teleost-specific genome duplication . Additionally, selection pressure analysis predicted these gene duplicates to have undergone purifying selection and possible divergent new functions. This was supported by differential expression pattern of GATA2a and GATA2b observed in organs of female and male tongue soles. Discussion. Our results indicate that two GATA2 genes originating from the first teleost-specific genome duplication have remained transcriptionally active in some fish species and have likely undergone neofunctionalization. This knowledge provides novel insights into the evolution of the teleost GATA2 genes and constituted important groundwork for further research on the GATA gene family.
Collapse
Affiliation(s)
- Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China , Qingdao , China
| | - Jiajun Jiang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China , Qingdao , China
| | - Zhongkai Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China , Qingdao , China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China , Qingdao , China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China , Qingdao , China
| |
Collapse
|
5
|
Ganu RS, Ishida Y, Koutmos M, Kolokotronis SO, Roca AL, Garrow TA, Schook LB. Evolutionary Analyses and Natural Selection of Betaine-Homocysteine S-Methyltransferase (BHMT) and BHMT2 Genes. PLoS One 2015. [PMID: 26213999 PMCID: PMC4516251 DOI: 10.1371/journal.pone.0134084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Betaine-homocysteine S-methyltransferase (BHMT) and BHMT2 convert homocysteine to methionine using betaine and S-methylmethionine, respectively, as methyl donor substrates. Increased levels of homocysteine in blood are associated with cardiovascular disease. Given their role in human health and nutrition, we identified BHMT and BHMT2 genes and proteins from 38 species of deuterostomes including human and non-human primates. We aligned the genes to look for signatures of selection, to infer evolutionary rates and events across lineages, and to identify the evolutionary timing of a gene duplication event that gave rise to two genes, BHMT and BHMT2. We found that BHMT was present in the genomes of the sea urchin, amphibians, reptiles, birds and mammals; BHMT2 was present only across mammals. BHMT and BHMT2 were present in tandem in the genomes of all monotreme, marsupial and placental species examined. Evolutionary rates were accelerated for BHMT2 relative to BHMT. Selective pressure varied across lineages, with the highest dN/dS ratios for BHMT and BHMT2 occurring immediately following the gene duplication event, as determined using GA Branch analysis. Nine codons were found to display signatures suggestive of positive selection; these contribute to the enzymatic or oligomerization domains, suggesting involvement in enzyme function. Gene duplication likely occurred after the divergence of mammals from other vertebrates but prior to the divergence of extant mammalian subclasses, followed by two deletions in BHMT2 that affect oligomerization and methyl donor specificity. The faster evolutionary rate of BHMT2 overall suggests that selective constraints were reduced relative to BHMT. The dN/dS ratios in both BHMT and BHMT2 was highest following the gene duplication, suggesting that purifying selection played a lesser role as the two paralogs diverged in function.
Collapse
Affiliation(s)
- Radhika S. Ganu
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Markos Koutmos
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America
| | | | - Alfred L. Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Timothy A. Garrow
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Lawrence B. Schook
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- * E-mail:
| |
Collapse
|
6
|
Molecular Characterization and Expression Analysis of Heat Shock Cognate 70 After Heat Stress and Lipopolysaccharide Challenge in Sea Cucumber (Apostichopus japonicus). Biochem Genet 2013; 51:443-57. [DOI: 10.1007/s10528-013-9576-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
|
7
|
Xing H, Li S, Wang X, Gao X, Xu S, Wang X. Effects of atrazine and chlorpyrifos on the mRNA levels of HSP70 and HSC70 in the liver, brain, kidney and gill of common carp (Cyprinus carpio L.). CHEMOSPHERE 2013; 90:910-6. [PMID: 22801242 DOI: 10.1016/j.chemosphere.2012.06.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 06/15/2012] [Accepted: 06/21/2012] [Indexed: 05/02/2023]
Abstract
Although the chaperone role of heat shock proteins (HSPs) has been demonstrated in invertebrates, the function of HSPs in vertebrates, especially in fish, remains unclear. In this study, relative changes in the mRNA abundance of the HSP70 gene were examined by real-time PCR in the muscle, spleen, head kidney, heart, liver, brain, kidney and gill of common carp. Results indicated that the highest and lowest levels of HSP70 expression were found in the heart and muscle, respectively, and the highest and lowest levels of HSC70 expression were found in the spleen and muscle, respectively. In addition, we investigated differential HSP70 gene expression in common carp after a 40-d exposure to chlorpyrifos (CPF) and atrazine (ATR), alone or in combination, and after a 20-d recovery. Results indicated that the expression of carp HSP70 and 70-kDa heat shock cognate protein (HSC70) with ATR and CPF treatment alone or in combination was significantly upregulated. The present results provide new insights into the mechanisms used by fish to adapt to stressful environments.
Collapse
Affiliation(s)
- Houjuan Xing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | | | | | | | | | | |
Collapse
|
8
|
Zhao Q, Caballero OL, Simpson AJG, Strausberg RL. Differential evolution of MAGE genes based on expression pattern and selection pressure. PLoS One 2012; 7:e48240. [PMID: 23133577 PMCID: PMC3484994 DOI: 10.1371/journal.pone.0048240] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 09/28/2012] [Indexed: 11/18/2022] Open
Abstract
Starting from publicly-accessible datasets, we have utilized comparative and phylogenetic genome analyses to characterize the evolution of the human MAGE gene family. Our characterization of genomic structures in representative genomes of primates, rodents, carnivora, and macroscelidea indicates that both Type I and Type II MAGE genes have undergone lineage-specific evolution. The restricted expression pattern in germ cells of Type I MAGE orthologs is observed throughout evolutionary history. Unlike Type II MAGEs that have conserved promoter sequences, Type I MAGEs lack promoter conservation, suggesting that epigenetic regulation is a central mechanism for controlling their expression. Codon analysis shows that Type I but not Type II MAGE genes have been under positive selection. The combination of genomic and expression analysis suggests that Type 1 MAGE promoters and genes continue to evolve in the hominin lineage, perhaps towards functional diversification or acquiring additional specific functions, and that selection pressure at codon level is associated with expression spectrum.
Collapse
Affiliation(s)
- Qi Zhao
- Ludwig Collaborative Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | |
Collapse
|
9
|
Shen PP, Zhou H, Gu JG. Novel polymorphism of internal transcribed spacers (ITS) and their utilization in phylogenetic analysis of Neanthes glandicincta (Annelida: Polychaeta: Nereididae). ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1717-1725. [PMID: 22711549 DOI: 10.1007/s10646-012-0959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/05/2012] [Indexed: 06/01/2023]
Abstract
Sequences of internal transcribed spacers (ITS1 and ITS2) are increasingly being used to infer phylogenetic relationships at or below species levels. Here we report a novel case of ITS polymorphism within Neanthes glandicincta (Annelida: Polychaeta: Nereididae). Two types of ITS sequence (Type I and Type II) were cloned and sequenced, which showed significant differences both in nucleotide composition and length. Variations of these two types sequences also differed from each other with Type I was highly divergent while Type II was highly conserved. Phylogenetic trees inferred from ITS1 and ITS2 sequences showed striking discrepancy in N. glandicincta. Non-concerted evolution of multi-gene is suggested to be responsible for the high degree of polymorphism in ITS regions. Due to the two divergent types of ITS presented within a single N. glandicincta individual, the utilization of ITS regions for delineation of population or closely related species cannot be substantiated. The finding of different types of ITS in a single individual also stresses the need for analyzing a large number of clones whenever ITS sequences obtained by PCR amplification and cloning are being used in phylogenetic reconstruction.
