1
|
Sanchez-Pulido L, Ponting CP. OAF: a new member of the BRICHOS family. BIOINFORMATICS ADVANCES 2022; 2:vbac087. [PMID: 36699367 PMCID: PMC9714404 DOI: 10.1093/bioadv/vbac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/03/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Summary The 10 known BRICHOS domain-containing proteins in humans have been linked to an unusually long list of pathologies, including cancer, obesity and two amyloid-like diseases. BRICHOS domains themselves have been described as intramolecular chaperones that act to prevent amyloid-like aggregation of their proteins' mature polypeptides. Using structural comparison of coevolution-based AlphaFold models and sequence conservation, we identified the Out at First (OAF) protein as a new member of the BRICHOS family in humans. OAF is an experimentally uncharacterized protein that has been proposed as a candidate biomarker for clinical management of coronavirus disease 2019 infections. Our analysis revealed how structural comparison of AlphaFold models can discover remote homology relationships and lead to a better understanding of BRICHOS domain molecular mechanism. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Luis Sanchez-Pulido
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
2
|
David D, Anand D, Araújo C, Gloss B, Fino J, Dinger M, Lindahl P, Pöyhönen M, Hannele L, Lavinha J. Identification of OAF and PVRL1 as candidate genes for an ocular anomaly characterized by Peters anomaly type 2 and ectopia lentis. Exp Eye Res 2018; 168:161-170. [PMID: 29305299 DOI: 10.1016/j.exer.2017.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 01/10/2023]
Abstract
Keratolenticular dysgenesis (KLD) and ectopia lentis are congenital eye defects. The aim of this study is the identification of molecular genetic alterations responsible for those ocular anomalies with neurologic impairment in an individual with a de novo balanced chromosome translocation t(11;18)(q23.3;q11.2)dn. Disruption of OAF, the human orthologue of the Drosophila oaf, by the 11q23.3 breakpoint results in reduced expression of this transcriptional regulator. Furthermore, four most likely nonfunctional chimeric transcripts comprising up to OAF exon 3, derived from the der(11) allele, have also been identified. This locus has been implicated by publicly available genome-wide association data in corneal disease and corneal topography. The expression of the poliovirus receptor-related 1(PVRL1) or nectin cell adhesion molecule 1 (NECTIN1), a paralogue of nectin cell adhesion molecule 3 (PVRL3) associated with congenital ocular defects, situated 500 kb upstream from 11q23.3 breakpoint, is increased. The 18q11.2 breakpoint is localized between cutaneous T-cell lymphoma-associated antigen 1(CTAGE1) and retinoblastoma binding protein 8 (RBBP8) genes. Genomic imbalance that could contribute to the observed phenotype was excluded. Analysis of gene expression datasets throughout normal murine ocular lens embryogenesis suggests that OAF expression is significantly enriched in the lens from early stages of development through adulthood, whereas PVRL1 is lens-enriched until E12.5 and then down-regulated. This contrasts with the observation that the proposita's lymphoblastoid cell lines exhibit low OAF and high PVRL1 expression as compared to control, which offers further support that the alterations described above are most likely responsible for the clinical phenotype. Finally, gene interaction topology data for PVRL1 also agree with our proposal that disruption of OAF by the translocation breakpoint and misregulation of PVRL1 due to a position effect contribute to the observed ocular and neurological phenotype.
Collapse
Affiliation(s)
- Dezső David
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Lisbon, Portugal.
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Carlos Araújo
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Lisbon, Portugal
| | - Brian Gloss
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW, Kensington, Australia
| | - Joana Fino
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Lisbon, Portugal
| | - Marcel Dinger
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW, Kensington, Australia
| | - Päivi Lindahl
- Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Minna Pöyhönen
- Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Laivuori Hannele
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - João Lavinha
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
3
|
Pancsa R, Macossay-Castillo M, Kosol S, Tompa P. Computational analysis of translational readthrough proteins in Drosophila and yeast reveals parallels to alternative splicing. Sci Rep 2016; 6:32142. [PMID: 27561673 PMCID: PMC4999894 DOI: 10.1038/srep32142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/21/2016] [Indexed: 01/21/2023] Open
Abstract
In translational readthrough (TR) the ribosome continues extending the nascent protein beyond the first in-frame termination codon. Due to the lack of dedicated analyses of eukaryotic TR cases, the associated functional-evolutionary advantages are still unclear. Here, based on a variety of computational methods, we describe the structural and functional properties of previously proposed D. melanogaster and S. cerevisiae TR proteins and extensions. We found that in D. melanogaster TR affects long proteins in mainly regulatory roles. Their TR-extensions are structurally disordered and rich in binding motifs, which, together with their cell-type- and developmental stage-dependent inclusion, suggest that similarly to alternatively spliced exons they rewire cellular interaction networks in a temporally and spatially controlled manner. In contrast, yeast TR proteins are rather short and fulfil mainly housekeeping functions, like translation. Yeast extensions usually lack disorder and linear motifs, which precludes elucidating their functional relevance with sufficient confidence. Therefore we propose that by being much more restricted and by lacking clear functional hallmarks in yeast as opposed to fruit fly, TR shows remarkable parallels with alternative splicing. Additionally, the lack of conservation of TR extensions among orthologous TR proteins suggests that TR-mediated functions may be generally specific to lower taxonomic levels.