Collapse
Affiliation(s)
- Ping-Ping Shen
- Key Laboratory of Marine-Bioresources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | | | | |
Collapse
|
10
|
Colloquium paper: a role for relaxed selection in the evolution of the language capacity. Proc Natl Acad Sci U S A 2010; 107 Suppl 2:9000-6. [PMID: 20445088 DOI: 10.1073/pnas.0914624107] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Explaining the extravagant complexity of the human language and our competence to acquire it has long posed challenges for natural selection theory. To answer his critics, Darwin turned to sexual selection to account for the extreme development of language. Many contemporary evolutionary theorists have invoked incredibly lucky mutation or some variant of the assimilation of acquired behaviors to innate predispositions in an effort to explain it. Recent evodevo approaches have identified developmental processes that help to explain how complex functional synergies can evolve by Darwinian means. Interestingly, many of these developmental mechanisms bear a resemblance to aspects of Darwin's mechanism of natural selection, often differing only in one respect (e.g., form of duplication, kind of variation, competition/cooperation). A common feature is an interplay between processes of stabilizing selection and processes of relaxed selection at different levels of organism function. These may play important roles in the many levels of evolutionary process contributing to language. Surprisingly, the relaxation of selection at the organism level may have been a source of many complex synergistic features of the human language capacity, and may help explain why so much language information is "inherited" socially.
Collapse
|
11
|
Sun HZ, Ge S. Molecular evolution of the duplicated TFIIAgamma genes in Oryzeae and its relatives. BMC Evol Biol 2010; 10:128. [PMID: 20438643 PMCID: PMC2887407 DOI: 10.1186/1471-2148-10-128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 05/04/2010] [Indexed: 11/10/2022] Open
Abstract
Background Gene duplication provides raw genetic materials for evolutionary novelty and adaptation. The evolutionary fate of duplicated transcription factor genes is less studied although transcription factor gene plays important roles in many biological processes. TFIIAγ is a small subunit of TFIIA that is one of general transcription factors required by RNA polymerase II. Previous studies identified two TFIIAγ-like genes in rice genome and found that these genes either conferred resistance to rice bacterial blight or could be induced by pathogen invasion, raising the question as to their functional divergence and evolutionary fates after gene duplication. Results We reconstructed the evolutionary history of the TFIIAγ genes from main lineages of angiosperms and demonstrated that two TFIIAγ genes (TFIIAγ1 and TFIIAγ5) arose from a whole genome duplication that happened in the common ancestor of grasses. Likelihood-based analyses with branch, codon, and branch-site models showed no evidence of positive selection but a signature of relaxed selective constraint after the TFIIAγ duplication. In particular, we found that the nonsynonymous/synonymous rate ratio (ω = dN/dS) of the TFIIAγ1 sequences was two times higher than that of TFIIAγ5 sequences, indicating highly asymmetric rates of protein evolution in rice tribe and its relatives, with an accelerated rate of TFIIAγ1 gene. Our expression data and EST database search further indicated that after whole genome duplication, the expression of TFIIAγ1 gene was significantly reduced while TFIIAγ5 remained constitutively expressed and maintained the ancestral role as a subunit of the TFIIA complex. Conclusion The evolutionary fate of TFIIAγ duplicates is not consistent with the neofunctionalization model that predicts that one of the duplicated genes acquires a new function because of positive Darwinian selection. Instead, we suggest that subfunctionalization might be involved in TFIIAγ evolution in grasses. The fact that both TFIIAγ1 and TFIIAγ5 genes were effectively involved in response to biotic or abiotic factors might be explained by either Dykhuizen-Hartl effect or buffering hypothesis.
Collapse
Affiliation(s)
- Hong-Zheng Sun
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
12
|
Kohn MH. Rapid sequence divergence rates in the 5 prime regulatory regions of young Drosophila melanogaster duplicate gene pairs. Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000300028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Michael H. Kohn
- Ecology and Evolutionary Biology, Rice University, United States of America
| |
Collapse
|
13
|
Wagstaff BJ, Begun DJ. Adaptive evolution of recently duplicated accessory gland protein genes in desert Drosophila. Genetics 2007; 177:1023-30. [PMID: 17720912 PMCID: PMC2034610 DOI: 10.1534/genetics.107.077503] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The relationship between animal mating system variation and patterns of protein polymorphism and divergence is poorly understood. Drosophila provides an excellent system for addressing this issue, as there is abundant interspecific mating system variation. For example, compared to D. melanogaster subgroup species, repleta group species have higher remating rates, delayed sexual maturity, and several other interesting differences. We previously showed that accessory gland protein genes (Acp's) of Drosophila mojavensis and D. arizonae evolve more rapidly than Acp's in the D. melanogaster subgroup and that adaptive Acp protein evolution is likely more common in D. mojavensis/D. arizonae than in D. melanogaster/D. simulans. These findings are consistent with the idea that greater postcopulatory selection results in more adaptive evolution of seminal fluid proteins in the repleta group flies. Here we report another interesting evolutionary difference between the repleta group and the D. melanogaster subgroup Acp's. Acp gene duplications are present in D. melanogaster, but their high sequence divergence indicates that the fixation rate of duplicated Acp's has been low in this lineage. Here we report that D. mojavensis and D. arizonae genomes contain several very young duplicated Acp's and that these Acp's have experienced very rapid, adaptive protein divergence. We propose that rapid remating of female desert Drosophila generates selection for continuous diversification of the male Acp complement to improve male fertilization potential. Thus, mating system variation may be associated with adaptive protein divergence as well as with duplication of Acp's in Drosophila.
Collapse
Affiliation(s)
- Bradley J Wagstaff
- Section of Integrative Biology, University of Texas, Austin, Texas 78712, USA.
| | | |
Collapse
|
14
|
Hoffmann FG, Storz JF. The alphaD-globin gene originated via duplication of an embryonic alpha-like globin gene in the ancestor of tetrapod vertebrates. Mol Biol Evol 2007; 24:1982-90. [PMID: 17586601 DOI: 10.1093/molbev/msm127] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gene duplication is thought to play an important role in the co-option of existing protein functions to new physiological pathways. The globin superfamily of genes provides an excellent example of the kind of physiological versatility that can be attained through the functional and regulatory divergence of duplicated genes that encode different subunit polypeptides of the tetrameric hemoglobin protein. In contrast to prevailing views about the evolutionary history of the alpha-globin gene family, here we present phylogenetic evidence that the alpha(A)- and alpha(D)-globin genes are not the product of a single, tandem duplication of an ancestral globin gene with adult function in the common ancestor of extant birds, reptiles, and mammals. Instead, our analysis reveals that the alpha(D)-globin gene of amniote vertebrates arose via duplication of an embryonic alpha-like globin gene that predated the radiation of tetrapods. The important evolutionary implication is that the distinct biochemical properties of alpha(D)-hemoglobin (HbD) are not exclusively derived characters that can be attributed to a post-duplication process of neofunctionalization. Rather, many of the distinct biochemical properties of HbD are retained ancestral characters that reflect the fact that the alpha(D)-globin gene arose via duplication of a gene that had a larval/embryonic function. These insights into the evolutionary origin of HbD illustrate how adaptive modifications of physiological pathways may result from the retention and opportunistic co-option of ancestral protein functions.
Collapse
|
15
|
Gayral P, Caminade P, Boursot P, Galtier N. The evolutionary fate of recently duplicated retrogenes in mice. J Evol Biol 2007; 20:617-26. [PMID: 17305828 DOI: 10.1111/j.1420-9101.2006.01245.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inferences about the evolutionary impact of gene duplications often rely on the analysis of their long-term outcome. The fate of the majority of them must, however, be decided shortly after duplication. Here we analysed the evolutionary pattern of 10 mouse genes very recently duplicated by retrotransposition, by sequencing the retroposed copy in five to 10 closely related mouse species. In all cases the retroposed copy experienced accelerated nonsynonymous evolution whereas the divergence pattern of the source copy appeared unaffected by the duplication, consistent with the neofunctionalization model. The analysis further revealed that most retrogenes, including pseudogenes, did not experience a period of relaxed neutral evolution, but have been submitted to purifying selection ever since their retroposition. We propose that these duplicates play a biochemical role but are not indispensable. Purifying selection prevents them from acquiring a negative role until they are lost or silenced. This period of unnecessary redundancy could in rare cases give the time for new functions to evolve.