Collapse
Affiliation(s)
- Rita Pancsa
- Flanders Institute for Biotechnology (VIB), Structural Biology Research Center, Vrije Universiteit Brussel, 1050 Pleinlaan 2, Brussels, Belgium
| | - Mauricio Macossay-Castillo
- Flanders Institute for Biotechnology (VIB), Structural Biology Research Center, Vrije Universiteit Brussel, 1050 Pleinlaan 2, Brussels, Belgium
| | - Simone Kosol
- Flanders Institute for Biotechnology (VIB), Structural Biology Research Center, Vrije Universiteit Brussel, 1050 Pleinlaan 2, Brussels, Belgium
| | - Peter Tompa
- Flanders Institute for Biotechnology (VIB), Structural Biology Research Center, Vrije Universiteit Brussel, 1050 Pleinlaan 2, Brussels, Belgium.,Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, 1117 Budapest, Hungary
| |
Collapse
|
4
|
Abstract
Translational readthrough (TR) has come into renewed focus because systems biology approaches have identified the first human genes undergoing functional translational readthrough (FTR). FTR creates functional extensions to proteins by continuing translation of the mRNA downstream of the stop codon. Here we review recent developments in TR research with a focus on the identification of FTR in humans and the systems biology methods that have spurred these discoveries.
Collapse
Affiliation(s)
- Fabian Schueren
- University Medical Center, Department of Child and Adolescent Health, University of Göttingen, Göttingen, Germany
| | - Sven Thoms
- University Medical Center, Department of Child and Adolescent Health, University of Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
5
|
Katz MJ, Gándara L, De Lella Ezcurra AL, Wappner P. Hydroxylation and translational adaptation to stress: some answers lie beyond the STOP codon. Cell Mol Life Sci 2016; 73:1881-93. [PMID: 26874685 PMCID: PMC11108485 DOI: 10.1007/s00018-016-2160-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 01/08/2023]
Abstract
Regulation of protein synthesis contributes to maintenance of homeostasis and adaptation to environmental changes. mRNA translation is controlled at various levels including initiation, elongation and termination, through post-transcriptional/translational modifications of components of the protein synthesis machinery. Recently, protein and RNA hydroxylation have emerged as important enzymatic modifications of tRNAs, elongation and termination factors, as well as ribosomal proteins. These modifications enable a correct STOP codon recognition, ensuring translational fidelity. Recent studies are starting to show that STOP codon read-through is related to the ability of the cell to cope with different types of stress, such as oxidative and chemical insults, while correlations between defects in hydroxylation of protein synthesis components and STOP codon read-through are beginning to emerge. In this review we will discuss our current knowledge of protein synthesis regulation through hydroxylation of components of the translation machinery, with special focus on STOP codon recognition. We speculate on the possibility that programmed STOP codon read-through, modulated by hydroxylation of components of the protein synthesis machinery, is part of a concerted cellular response to stress.
Collapse
Affiliation(s)
- M J Katz
- Instituto Leloir, Buenos Aires, Argentina
| | - L Gándara
- Instituto Leloir, Buenos Aires, Argentina
| | | | - P Wappner
- Instituto Leloir, Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular, y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Abstract
In the context of the FlyBase annotated gene models in Drosophila melanogaster, we describe the many exceptional cases we have curated from the literature or identified in the course of FlyBase analysis. These range from atypical but common examples such as dicistronic and polycistronic transcripts, noncanonical splices, trans-spliced transcripts, noncanonical translation starts, and stop-codon readthroughs, to single exceptional cases such as ribosomal frameshifting and HAC1-type intron processing. In FlyBase, exceptional genes and transcripts are flagged with Sequence Ontology terms and/or standardized comments. Because some of the rule-benders create problems for handlers of high-throughput data, we discuss plans for flagging these cases in bulk data downloads.