Collapse
Affiliation(s)
- P Gayral
- CNRS UMR -Génome, Populations, Interactions, Adaptation, Université Montpellier, Montpellier, France.
| | | | | | | |
Collapse
|
16
|
Pavlicev M, Mayer W. Multiple copies of coding as well as pseudogene c-mos sequence exist in three lacertid species. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 306:539-50. [PMID: 16739140 DOI: 10.1002/jez.b.21110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The analysis of a 581 bp section of the nuclear gene c-mos revealed multiple copies of putative functional sequences as well as pseudogenes in three closely related lacertid species Lacerta laevis, L. kulzeri and L. cyanisparsa. A phylogenetic analysis of c-mos in comparison with a molecular phylogeny based on the mitochondrial cytochrome b gene supports our findings. The study also provides new insights into the phylogenetic relationships of L. cyanisparsa and L. laevis. Pseudogenes of the three species share 11 single-nucleotide substitutions, a 1 bp deletion and a premature stop codon but differ by group-specific mutations. This result suggests that the c-mos gene has become duplicated and subsequently silenced already in the common ancestor of the three species. Sequence divergence suggests that the duplication and the loss of function occurred in the late Miocene/early Pliocene, i.e., about 5 million years ago. Indications of gene conversion are discussed. We suggest that future studies using c-mos for phylogenetic studies should provide evidence for the orthology of the sequences compared.
Collapse
Affiliation(s)
- Mihaela Pavlicev
- Laboratory of Molecular Systematics, Natural History Museum Vienna, Vienna, Austria.
| | | |
Collapse
|
17
|
Labbé P, Berthomieu A, Berticat C, Alout H, Raymond M, Lenormand T, Weill M. Independent Duplications of the Acetylcholinesterase Gene Conferring Insecticide Resistance in the Mosquito Culex pipiens. Mol Biol Evol 2007; 24:1056-67. [PMID: 17283366 DOI: 10.1093/molbev/msm025] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gene duplication is thought to be the main potential source of material for the evolution of new gene functions. Several models have been proposed for the evolution of new functions through duplication, most based on ancient events (Myr). We provide molecular evidence for the occurrence of several (at least 3) independent duplications of the ace-1 locus in the mosquito Culex pipiens, selected in response to insecticide pressure that probably occurred very recently (<40 years ago). This locus encodes the main target of several insecticides, the acetylcholinesterase. The duplications described consist of 2 alleles of ace-1, 1 susceptible and 1 resistant to insecticide, located on the same chromosome. These events were detected in different parts of the world and probably resulted from distinct mechanisms. We propose that duplications were selected because they reduce the fitness cost associated with the resistant ace-1 allele through the generation of persistent, advantageous heterozygosis. The rate of duplication of ace-1 in C. pipiens is probably underestimated, but seems to be rather high.
Collapse
Affiliation(s)
- Pierrick Labbé
- Institut des Sciences de l'Evolution (UMR CNRS 5554), University Montpellier II, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Piano A, Franzellitti S, Tinti F, Fabbri E. Sequencing and expression pattern of inducible heat shock gene products in the European flat oyster, Ostrea edulis. Gene 2005; 361:119-26. [PMID: 16185825 DOI: 10.1016/j.gene.2005.06.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 04/08/2005] [Accepted: 06/27/2005] [Indexed: 11/19/2022]
Abstract
Heat shock proteins are a multigene family of polypeptides composed of the constitutively-expressed heat shock cognate (HSC) members and of the stress-inducible (HSP) proteins, whose expression is specifically induced by stress factors. Constitutive and inducible 70 kDa isoforms are reported in vertebrates and invertebrates. HSCs are expressed in all bivalve molluscs studied to date, while the occurrence of strictly heat-inducible HSPs seems a distinctive feature of oysters. To gain more insight into the molecular features of the Ostrea edulis HSP70, we have cloned and sequenced the gene product putatively encoding for the heat-inducible isoform HSP69 and examined the pattern of expression after heat exposure. Four different clones of approximately 1794 bp were obtained that share a high degree of homology with heat-inducible HSP70 from other bivalves. Amino acid sequence comparisons indicated that the main structural features of the heat-inducible HSP70 are highly conserved within the O. edulis HSP70 clones, while lower sequence homology occurred with respect to HSC70 transcripts. Northern blot analysis indicated that HSP69 mRNA was absent in control animals but induced after heat shock (1 h at 32 degrees C or higher). Induction was detectable immediately after heat shock, reaching a maximum after 2 to 3 h of post-stress recovery at 18 degrees C, and decreasing thereafter. A phylogenetic analysis of the HSP70 family members from oyster and other bivalves revealed a substantial conservation in the evolutionary pattern among constitutive and inducible gene products, from invertebrates to higher vertebrates.
Collapse
Affiliation(s)
- Annamaria Piano
- Interdepartment Centre for Environmental Science Research, University of Bologna, via S. Alberto 163, 48100 Ravenna, Italy
| | | | | | | |
Collapse
|
19
|
Franzellitti S, Fabbri E. Differential HSP70 gene expression in the Mediterranean mussel exposed to various stressors. Biochem Biophys Res Commun 2005; 336:1157-63. [PMID: 16168387 DOI: 10.1016/j.bbrc.2005.08.244] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 08/31/2005] [Indexed: 11/24/2022]
Abstract
HSP70 gene expression was studied by quantitative RT-PCR after cloning and sequencing of two different HSP70 gene fragments from the digestive gland of Mytilus galloprovincialis, called MgHSP70 and MgHSC70. Heat shock (1h at 35 degrees C) caused rapid induction of MgHSP70, while no change was observed for MgHSC70. Hg(2+) (150 microg/L for different time periods) significantly induced MgHSP70 expression that reached maximum levels after 24h, decreasing thereafter. MgHSC70 expression was inhibited after 1 day and induced after a 6-day exposure to Hg(2+). A 1-week exposure to Cr(6+) (1, 10, and 50 ng/L) induced and inhibited MgHSC70 and MgHSP70 transcript levels, respectively. MgHSC70 and MgHSP70 appear to play different roles in cell protection; the former is induced after acute stress and/or during the earlier phase of the response while the latter is induced by chronic stress. The present results provide new insights into mechanisms used by mussels to adapt to stressful environments.
Collapse
Affiliation(s)
- Silvia Franzellitti
- Interdepartment Centre for Environmental Science Research, University of Bologna, Ravenna, Italy
| | | |
Collapse
|
20
|
Hoef-Emden K, Shrestha RP, Lapidot M, Weinstein Y, Melkonian M, Arad SM. Actin phylogeny and intron distribution in bangiophyte red algae(rhodoplantae). J Mol Evol 2005; 61:360-71. [PMID: 16044243 DOI: 10.1007/s00239-004-0366-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 04/19/2005] [Indexed: 11/30/2022]
Abstract
The molecular phylogeny of red algal actin genes, with emphasis on the paraphyletic "Bangiophyceae," was examined and compared to the rhodophyte SSU rDNA phylogeny. Nineteen new genomic actin sequences and seven SSU rDNA sequences were obtained and subjected to diverse phylogenetic analyses (maximum likelihood, distance/neighbor-joining, maximum parsimony, Bayesian analyses, and, with respect to protein sequences, also quartet puzzling). The actin trees confirmed most of the major clades found in the SSU rDNA phylogenies, although with a lower resolution. An actin gene duplication in the florideophycean lineage is reported, presumably related to an increased complexity of sexual reproduction. In addition, the distribution and characteristics of spliceosomal introns found in some of the actin sequences were examined. Introns were found in almost all florideophycean actin genes, whereas only two bangiophyte sequences contained introns. One intron in the florideophycean actin genes was also found in metazoan, and, shifted by one or two nucleotides, in a glaucocystophyte, a cryptophyte, and two fungal actin genes, and thus may be an ancient intron.
Collapse
Affiliation(s)
- Kerstin Hoef-Emden
- Universität zu Köln, Botanisches Institut, Lehrstuhl I, Gyrhofstr. 15, Köln, 50931, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Torgerson DG, Singh RS. Rapid evolution through gene duplication and subfunctionalization of the testes-specific alpha4 proteasome subunits in Drosophila. Genetics 2005; 168:1421-32. [PMID: 15579695 PMCID: PMC1448786 DOI: 10.1534/genetics.104.027631] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene duplication is an important mechanism for acquiring new genes and creating genetic novelty in organisms. Evidence suggests that duplicated genes are retained at a much higher rate than originally thought and that functional divergence of gene copies is a major factor promoting their retention in the genome. We find that two Drosophila testes-specific alpha4 proteasome subunit genes (alpha4-t1 and alpha4-t2) have a higher polymorphism within species and are significantly more diverged between species than the somatic alpha4 gene. Our data suggest that following gene duplication, the alpha4-t1 gene experienced relaxed selective constraints, whereas the alpha4-t2 gene experienced positive selection acting on several codons. We report significant heterogeneity in evolutionary rates among all three paralogs at homologous codons, indicating that functional divergence has coincided with genic divergence. Reproductive subfunctionalization may allow for a more rapid evolution of reproductive traits and a greater specialization of testes function. Our data add to the increasing evidence that duplicated genes experience lower selective constraints and in some cases positive selection following duplication. Newly duplicated genes that are freer from selective constraints may provide a mechanism for developing new interactions and a pathway for the evolution of new genes.
Collapse
Affiliation(s)
- Dara G Torgerson
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | |
Collapse
|
22
|
Quesada H, Ramos-Onsins SE, Aguadé M. Birth-and-death evolution of the Cecropin multigene family in Drosophila. J Mol Evol 2005; 60:1-11. [PMID: 15696364 DOI: 10.1007/s00239-004-0053-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 07/21/2004] [Indexed: 10/25/2022]
Abstract
Cecropins are insect antibacterial peptides that are part of the insect humoral immune response and could, therefore, be potential targets of natural selection. In Drosophila, the Cec genes constitute a multigene family whose members are arranged in tandem. The complete Cec family was isolated in two obscura group species: D. subobscura and D. pseudoobscura. The chromosomal regions encompassing the Cec genes were subsequently sequenced and mapped by in situ hybridization. In D. pseudoobscura, as in species of the D. melanogaster complex and in D. virilis, the Cec genes constitute a single cluster with five genes. In D. subobscura, unlike in the rest of the species, the eight members of the family are split into two clusters located in different parts of the same chromosome. Remarkable differences in levels of divergence were observed between copies in both species. The genomic organization and the phylogenetic relationships among members of this family in the genus Drosophila indicate (i) that the presence of two clusters is the derived state of the family, (ii) repeated gene duplication within species, (iii) nonfunctionalization and loss of some Cec copies, and (iv) the presence of both highly divergent and highly similar copies within species. These features are better explained by the birth-and-death model of molecular evolution, which posits that the high instability of the Cec multigene family in Drosophila is simply determined by the duplication rate and the subsequent loss of duplicated loci.
Collapse
Affiliation(s)
- Humberto Quesada
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | | | | |
Collapse
|
23
|
Yang J, Xie Z, Glover BJ. Asymmetric evolution of duplicate genes encoding the CCAAT-binding factor NF-Y in plant genomes. THE NEW PHYTOLOGIST 2005; 165:623-31. [PMID: 15720672 DOI: 10.1111/j.1469-8137.2004.01260.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
NF-Y is a ubiquitous CCAAT-binding factor composed of NF-YA, NF-YB and NF-YC. Multiple genes encoding NF-Y subunits have been identified in plant genomes. It remains unclear whether the duplicate genes underwent different evolutionary patterns. Likelihood-ratio tests were used to examine whether the amino acid substitution rates are the same between duplicate genes. The influences of selection on evolution were evaluated by comparing the conservative and radical amino acid substitution rates, as well as maximum-likelihood analysis. Some NF-YB and NF-YC duplicates showed significant evidence of asymmetric evolution but not the NF-YA duplicates. Most amino acid replacements in the NF-YB and NF-YC duplicates result in changes in hydropathy, polar requirement and polarity. The physicochemical changes in the sequences of NF-YB seem to be coupled to asymmetric divergence in gene function. Plant NF-Y genes have evolved in different patterns. Relaxed selective constraints following gene duplication are most likely responsible for the unequal evolutionary rates and distinct divergence patterns of duplicate NF-Y genes. Positive selection may have promoted amino acid hydropathy changes in the NF-YC duplicates.
Collapse
Affiliation(s)
- Ji Yang
- College of Life Sciences, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
24
|
He X, Zhang J. Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 2005; 169:1157-64. [PMID: 15654095 PMCID: PMC1449125 DOI: 10.1534/genetics.104.037051] [Citation(s) in RCA: 513] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 11/16/2004] [Indexed: 11/18/2022] Open
Abstract
Gene duplication is the primary source of new genes. Duplicate genes that are stably preserved in genomes usually have divergent functions. The general rules governing the functional divergence, however, are not well understood and are controversial. The neofunctionalization (NF) hypothesis asserts that after duplication one daughter gene retains the ancestral function while the other acquires new functions. In contrast, the subfunctionalization (SF) hypothesis argues that duplicate genes experience degenerate mutations that reduce their joint levels and patterns of activity to that of the single ancestral gene. We here show that neither NF nor SF alone adequately explains the genome-wide patterns of yeast protein interaction and human gene expression for duplicate genes. Instead, our analysis reveals rapid SF, accompanied by prolonged and substantial NF in a large proportion of duplicate genes, suggesting a new model termed subneofunctionalization (SNF). Our results demonstrate that enormous numbers of new functions have originated via gene duplication.
Collapse
Affiliation(s)
- Xionglei He
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
25
|
Liu Z, Bos JIB, Armstrong M, Whisson SC, da Cunha L, Torto-Alalibo T, Win J, Avrova AO, Wright F, Birch PRJ, Kamoun S. Patterns of diversifying selection in the phytotoxin-like scr74 gene family of Phytophthora infestans. Mol Biol Evol 2004; 22:659-72. [PMID: 15548752 DOI: 10.1093/molbev/msi049] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phytophthora infestans, the organism responsible for the Irish famine, causes late blight, a re-emerging disease of potato and tomato. Little is known about the molecular evolution of P. infestans genes. To identify candidate effector genes (virulence or avirulence genes) that may have co-evolved with the host, we mined expressed sequence tag (EST) data from infection stages of P. infestans for secreted and potentially polymorphic genes. This led to the identification of scr74, a gene that encodes a predicted 74-amino acid secreted cysteine-rich protein with similarity to the Phytophthora cactorum phytotoxin PcF. The expression of scr74 was upregulated approximately 60-fold 2 to 4 days after inoculation of tomato and was also significantly induced during early stages of colonization of potato. The scr74 gene was found to belong to a highly polymorphic gene family within P. infestans with 21 different sequences identified. Using the approximate and maximum likelihood (ML) methods, we found that diversifying selection likely caused the extensive polymorphism observed within the scr74 gene family. Pairwise comparisons of 17 scr74 sequences revealed elevated ratios of nonsynonymous to synonymous nucleotide-substitution rates, particularly in the mature region of the proteins. Using ML, all 21 polymorphic amino acid sites were identified to be under diversifying selection. Of these 21 amino acids, 19 are located in the mature protein region, suggesting that selection may have acted on the functional portions of the proteins. Further investigation of gene copy number and organization revealed that the scr74 gene family comprises at least three copies located in a region of no more than 300 kb of the P. infestans genome. We found evidence that recombination contributed to sequence divergence within at least one gene locus. These results led us to propose an evolutionary model that involves gene duplication and recombination, followed by functional divergence of scr74 genes. This study provides support for using diversifying selection as a criterion for identifying candidate effector genes from sequence databases.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Schlueter JA, Dixon P, Granger C, Grant D, Clark L, Doyle JJ, Shoemaker RC. Mining EST databases to resolve evolutionary events in major crop species. Genome 2004; 47:868-76. [PMID: 15499401 DOI: 10.1139/g04-047] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using plant EST collections, we obtained 1392 potential gene duplicates across 8 plant species: Zea mays, Oryza sativa, Sorghum bicolor, Hordeum vulgare, Solanum tuberosum, Lycopersicon esculentum, Medicago truncatula, and Glycine max. We estimated the synonymous and nonsynonymous distances between each gene pair and identified two to three mixtures of normal distributions corresponding to one to three rounds of genome duplication in each species. Within the Poaceae, we found a conserved duplication event among all four species that occurred approximately 50-60 million years ago (Mya); an event that probably occurred before the major radiation of the grasses. In the Solanaceae, we found evidence for a conserved duplication event approximately 50-52 Mya. A duplication in soybean occurred approximately 44 Mya and a duplication in Medicago about 58 Mya. Comparing synonymous and nonsynonymous distances allowed us to determine that most duplicate gene pairs are under purifying, negative selection. We calculated Pearson's correlation coefficients to provide us with a measure of how gene expression patterns have changed between duplicate pairs, and compared this across evolutionary distances. This analysis showed that some duplicates seemed to retain expression patterns between pairs, whereas others showed uncorrelated expression.