Collapse
|
7
|
Dinman JD. Control of gene expression by translational recoding. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:129-49. [PMID: 22243583 PMCID: PMC7149833 DOI: 10.1016/b978-0-12-386497-0.00004-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Like all rules, even the genetic code has exceptions: these are generically classified as “translational recoding.” Almost every conceivable mode of recoding has been documented, including signals that redefine translational reading frame and codon assignation. While first described in viruses, it is becoming clear that sequences that program elongating ribosomes to shift translational reading frame are widely used by organisms in all domains of life, thus expanding both the coding capacity of genomes and the modes through which gene expression can be regulated at the posttranscriptional level. Instances of programmed ribosomal frameshifting and stop codon reassignment are opening up new avenues for treatment of numerous inborn errors of metabolism. The implications of these findings on human health are only beginning to emerge.
Collapse
Affiliation(s)
- Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
8
|
Jungreis I, Lin MF, Spokony R, Chan CS, Negre N, Victorsen A, White KP, Kellis M. Evidence of abundant stop codon readthrough in Drosophila and other metazoa. Genome Res 2011; 21:2096-113. [PMID: 21994247 DOI: 10.1101/gr.119974.110] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
While translational stop codon readthrough is often used by viral genomes, it has been observed for only a handful of eukaryotic genes. We previously used comparative genomics evidence to recognize protein-coding regions in 12 species of Drosophila and showed that for 149 genes, the open reading frame following the stop codon has a protein-coding conservation signature, hinting that stop codon readthrough might be common in Drosophila. We return to this observation armed with deep RNA sequence data from the modENCODE project, an improved higher-resolution comparative genomics metric for detecting protein-coding regions, comparative sequence information from additional species, and directed experimental evidence. We report an expanded set of 283 readthrough candidates, including 16 double-readthrough candidates; these were manually curated to rule out alternatives such as A-to-I editing, alternative splicing, dicistronic translation, and selenocysteine incorporation. We report experimental evidence of translation using GFP tagging and mass spectrometry for several readthrough regions. We find that the set of readthrough candidates differs from other genes in length, composition, conservation, stop codon context, and in some cases, conserved stem-loops, providing clues about readthrough regulation and potential mechanisms. Lastly, we expand our studies beyond Drosophila and find evidence of abundant readthrough in several other insect species and one crustacean, and several readthrough candidates in nematode and human, suggesting that functionally important translational stop codon readthrough is significantly more prevalent in Metazoa than previously recognized.
Collapse
Affiliation(s)
- Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Firth AE, Wills NM, Gesteland RF, Atkins JF. Stimulation of stop codon readthrough: frequent presence of an extended 3' RNA structural element. Nucleic Acids Res 2011; 39:6679-91. [PMID: 21525127 PMCID: PMC3159437 DOI: 10.1093/nar/gkr224] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In Sindbis, Venezuelan equine encephalitis and related alphaviruses, the polymerase is translated as a fusion with other non-structural proteins via readthrough of a UGA stop codon. Surprisingly, earlier work reported that the signal for efficient readthrough comprises a single cytidine residue 3′-adjacent to the UGA. However, analysis of variability at synonymous sites revealed strikingly enhanced conservation within the ∼150 nt 3′-adjacent to the UGA, and RNA folding algorithms revealed the potential for a phylogenetically conserved stem–loop structure in the same region. Mutational analysis of the predicted structure demonstrated that the stem–loop increases readthrough by up to 10-fold. The same computational analysis indicated that similar RNA structures are likely to be relevant to readthrough in certain plant virus genera, notably Furovirus, Pomovirus, Tobravirus, Pecluvirus and Benyvirus, as well as the Drosophilia gene kelch. These results suggest that 3′ RNA stimulatory structures feature in a much larger proportion of readthrough cases than previously anticipated, and provide a new criterion for assessing the large number of cellular readthrough candidates that are currently being revealed by comparative sequence analysis.