Collapse
Affiliation(s)
- Jessica A Schlueter
- Interdepartmental Genetics, Department of Genetics Developmental and Cellular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Duda TF, Palumbi SR. Gene expression and feeding ecology: evolution of piscivory in the venomous gastropod genus Conus. Proc Biol Sci 2004; 271:1165-74. [PMID: 15306367 PMCID: PMC1691710 DOI: 10.1098/rspb.2004.2708] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Differential expression of gene-family members is typically associated with the specific development of certain tissues and organs, but its importance in the ecological adaptation of organisms has rarely been investigated. Several specialized feeding modes have evolved within the predatory marine gastropod genus Conus, including molluscivory and piscivory. Based on phylogenetic investigations of Conus species, it has been concluded that piscivory arose at least twice in this genus. Moreover, molecular analyses of conotoxin mRNA transcripts reveal that piscivores from independent evolutionary lineages express the same subset of four-loop conotoxins, contrary to phylogenetic expectations. These results demonstrate that differential expression of gene-family members can play a key role in adaptive evolution, particularly during shifts to new ecological niches.
Collapse
Affiliation(s)
- Thomas F Duda
- Naos Marine Laboratory, Smithsonian Tropical Research Institute, Box 2072, Balboa, Ancón, Republic of Panama.
| | | |
Collapse
|
28
|
Jia L, Clegg MT, Jiang T. Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified from rice subspecies indica and japonica genomes. PLANT PHYSIOLOGY 2004; 134:575-85. [PMID: 14966247 PMCID: PMC344534 DOI: 10.1104/pp.103.027201] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2003] [Revised: 08/01/2003] [Accepted: 11/08/2003] [Indexed: 05/18/2023]
Abstract
The molecular evolution of the R2R3-MYB gene family is of great interest because it is one of the most important transcription factor gene families in the plant kingdom. Comparative analyses of a gene family may reveal important adaptive changes at the protein level and thereby provide insights that relate structure to function. We have performed a range of comparative and bioinformatics analyses on R2R3-MYB genes identified from the rice (Oryza sativa subsp. japonica and indica) and Arabidopsis genome sequences. The study provides an initial framework to investigate how different evolutionary lineages in a gene family evolve new functions. Our results reveal a remarkable excess of non-synonymous substitutions, an indication of adaptive selection on protein structure that occurred during the evolution of both helix1 and helix2 of rice R2R3-MYB DNA-binding domains. These flexible alpha-helix regions associated with high frequencies of excess non-synonymous substitutions may play critical roles in the characteristic packing of R2R3-MYB DNA-binding domains and thereby modify the protein-DNA interaction process resulting in the recognition of novel DNA-binding sites. Furthermore, a co-evolutionary pattern is found between the second alpha-helix of the R2 domain and the second alpha-helix of the R3 domain by examining all the possible alpha-helix pairings in both the R2 and R3 domains. This points to the functional importance of pairing interactions between related secondary structures.
Collapse
Affiliation(s)
- Li Jia
- Department of Biological Sciences, Wichita State University, Wichita, Kansas 67260, USA.
| | | | | |
Collapse
|
29
|
Schein M, Yang Z, Mitchell-Olds T, Schmid KJ. Rapid evolution of a pollen-specific oleosin-like gene family from Arabidopsis thaliana and closely related species. Mol Biol Evol 2004; 21:659-69. [PMID: 14739246 DOI: 10.1093/molbev/msh059] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been shown in a variety of species that genes expressed in reproductive tissues evolve rapidly, which often appears to be the result of positive Darwinian selection. We investigated the evolution of a family of seven pollen-specific oleosin-like proteins (or oleopollenins) in Arabidopsis thaliana and two closely related species. More than 30 kb of a genomic region that harbors the complete, tandemly repeated oleopollenin cluster were sequenced from Arabidopsis lyrata ssp. lyrata, and Boechera drummondii. A phylogenetic analysis of the complete gene cluster from these three species and from Brassica oleracea confirmed its rapid evolution resulting from gene duplication and gene loss events, numerous amino acid substitutions, and insertions/deletions in the coding sequence. Independent duplications were inferred in the lineages leading to Arabidopsis and to Brassica, and gene loss was inferred in the lineage leading to B. drummondii. Comparisons of the ratio of nonsynonymous (d(N)) and synonymous (d(S)) divergence revealed that the oleopollenins are among the most rapidly evolving proteins currently known from Arabidopsis and that they may evolve under positive Darwinian selection. Reverse transcriptase polymerase chain reaction analysis demonstrated the expression of oleopollenins in flowers of the outcrossing A. lyrata, the selfing B. drummondii, and the apomictic Boechera holboellii, suggesting that oleopollenins play an important role in species with different breeding systems. These results are consistent with a putative function in species recognition, but further analyses of protein function and sequence variation in species with different breeding systems are necessary to reveal the underlying causes for the rapid evolution of oleopollenins.
Collapse
Affiliation(s)
- Manja Schein
- Department of Genetics and Evolution, Max-Planck-Institute of Chemical Ecology, Jena, Germany
| | | | | | | |
Collapse
|
30
|
Long M, Betrán E, Thornton K, Wang W. The origin of new genes: glimpses from the young and old. Nat Rev Genet 2003; 4:865-75. [PMID: 14634634 DOI: 10.1038/nrg1204] [Citation(s) in RCA: 661] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genome data have revealed great variation in the numbers of genes in different organisms, which indicates that there is a fundamental process of genome evolution: the origin of new genes. However, there has been little opportunity to explore how genes with new functions originate and evolve. The study of ancient genes has highlighted the antiquity and general importance of some mechanisms of gene origination, and recent observations of young genes at early stages in their evolution have unveiled unexpected molecular and evolutionary processes.
Collapse
Affiliation(s)
- Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
31
|
|
32
|
Jia L, Clegg MT, Jiang T. Excess non-synonymous substitutions suggest that positive selection episodes occurred during the evolution of DNA-binding domains in the Arabidopsis R2R3-MYB gene family. PLANT MOLECULAR BIOLOGY 2003; 52:627-42. [PMID: 12956532 DOI: 10.1023/a:1024875232511] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
It has been suggested that evolutionary changes in regulatory genes may be the predominant molecular mechanism governing both physiological and morphological evolution. R2R3-AtMYB is one of the largest transcription factor gene families in Arabidopsis. Using inferred ancestral sequences we show that several lineages in the R2R3-AtMYB phylogeny experienced excess non-synonymous nucleotide substitution upon gene duplication, indicating episodes of positive selection driving adaptive shifts early in the evolution of this gene family. A noise reduction technique was then used to determine individual sites in DNA-binding domains (R2 domain and R3 domain) of R2R3-AtMYB protein sequence that were favored by frequent non-synonymous substitutions. The analyses reveal that the first helix (helix1) and the second helix (helix2) in both R2 and R3 domains are characterized by more frequent non-synonymous substitutions, and thus experienced significantly higher positive selection pressure than the third helix (helix3) in both domains. Previous MYB protein structure studies have suggested that helix1 and helix2 in both R2 and R3 domains are involved in the characteristic packing of R2R3-AtMYB DNA-binding domains. This suggests that excess non-synonymous substitutions in these helices could have resulted in MYB recognition of novel gene target sites.