Collapse
Affiliation(s)
- Andrew E Firth
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | |
Collapse
|
10
|
Namy O, Rousset JP. Specification of Standard Amino Acids by Stop Codons. RECODING: EXPANSION OF DECODING RULES ENRICHES GENE EXPRESSION 2010. [DOI: 10.1007/978-0-387-89382-2_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
11
|
Castellano S. On the unique function of selenocysteine — Insights from the evolution of selenoproteins. Biochim Biophys Acta Gen Subj 2009; 1790:1463-70. [DOI: 10.1016/j.bbagen.2009.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Revised: 03/20/2009] [Accepted: 03/24/2009] [Indexed: 01/18/2023]
|
12
|
Lao NT, Maloney AP, Atkins JF, Kavanagh TA. Versatile dual reporter gene systems for investigating stop codon readthrough in plants. PLoS One 2009; 4:e7354. [PMID: 19816579 PMCID: PMC2754532 DOI: 10.1371/journal.pone.0007354] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 09/11/2009] [Indexed: 12/04/2022] Open
Abstract
Background Translation is most often terminated when a ribosome encounters the first in-frame stop codon (UAA, UAG or UGA) in an mRNA. However, many viruses (and some cellular mRNAs) contain “stop” codons that cause a proportion of ribosomes to terminate and others to incorporate an amino acid and continue to synthesize a “readthrough”, or C-terminally extended, protein. This dynamic redefinition of codon meaning is dependent on specific sequence context. Methodology We describe two versatile dual reporter systems which facilitate investigation of stop codon readthrough in vivo in intact plants, and identification of the amino acid incorporated at the decoded stop codon. The first is based on the reporter enzymes NAN and GUS for which sensitive fluorogenic and histochemical substrates are available; the second on GST and GFP. Conclusions We show that the NAN-GUS system can be used for direct in planta measurements of readthrough efficiency following transient expression of reporter constructs in leaves, and moreover, that the system is sufficiently sensitive to permit measurement of readthrough in stably transformed plants. We further show that the GST-GFP system can be used to affinity purify readthrough products for mass spectrometric analysis and provide the first definitive evidence that tyrosine alone is specified in vivo by a ‘leaky’ UAG codon, and tyrosine and tryptophan, respectively, at decoded UAA, and UGA codons in the Tobacco mosaic virus (TMV) readthrough context.
Collapse
Affiliation(s)
- Nga T. Lao
- Plant Molecular Genetics Laboratory, Smurfit Institute of Genetics, Trinity College, Dublin, Ireland
| | - Alan P. Maloney
- Plant Molecular Genetics Laboratory, Smurfit Institute of Genetics, Trinity College, Dublin, Ireland
| | - John F. Atkins
- Biosciences Institute, University College Cork, Cork, Ireland
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Tony A. Kavanagh
- Plant Molecular Genetics Laboratory, Smurfit Institute of Genetics, Trinity College, Dublin, Ireland
- * E-mail:
| |
Collapse
|
13
|
Lin MF, Carlson JW, Crosby MA, Matthews BB, Yu C, Park S, Wan KH, Schroeder AJ, Gramates LS, St. Pierre SE, Roark M, Wiley KL, Kulathinal RJ, Zhang P, Myrick KV, Antone JV, Celniker SE, Gelbart WM, Kellis M. Revisiting the protein-coding gene catalog of Drosophila melanogaster using 12 fly genomes. Genes Dev 2007; 17:1823-36. [PMID: 17989253 PMCID: PMC2099591 DOI: 10.1101/gr.6679507] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 09/21/2007] [Indexed: 11/24/2022]
Abstract
The availability of sequenced genomes from 12 Drosophila species has enabled the use of comparative genomics for the systematic discovery of functional elements conserved within this genus. We have developed quantitative metrics for the evolutionary signatures specific to protein-coding regions and applied them genome-wide, resulting in 1193 candidate new protein-coding exons in the D. melanogaster genome. We have reviewed these predictions by manual curation and validated a subset by directed cDNA screening and sequencing, revealing both new genes and new alternative splice forms of known genes. We also used these evolutionary signatures to evaluate existing gene annotations, resulting in the validation of 87% of genes lacking descriptive names and identifying 414 poorly conserved genes that are likely to be spurious predictions, noncoding, or species-specific genes. Furthermore, our methods suggest a variety of refinements to hundreds of existing gene models, such as modifications to translation start codons and exon splice boundaries. Finally, we performed directed genome-wide searches for unusual protein-coding structures, discovering 149 possible examples of stop codon readthrough, 125 new candidate ORFs of polycistronic mRNAs, and several candidate translational frameshifts. These results affect >10% of annotated fly genes and demonstrate the power of comparative genomics to enhance our understanding of genome organization, even in a model organism as intensively studied as Drosophila melanogaster.