Collapse
Affiliation(s)
- Li Jia
- Department of Computer Science, University of California, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
33
|
Bielawski JP, Yang Z. Maximum likelihood methods for detecting adaptive evolution after gene duplication. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2003. [PMID: 12836699 DOI: 10.1023/a:1022642807731] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The rapid accumulation of genomic sequences in public databases will finally allow large scale studies of gene family evolution, including evaluation of the role of positive Darwinian selection following a duplication event. This will be possible because recent statistical methods of comparing synonymous and nonsynonymous substitution rates permit reliable detection of positive selection at individual amino acid sites and along evolutionary lineages. Here, we summarize maximum-likelihood based methods, and present a framework for their application to analysis of gene families. Using these methods, we investigated the role of positive Darwinian selection in the ECP-EDN gene family of primates and the Troponin C gene family of vertebrates. We also comment on the limitations of these methods and discuss directions for further improvements.
Collapse
Affiliation(s)
- Joseph P Bielawski
- Department of Biology, University College London, Darwin Building, Gower Street, London WCIE 6BT, United Kingdom.
| | | |
Collapse
|
34
|
Vandenberg CJ, Matthews CM, Trotman CNA. Variant subunit specificity in the quaternary structure of Artemia hemoglobin. Mol Biol Evol 2002; 19:1288-91. [PMID: 12140240 DOI: 10.1093/oxfordjournals.molbev.a004189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The brine shrimp Artemia has three extracellular hemoglobins (Hbs) that are developmentally expressed and exhibit distinct oxygen-binding characteristics (Heip, Moens, and Kondo 1978; Heip et al. 1978 ). These Hbs are composed of two polymers, each of which comprises nine covalently linked globin domains. Although the cDNA sequences of two nine-domain globins from Artemia have been published, there is evidence for the existence of further expressed globin genes (Manning, Trotman, and Tate 1990 ). In the present study extensive analysis at the cDNA and genomic levels was performed in order to determine the globin gene copy number in Artemia. Sequence and Southern analysis suggest that four Hb polymers (T1, T2, C1, and C2) are expressed in Artemia. In addition, there is also at least one globin pseudogene. Protein sequencing of the native Hbs revealed that there are limitations on which two polymers can associate. The composition of the Hbs has been determined to be: Hb I, C1C2; Hb II, C1T2; and Hb III, T1T2. These pairings allow the levels of the three Artemia Hbs to be regulated independently by polymer expression alone, therefore explaining the previously inconsistent developmental and hypoxia-induced expression patterns.
Collapse
|
35
|
Abstract
Much progress in understanding the evolution of new genes has been accomplished in the past few years. Molecular mechanisms such as illegitimate recombination and LINE element mediated 3' transduction underlying exon shuffling, a major process for generating new genes, are better understood. The identification of young genes in invertebrates and vertebrates has revealed a significant role of adaptive evolution acting on initially rudimentary gene structures created as if by evolutionary tinkers. New genes in humans and our primate relatives add a new component to the understanding of genetic divergence between humans and non-humans.
Collapse
Affiliation(s)
- M Long
- Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago Illinois 60637, USA.
| |
Collapse
|
36
|
Barrier M, Robichaux RH, Purugganan MD. Accelerated regulatory gene evolution in an adaptive radiation. Proc Natl Acad Sci U S A 2001; 98:10208-13. [PMID: 11517318 PMCID: PMC56940 DOI: 10.1073/pnas.181257698] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The disparity between rates of morphological and molecular evolution remains a key paradox in evolutionary genetics. A proposed resolution to this paradox has been the conjecture that morphological evolution proceeds via diversification in regulatory loci, and that phenotypic evolution may correlate better with regulatory gene divergence. This conjecture can be tested by examining rates of regulatory gene evolution in species that display rapid morphological diversification within adaptive radiations. We have isolated homologues to the Arabidopsis APETALA3 (ASAP3/TM6) and APETALA1 (ASAP1) floral regulatory genes and the CHLOROPHYLL A/B BINDING PROTEIN9 (ASCAB9) photosynthetic structural gene from species in the Hawaiian silversword alliance, a premier example of plant adaptive radiation. We have compared rates of regulatory and structural gene evolution in the Hawaiian species to those in related species of North American tarweeds. Molecular evolutionary analyses indicate significant increases in nonsynonymous relative to synonymous nucleotide substitution rates in the ASAP3/TM6 and ASAP1 regulatory genes in the rapidly evolving Hawaiian species. By contrast, no general increase is evident in neutral mutation rates for these loci in the Hawaiian species. An increase in nonsynonymous relative to synonymous nucleotide substitution rate is also evident in the ASCAB9 structural gene in the Hawaiian species, but not to the extent displayed in the regulatory loci. The significantly accelerated rates of regulatory gene evolution in the Hawaiian species may reflect the influence of allopolyploidy or of selection and adaptive divergence. The analyses suggest that accelerated rates of regulatory gene evolution may accompany rapid morphological diversification in adaptive radiations.
Collapse
Affiliation(s)
- M Barrier
- Department of Genetics, Box 7614, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
37
|
Abstract
Because a microdeletion containing the DAZ gene is the most frequently observed deletion in infertile men, the DAZ gene was considered a strong candidate for the azoospermia factor. A recent evolutionary analysis, however, suggested that DAZ was free from functional constraints and consequently played little or no role in human spermatogenesis. The major evidence for this surprising conclusion is that the nonsynonymous substitution rate is similar to the synonymous rate and to the rate in introns. In this study, we reexamined the evolution of the DAZ gene family by using maximum-likelihood methods, which accommodate variable selective pressures among sites or among branches. The results suggest that DAZ is not free from functional constraints. Most amino acids in DAZ are under strong selective constraint, while a few sites are under diversifying selection with nonsynonymous/ synonymous rate ratios (d(N)/d(S)) well above 1. As a result, the average d(N)/d(S) ratio over sites is not a sensible measure of selective pressure on the protein. Lineage-specific analysis indicated that human members of this gene family were evolving by positive Darwinian selection, although the evidence was not strong.
Collapse
Affiliation(s)
- J P Bielawski
- Department of Biology, Galton Laboratory, University College London, England.
| | | |
Collapse
|
38
|
Abstract
In eukaryote genomes, there are many kinds of gene families. Gene duplication and conversion are sources of the evolution of gene families, including those with uniform members and those with diverse functions. Population genetics theory on identity coefficients among gene members of a gene family shows that the balance between diversification by mutation, and homogenization by unequal crossing over and gene conversion, is important. Also, evolution of new functions is due to gene duplication followed by differentiation. Positive selection is necessary for the evolution of novel functions. However, many examples of current gene families suggest that both drift and selection are at work on their evolution.