Collapse
Affiliation(s)
- Michael F. Lin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Joseph W. Carlson
- Berkeley Drosophila Genome Project, Department of Genome Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Madeline A. Crosby
- FlyBase, The Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Beverley B. Matthews
- FlyBase, The Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Charles Yu
- Berkeley Drosophila Genome Project, Department of Genome Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Soo Park
- Berkeley Drosophila Genome Project, Department of Genome Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kenneth H. Wan
- Berkeley Drosophila Genome Project, Department of Genome Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Andrew J. Schroeder
- FlyBase, The Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138, USA
| | - L. Sian Gramates
- FlyBase, The Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Susan E. St. Pierre
- FlyBase, The Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Margaret Roark
- FlyBase, The Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Kenneth L. Wiley
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Rob J. Kulathinal
- FlyBase, The Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Peili Zhang
- FlyBase, The Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Kyl V. Myrick
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jerry V. Antone
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Susan E. Celniker
- Berkeley Drosophila Genome Project, Department of Genome Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - William M. Gelbart
- FlyBase, The Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
14
|
Theisen H, Syed A, Nguyen BT, Lukacsovich T, Purcell J, Srivastava GP, Iron D, Gaudenz K, Nie Q, Wan FY, Waterman ML, Marsh JL. Wingless directly represses DPP morphogen expression via an armadillo/TCF/Brinker complex. PLoS One 2007; 2:e142. [PMID: 17206277 PMCID: PMC1764032 DOI: 10.1371/journal.pone.0000142] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 12/08/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Spatially restricted morphogen expression drives many patterning and regeneration processes, but how is the pattern of morphogen expression established and maintained? Patterning of Drosophila leg imaginal discs requires expression of the DPP morphogen dorsally and the wingless (WG) morphogen ventrally. We have shown that these mutually exclusive patterns of expression are controlled by a self-organizing system of feedback loops that involve WG and DPP, but whether the feedback is direct or indirect is not known. METHODS/FINDINGS By analyzing expression patterns of regulatory DNA driving reporter genes in different genetic backgrounds, we identify a key component of this system by showing that WG directly represses transcription of the dpp gene in the ventral leg disc. Repression of dpp requires a tri-partite complex of the WG mediators armadillo (ARM) and dTCF, and the co-repressor Brinker, (BRK), wherein ARM.dTCF and BRK bind to independent sites within the dpp locus. CONCLUSIONS/SIGNIFICANCE Many examples of dTCF repression in the absence of WNT signaling have been described, but few examples of signal-driven repression requiring both ARM and dTCF binding have been reported. Thus, our findings represent a new mode of WG mediated repression and demonstrate that direct regulation between morphogen signaling pathways can contribute to a robust self-organizing system capable of dynamically maintaining territories of morphogen expression.
Collapse
Affiliation(s)
- Heidi Theisen
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
| | - Adeela Syed
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
| | - Baochi T. Nguyen
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
| | - Tamas Lukacsovich
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
| | - Judith Purcell
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
| | - Gyan Prakash Srivastava
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
| | - David Iron
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
| | - Karin Gaudenz
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
| | - Qing Nie
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
| | - Frederic Y.M. Wan
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
| | - Marian L. Waterman
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - J. Lawrence Marsh
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Developmental Biology Center, University of California Irvine, Irvine, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Mukai M, Kitadate Y, Arita K, Shigenobu S, Kobayashi S. Expression of meiotic genes in the germline progenitors of Drosophila embryos. Gene Expr Patterns 2006; 6:256-66. [PMID: 16412701 DOI: 10.1016/j.modgep.2005.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 07/29/2005] [Accepted: 08/05/2005] [Indexed: 11/19/2022]
Abstract
Meiosis is one of the fundamental characteristics of germ cells. In Drosophila, genetic screens have identified many genes required for meiotic division. However, it remains elusive as to when and how these meiotic genes are activated during germline development. To obtain insights into their regulatory mechanisms, we examined the expression of 38 meiotic genes in the germline progenitors, pole cells, during embryogenesis. We found that the transcripts of 12 meiotic genes were enriched in pole cells within the embryonic gonads. Among them, bag of marbles (bam), benign gonial cell neoplasia (bgcn), deadhead (dhd), matotopetli (topi) and twine (twe) were activated only in pole cells within the gonads, whereas the transcripts from grapes (grp), Kinesin-like protein at 3A (Klp3A), pavarotti (pav), lesswright (lwr), mei-P26, Topoisomerase 2 (Top2) and out at first (oaf) were distributed ubiquitously in early embryos and then became restricted to pole cells and to a subset of somatic tissues at later embryonic stages. The remaining meiotic genes were either expressed ubiquitously in the embryos (15 genes) or were undetectable in pole cells within the gonads (11 genes). These observations suggest that pole cells have already acquired the potential to express several meiotic genes. Our data will thus provide a useful basis for analyzing how the germline acquires a potential to execute meiosis.
Collapse
Affiliation(s)
- Masanori Mukai
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama, Myodaiji, Okazaki 444-8787, Japan.
| | | | | | | | | |
Collapse
|
16
|
Weber K, Johnson N, Champlin D, Patty A. Many P-element insertions affect wing shape in Drosophila melanogaster. Genetics 2004; 169:1461-75. [PMID: 15545659 PMCID: PMC1449561 DOI: 10.1534/genetics.104.027748] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A screen of random, autosomal, homozygous-viable P-element insertions in D. melanogaster found small effects on wing shape in 11 of 50 lines. The effects were due to single insertions and remained stable and significant for over 5 years, in repeated, high-resolution measurements. All 11 insertions were within or near protein-coding transcription units, none of which were previously known to affect wing shape. Many sites in the genome can affect wing shape.
Collapse
Affiliation(s)
- Kenneth Weber
- Department of Biological Sciences, University of Southern Maine, Portland, 04104-9300, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
Reprogrammed genetic decoding signals in mRNAs productively overwrite the normal decoding rules of translation. These "recoding" signals are associated with sites of programmed ribosomal frameshifting, hopping, termination codon suppression, and the incorporation of the unusual amino acids selenocysteine and pyrrolysine. This review summarizes current knowledge of the structure and function of recoding signals in cellular genes, the biological importance of recoding in gene regulation, and ways to identify new recoded genes.
Collapse
Affiliation(s)
- Olivier Namy
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom.
| | | | | | | |
Collapse
|
18
|
Abstract
During the expression of a certain genes standard decoding is over-ridden in a site or mRNA specific manner. This recoding occurs in response to special signals in mRNA and probably occurs in all organisms. This review deals with the function and distribution of recoding with a focus on the ribosomal frameshifting used for gene expression in bacteria.
Collapse
Affiliation(s)
- Pavel V Baranov
- Department of Human Genetics, University of Utah, 15N 2030E Room 7410, Salt Lake City, UT 84112-5330, USA
| | | | | |
Collapse
|
19
|
Dobie KW, Kennedy CD, Velasco VM, McGrath TL, Weko J, Patterson RW, Karpen GH. Identification of chromosome inheritance modifiers in Drosophila melanogaster. Genetics 2001; 157:1623-37. [PMID: 11290718 PMCID: PMC1461595 DOI: 10.1093/genetics/157.4.1623] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Faithful chromosome inheritance is a fundamental biological activity and errors contribute to birth defects and cancer progression. We have performed a P-element screen in Drosophila melanogaster with the aim of identifying novel candidate genes involved in inheritance. We used a "sensitized" minichromosome substrate (J21A) to screen approximately 3,000 new P-element lines for dominant effects on chromosome inheritance and recovered 78 Sensitized chromosome inheritance modifiers (Scim). Of these, 69 decreased minichromosome inheritance while 9 increased minichromosome inheritance. Fourteen mutations are lethal or semilethal when homozygous and all exhibit dramatic mitotic defects. Inverse PCR combined with genomic analyses identified P insertions within or close to genes with previously described inheritance functions, including wings apart-like (wapl), centrosomin (cnn), and pavarotti (pav). Further, lethal insertions in replication factor complex 4 (rfc4) and GTPase-activating protein 1 (Gap1) exhibit specific mitotic chromosome defects, discovering previously unknown roles for these proteins in chromosome inheritance. The majority of the lines represent mutations in previously uncharacterized loci, many of which have human homologs, and we anticipate that this collection will provide a rich source of mutations in new genes required for chromosome inheritance in metazoans.