Collapse
Affiliation(s)
- T Ohta
- National Institute of Genetics, Mishima, Shizuoka-ken 411-8540, Japan.
| |
Collapse
|
39
|
Duda TF, Palumbi SR. Evolutionary diversification of multigene families: allelic selection of toxins in predatory cone snails. Mol Biol Evol 2000; 17:1286-93. [PMID: 10958845 DOI: 10.1093/oxfordjournals.molbev.a026412] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order to investigate the evolution of conotoxin multigene families among two closely related vermivorous CONUS: species, we sequenced 104 four-loop conotoxin mRNAs from two individuals of CONUS: ebraeus and compared these with sequences already obtained from CONUS: abbreviatus. In contrast to the diversity of conotoxin sequences obtained from C. abbreviatus, only two common sequence variants were recovered from C. ebraeus. Segregation patterns of the variants in these two individuals and restriction digests of four-loop conotoxin amplification products from nine additional individuals suggest that the common variants are alleles from a single locus. These two putative alleles differ at nine positions that occur nonrandomly in the toxin-coding region of the sequences. Moreover, all substitutions are at nonsynonymous sites and are responsible for seven amino acid differences among the predicted amino acid sequences of the alleles. These results imply that conotoxin diversity is driven by strong diversifying selection and some form of frequency-dependent or overdominant selection at conotoxin loci, and they suggest that diverse conotoxin multigene families can originate from duplications at polymorphic loci. Furthermore, none of the sequences recovered from C. ebraeus appeared to be orthologs of loci from C. abbreviatus, and attempts to amplify orthologous sequences with locus-specific primers were unsuccessful among these species. These patterns suggest that venoms of closely related CONUS: species may differ due to the differential expression of conotoxin loci.
Collapse
Affiliation(s)
- T F Duda
- Department of Organismic and Evolutionary Biology, Biological Laboratories, Harvard University, USA.
| | | |
Collapse
|
40
|
Wang W, Zhang J, Alvarez C, Llopart A, Long M. The origin of the Jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster. Mol Biol Evol 2000; 17:1294-301. [PMID: 10958846 DOI: 10.1093/oxfordjournals.molbev.a026413] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Jingwei (jgw) is the first gene found to be of sufficiently recent origin in Drosophila to offer insights into the origin of a gene. While its chimerical gene structure was partially resolved as including a retrosequence of alcohol dehydrogenase (ADH:), the structure of its non-ADH: parental gene, the donor of the N-terminal domain of jgw, is unclear. We characterized this non-ADH: parental locus, yellow emperor (ymp), by cloning it, mapping it onto the polytene chromosomes, sequencing the entire locus, and examining its expression patterns in Drosophila melanogaster. We show that ymp is located in the 96-E region; the N-terminal domain of ymp has donated the non-ADH: portion of jgw via a duplication. The similar 5' portions of the gene and its regulatory sequences give rise to similar testis-specific expression patterns in ymp and jgw in Drosophila teissieri. Furthermore, between-species comparison of ymp revealed purifying selection in the protein sequence, suggesting a functional constraint in ymp. While the structure of ymp provides clear information for the molecular origin of the new gene jgw, it unexpectedly casts a new light on the concept of genes. We found, for the first time, that the single locus of the ymp gene encompasses three major molecular mechanisms determining structure of eukaryotic genes: (1) the 5' exons of ymp are involved in an exon-shuffling event that has created the portion recruited by jgw; (2) using alternative cleavage sites and alternative splicing sites, the 3' exon groups of ymp produce two proteins with nonhomologous C-terminal domains, both exclusively in the testis; and (3) in the opposite strand of the third intron of ymp is an essential gene, musashi (msi), which encodes an RNA-binding protein. The composite gene structure of ymp manifests the complexity of the gene concept, which should be considered in genomic research, e.g., gene finding.
Collapse
Affiliation(s)
- W Wang
- Department of Ecology and Evolution, University of Chicago. Department of Molecular and Cellular Biology, Harvard University
| | | | | | | | | |
Collapse
|
41
|
Abstract
The gene for actin as a highly conserved and functionally essential genetic element is developing into a major tool for phylogenetic analysis within a broad organismic range. We therefore propose a set of universally applicable primers that allow reliable amplification of actin genes. For primer construction the amino acid sequences of 57 actin genes comprising fungi, animals, plants and protists were analysed, aligned and used for the definition of six well-conserved regions which are suitable as priming sites in PCR amplification experiments. Ten primers were designed for specific in vitro amplification of actin gene fragments from a wide range of microorganisms. The corresponding gene fragments provide a strong basis to isolate nearly complete actin genes for further molecular characterization and for establishing phylogenies based on actin gene trees.
Collapse
Affiliation(s)
- K Voigt
- Fungal Reference Centre and Department of General Microbiology and Microbial Genetics, Friedrich-Schiller-Universität Jena, Institut für Mikrobiologie, Germany.
| | | |
Collapse
|
42
|
Characterization of the α-mannosidase gene family in filamentous fungi: N-glycan remodelling for the development of eukaryotic expression systems. BIOTECHNOL BIOPROC E 2000. [DOI: 10.1007/bf02942178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Small RL, Wendel JF. Phylogeny, duplication, and intraspecific variation of Adh sequences in New World diploid cottons (Gossypium l., malvaceae). Mol Phylogenet Evol 2000; 16:73-84. [PMID: 10877941 DOI: 10.1006/mpev.1999.0750] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 13 "D-genome"cotton species are a monophyletic assemblage of morphologically diverse diploids that inhabit arid to semiarid regions in Mexico, with 1 disjunct species each in Peru and the Galapagos Islands and 1 species whose range extends northward into Arizona. While these species lack commercially significant fiber (i. e., cotton), they are important in that they represent one of the parental genomes of the cultivated tetraploid cottons. To assess phylogenetic relationships among these species, we sequenced and analyzed a region of a nuclear-encoded alcohol dehydrogenase gene (AdhA). Phylogenetic analysis resulted in a topology that is generally consistent with current taxonomic alignment of the species, although the phylogeny based on AdhA sequences conflicts with those inferred from cpDNA and ITS data sets, most notably in the position of the anomalous species Gossypium gossypioides. In one lineage, we detected both gene duplication and sequence polymorphisms that transcend species boundaries; sequences in this lineage formed a monophyletic clade, yet no taxon within the clade contained a monophyletic collection of sequences. Potential explanations for this latter phenomenon, including gene duplication, gene flow, and lineage sorting, are discussed.
Collapse
Affiliation(s)
- R L Small
- Department of Botany, Iowa State University, Iowa, Ames, 50011, USA.
| | | |
Collapse
|
44
|
Wagner A. Decoupled evolution of coding region and mRNA expression patterns after gene duplication: implications for the neutralist-selectionist debate. Proc Natl Acad Sci U S A 2000; 97:6579-84. [PMID: 10823904 PMCID: PMC18666 DOI: 10.1073/pnas.110147097] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/1999] [Accepted: 04/03/2000] [Indexed: 11/18/2022] Open
Abstract
The neutralist perspective on molecular evolution maintains that the vast majority of mutations affecting gene function are neutral or deleterious. After a gene duplication where both genes are retained, it predicts that original and duplicate genes diverge at clock-like rates. This prediction is usually tested for coding sequences, but can also be applied to another important aspect of gene function, the genes' expression pattern. Moreover, if both sequence and expression pattern diverge at clock-like rates, a correlation between divergence in sequence and divergence in expression patterns is expected. Duplicate gene pairs with more highly diverged sequences should also show more highly diverged expression patterns. This prediction is tested for a large sample of duplicated genes in the yeast Saccharomyces cerevisiae, using both genome sequence and microarray expression data. Only a weak correlation is observed, suggesting that coding sequence and mRNA expression patterns of duplicate gene pairs evolve independently and at vastly different rates. Implications of this finding for the neutralist-selectionist debate are discussed.
Collapse
Affiliation(s)
- A Wagner
- The Santa Fe Institute, University of New Mexico, Department of Biology, 167A Castetter Hall, Albuquerque, NM 87131-1091, USA.
| |
Collapse
|
45
|
Abstract
alpha-Mannosidase enzymes comprise a class of gylcoside hydrolases involved in the maturation and degradaton of glycoprotein-linked oligosaccharides. Various alpha-mannosidase enzymatic activities are encoded by an ancient and ubiquitous gene superfamily. A comparative sequence analysis was employed here to characterize the evolutionary relationships and dynamics of the alpha-mannosidase superfamily. A series of lineage-specific BLAST searches recovered the first ever recognized archaean and eubacterial alpha-mannosidase sequences, in addition to numerous eukaryotic sequences. Motif-based alignment and subsequent phylogenetic analysis of the entire superfamily revealed the presence of three well-supported monophyletic clades that represent discrete alpha-mannosidase families. The comparative method was used to evaluate the phylogenetic distribution of alpha-mannosidase functional variants within families. Results of this analysis demonstrate a pattern of functional diversification of alpha-mannosidase paralogs followed by conservation of function among orthologs. Nucleotide polymorphism among the most closely related pair of duplicated genes was analyzed to evaluate the role of natural selection in the functional diversification of alpha-mannosidase paralogs. Ratios of nonsynonymous and synonymous variation show an increase in the rate of nonsynonymous change after duplication and a relative excess of fixed nonsynonymous changes between the two groups of paralogs. These data point to a possible role for positive Darwinian selection in the evolution of alpha-mannosidase functional diversification following gene duplication.