Collapse
Affiliation(s)
- K W Dobie
- Molecular Biology and Virology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Kiger AA, Gigliotti S, Fuller MT. Developmental genetics of the essential Drosophila nucleoporin nup154: allelic differences due to an outward-directed promoter in the P-element 3' end. Genetics 1999; 153:799-812. [PMID: 10511559 PMCID: PMC1460801 DOI: 10.1093/genetics/153.2.799] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Drosophila nup154 encodes a predicted nucleoporin homologous to yeast Nup170p, Nup157p, and vertebrate Nup155, all of which are major components of the nuclear pore complex (NPC). Unlike its yeast homologs, nup154 is essential for viability. Animals with strong loss-of-function nup154 mutations caused by P-element insertion in the 5'-UTR of the gene died as larvae with small discs, brains, and testes. nup154 mRNA expression appeared developmentally regulated in tissues of wild-type embryos, larvae, and adults, suggesting that new nup154 synthesis is required when assembly of new NPCs is required, as in proliferating or growing tissues. Two additional nup154 alleles also associated with different P-element inserts in the 5'-UTR were viable but had strong loss-of-function sterile phenotypes, including failure to maintain spermatogenic stem cells and failure to progress into vitellogenic stages of oogenesis. Lethality vs. viability correlated with orientation of the P-element inserts in the different alleles. Transcript analysis by 5'-RACE suggested a mechanism for allelic differences: an outward-directed promoter internal to the P-element 3' end able to drive sufficient expression of the nup154 transcript for viability but not for fertility.
Collapse
Affiliation(s)
- A A Kiger
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305-5329, USA
| | | | | |
Collapse
|
21
|
Hammell AB, Taylor RC, Peltz SW, Dinman JD. Identification of Putative Programmed −1 Ribosomal Frameshift Signals in Large DNA Databases. Genome Res 1999. [DOI: 10.1101/gr.9.5.417] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cis-acting elements that promote efficient ribosomal frameshifting in the −1 (5′) direction have been well characterized in several viral systems. Results from many studies have convincingly demonstrated that the basic molecular mechanisms governing programmed −1 ribosomal frameshifting are almost identical from yeast to humans. We are interested in testing the hypothesis that programmed −1 ribosomal frameshifting can be used to control cellular gene expression. Toward this end, a computer program was designed to search large DNA databases for consensus −1 ribosomal frameshift signals. The results demonstrated that consensus programmed −1 ribosomal frameshift signals can be identified in a substantial number of chromosomally encoded mRNAs and that they occur with frequencies from two- to sixfold greater than random in all of the databases searched. A preliminary survey of the databases resulting from the computer searches found that consensus frameshift signals are present in at least 21 homologous genes from different species, 2 of which are nearly identical, suggesting evolutionary conservation of function. We show that four previously described missense alleles of genes that are linked to human diseases would disrupt putative programmed −1 ribosomal frameshift signals, suggesting that the frameshift signal may be involved in the normal expression of these genes. We also demonstrate that signals found in the yeastRAS1 and the human CCR5 genes were able to promote significant levels of programmed −1 ribosomal frameshifting. The significance of these frameshifting signals in controlling gene expression is not known, however.
Collapse
|
22
|
Hammell AB, Taylor RC, Peltz SW, Dinman JD. Identification of putative programmed -1 ribosomal frameshift signals in large DNA databases. Genome Res 1999; 9:417-27. [PMID: 10330121 PMCID: PMC310776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The cis-acting elements that promote efficient ribosomal frameshifting in the -1 (5') direction have been well characterized in several viral systems. Results from many studies have convincingly demonstrated that the basic molecular mechanisms governing programmed -1 ribosomal frameshifting are almost identical from yeast to humans. We are interested in testing the hypothesis that programmed -1 ribosomal frameshifting can be used to control cellular gene expression. Toward this end, a computer program was designed to search large DNA databases for consensus -1 ribosomal frameshift signals. The results demonstrated that consensus programmed -1 ribosomal frameshift signals can be identified in a substantial number of chromosomally encoded mRNAs and that they occur with frequencies from two- to sixfold greater than random in all of the databases searched. A preliminary survey of the databases resulting from the computer searches found that consensus frameshift signals are present in at least 21 homologous genes from different species, 2 of which are nearly identical, suggesting evolutionary conservation of function. We show that four previously described missense alleles of genes that are linked to human diseases would disrupt putative programmed -1 ribosomal frameshift signals, suggesting that the frameshift signal may be involved in the normal expression of these genes. We also demonstrate that signals found in the yeast RAS1 and the human CCR5 genes were able to promote significant levels of programmed -1 ribosomal frameshifting. The significance of these frameshifting signals in controlling gene expression is not known, however.