Collapse
Affiliation(s)
- D S Gonzalez
- Department of Medical Microbiology, University of Georgia, USA
| | | |
Collapse
|
46
|
Abstract
Polyploidy is a prominent process in plants and has been significant in the evolutionary history of vertebrates and other eukaryotes. In plants, interdisciplinary approaches combining phylogenetic and molecular genetic perspectives have enhanced our awareness of the myriad genetic interactions made possible by polyploidy. Here, processes and mechanisms of gene and genome evolution in polyploids are reviewed. Genes duplicated by polyploidy may retain their original or similar function, undergo diversification in protein function or regulation, or one copy may become silenced through mutational or epigenetic means. Duplicated genes also may interact through inter-locus recombination, gene conversion, or concerted evolution. Recent experiments have illuminated important processes in polyploids that operate above the organizational level of duplicated genes. These include inter-genomic chromosomal exchanges, saltational, non-Mendelian genomic evolution in nascent polyploids, inter-genomic invasion, and cytonuclear stabilization. Notwithstanding many recent insights, much remains to be learned about many aspects of polyploid evolution, including: the role of transposable elements in structural and regulatory gene evolution; processes and significance of epigenetic silencing; underlying controls of chromosome pairing; mechanisms and functional significance of rapid genome changes; cytonuclear accommodation; and coordination of regulatory factors contributed by two, sometimes divergent progenitor genomes. Continued application of molecular genetic approaches to questions of polyploid genome evolution holds promise for producing lasting insight into processes by which novel genotypes are generated and ultimately into how polyploidy facilitates evolution and adaptation.
Collapse
Affiliation(s)
- J F Wendel
- Department of Botany, Iowa State University, Ames 50011, USA.
| |
Collapse
|
47
|
Abstract
Polyploidy is a prominent process in plants and has been significant in the evolutionary history of vertebrates and other eukaryotes. In plants, interdisciplinary approaches combining phylogenetic and molecular genetic perspectives have enhanced our awareness of the myriad genetic interactions made possible by polyploidy. Here, processes and mechanisms of gene and genome evolution in polyploids are reviewed. Genes duplicated by polyploidy may retain their original or similar function, undergo diversification in protein function or regulation, or one copy may become silenced through mutational or epigenetic means. Duplicated genes also may interact through inter-locus recombination, gene conversion, or concerted evolution. Recent experiments have illuminated important processes in polyploids that operate above the organizational level of duplicated genes. These include inter-genomic chromosomal exchanges, saltational, non-Mendelian genomic evolution in nascent polyploids, inter-genomic invasion, and cytonuclear stabilization. Notwithstanding many recent insights, much remains to be learned about many aspects of polyploid evolution, including: the role of transposable elements in structural and regulatory gene evolution; processes and significance of epigenetic silencing; underlying controls of chromosome pairing; mechanisms and functional significance of rapid genome changes; cytonuclear accommodation; and coordination of regulatory factors contributed by two, sometimes divergent progenitor genomes. Continued application of molecular genetic approaches to questions of polyploid genome evolution holds promise for producing lasting insight into processes by which novel genotypes are generated and ultimately into how polyploidy facilitates evolution and adaptation.
Collapse
Affiliation(s)
- J F Wendel
- Department of Botany, Iowa State University, Ames 50011, USA.
| |
Collapse
|
48
|
Cronn RC, Small RL, Wendel JF. Duplicated genes evolve independently after polyploid formation in cotton. Proc Natl Acad Sci U S A 1999; 96:14406-11. [PMID: 10588718 PMCID: PMC24449 DOI: 10.1073/pnas.96.25.14406] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Of the many processes that generate gene duplications, polyploidy is unique in that entire genomes are duplicated. This process has been important in the evolution of many eukaryotic groups, and it occurs with high frequency in plants. Recent evidence suggests that polyploidization may be accompanied by rapid genomic changes, but the evolutionary fate of discrete loci recently doubled by polyploidy (homoeologues) has not been studied. Here we use locus-specific isolation techniques with comparative mapping to characterize the evolution of homoeologous loci in allopolyploid cotton (Gossypium hirsutum) and in species representing its diploid progenitors. We isolated and sequenced 16 loci from both genomes of the allopolyploid, from both progenitor diploid genomes and appropriate outgroups. Phylogenetic analysis of the resulting 73.5 kb of sequence data demonstrated that for all 16 loci (14.7 kb/genome), the topology expected from organismal history was recovered. In contrast to observations involving repetitive DNAs in cotton, there was no evidence of interaction among duplicated genes in the allopolyploid. Polyploidy was not accompanied by an obvious increase in mutations indicative of pseudogene formation. Additionally, differences in rates of divergence among homoeologues in polyploids and orthologues in diploids were indistinguishable across loci, with significant rate deviation restricted to two putative pseudogenes. Our results indicate that most duplicated genes in allopolyploid cotton evolve independently of each other and at the same rate as those of their diploid progenitors. These indications of genic stasis accompanying polyploidization provide a sharp contrast to recent examples of rapid genomic evolution in allopolyploids.
Collapse
Affiliation(s)
- R C Cronn
- Department of Botany, Bessey Hall 353, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
49
|
Abstract
Dramatic progress has been made in the past ten years in the development of statistical and experimental techniques for investigating features of molecular evolution. Applied to coding regions, these techniques have produced remarkable advances in our understanding of selection for codon usage but, ironically, have had little impact on our understanding of protein evolution. That may be about to change.
Collapse
Affiliation(s)
- M Kreitman
- Department of Ecology and Evolution, University of Chicago, Chicago, 60637, USA.
| | | |
Collapse
|
50
|
Long M, Wang W, Zhang J. Origin of new genes and source for N-terminal domain of the chimerical gene, jingwei, in Drosophila. Gene 1999; 238:135-41. [PMID: 10570991 DOI: 10.1016/s0378-1119(99)00229-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This paper deals with a general question posed by the origin of new processed chimerical genes: when a new retrosequence inserts into a new genome position, how does it become activated and acquire novel protein function by recruiting new functional domains and regulatory elements? Jingwei (jgw), a newly evolved functional gene with a chimerical structure in Drosophila, provides an opportunity to examine such questions. The source of its exon encoding C-terminal peptide has been identified as an Adh retrosequence, which extends the concept of exon shuffling from recombination to retroposition as a general molecular mechanism for the origin of a new gene. However, the origin of 5' exons remains unclear. We examined two hypotheses concerning the origin of these non-Adh-derived jgw exons: (i) these exons might originate from a unique genomic sequence that fortuitously evolved a standard intron-exon structure and regulatory sequence for jgw; (ii) these exons might be a duplicate of an unrelated previously existing gene. Genomic Southern analysis, in conjunction with construction and screening of a genomic bookshelf (sub-library), was conducted in a group of Drosophila species. The results demonstrated that there are duplicate genes containing the same structure as the recruited portion of jgw. We name this duplicate gene in Drosophila teissieri and Drosophila yakuba and its orthologous gene in Drosophila melanogaster as yellow-emperor (ymp). Thus, the 5' exons/introns originated from a previously existing gene that provided new modules with specific sub-function to create jgw.
Collapse
Affiliation(s)
- M Long
- Department of Ecology and Evolution, The University of Chicago, IL 60637, USA.
| | | | | |
Collapse
|