Collapse
Affiliation(s)
- A B Hammell
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey (UMDNJ), Robert Wood Johnson Medical School, and The Graduate Programs in Molecular Bioscience Rutgers/UMDNJ, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
23
|
Newfeld SJ, Takaesu NT. Local transposition of a hobo element within the decapentaplegic locus of Drosophila. Genetics 1999; 151:177-87. [PMID: 9872958 PMCID: PMC1460446 DOI: 10.1093/genetics/151.1.177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have efficiently mobilized a phenotypically silent hobo transgene inserted within the cis-regulatory heldout region of the decapentaplegic (dpp) locus in Drosophila melanogaster. The goal of our experiment was to identify germline transmission of a local transposition event within the dpp locus that meets two specific criteria. First, excision of the hobo construct does not generate an adult mutant phenotype, suggesting minimal alteration to the original site of insertion. Second, we required a new insertion of the hobo transgene into the Haploinsufficient region of the locus approximately 25 kb away. Genetic and molecular criteria are used to evaluate candidate germlines. In a pilot study, this local transposition event occurred independently in two individuals. Both of the transposition events appear to be new insertions into the dpp transcription unit. One insertion is between the two protein-coding exons, and the other is in the 3'-untranslated region of exon three. Strains carrying these insertions are valuable new reagents for the analysis of dpp function and molecular evolution. These results further support the use of the hobo system as an important tool in Drosophila genetics.
Collapse
Affiliation(s)
- S J Newfeld
- Department of Biology, Arizona State University, Tempe, Arizona 85287-1501, USA.
| | | |
Collapse
|
24
|
Steneberg P, Englund C, Kronhamn J, Weaver TA, Samakovlis C. Translational readthrough in the hdc mRNA generates a novel branching inhibitor in the drosophila trachea. Genes Dev 1998; 12:956-67. [PMID: 9531534 PMCID: PMC316679 DOI: 10.1101/gad.12.7.956] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1997] [Accepted: 01/26/1998] [Indexed: 02/07/2023]
Abstract
A central question in the development of many branched tubular organs, including the Drosophila trachea, concerns the mechanisms and molecules that control the number and pattern of new branches arising from preexisting vessels. We report on a branching inhibitor, Fusion-6 (Fus-6) produced by specialized tracheal cells to prevent neighboring cells from branching. In Fus-6 mutants, cells that are normally quiescent acquire the branching fate and form an increased number of sprouts emanating from the primary branches. Fus-6 is identified as the headcase (hdc) gene and is expressed in a subset of the cells that extend fusion sprouts to interconnect the tracheal network. hdc expression is regulated by the transcription factor escargot (esg) because it is not expressed in the fusion cells of esg mutants and is ectopically activated in the trachea in response to esg misexpression. We show that the hdc mRNA encodes two overlapping protein products by an unusual suppression of translational termination mechanism. Translational readthrough is necessary for hdc function because rescue of the tracheal mutant phenotype requires the full-length hdc mRNA. In ectopic expression experiments with full-length and truncated hdc constructs, only the full-length cDNA encoding both proteins could inhibit terminal branching. We propose that hdc acts non-autonomously in an inhibitory signaling mechanism to determine the number of cells that will form unicellular sprouts in the trachea.
Collapse
Affiliation(s)
- P Steneberg
- Umeâ Center for Molecular Pathogenesis, Umeâ University, S-90187 Umeâ, Sweden
| | | | | | | | | |
Collapse
|
25
|
Robinson DN, Cooley L. Examination of the function of two kelch proteins generated by stop codon suppression. Development 1997; 124:1405-17. [PMID: 9118811 DOI: 10.1242/dev.124.7.1405] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The Drosophila kelch gene produces a single transcript with a UGA stop codon separating two open reading frames (ORF1 and ORF2). From the transcript, 76 kDa ORF1 and 160 kDa full-length (ORF1 + ORF2) proteins are made. The expression of these two proteins is regulated in a tissue-specific manner causing the ratio of full-length to ORF1 protein to vary in different tissues. The only detected defect for kelch mutants is female sterility, and kelch protein is localized to the ovarian ring canals. kelch mutant ring canals are disorganized and have partly occluded lumens, causing a failure to transport cytoplasm. ORF1 and full-length kelch proteins co-sediment with ring canals suggesting that both proteins are found in the ring canals. Transgenetic analysis reveals that ORF1 kelch protein is sufficient to rescue ring canal morphology and fertility. In addition, we have mutated the UGA stop codon to a UAA stop codon and to three sense codons that allow constitutive readthrough. Analysis of these mutants reveals that a full-length kelch protein can partially compensate for the loss of endogenous kelch, but the residue included at the stop codon is critical for function. Finally, these studies suggest that the mechanism of stop codon suppression of kelch is by tRNA suppression.
Collapse
Affiliation(s)
- D N Robinson
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
26
|
Merli C, Bergstrom DE, Cygan JA, Blackman RK. Promoter specificity mediates the independent regulation of neighboring genes. Genes Dev 1996; 10:1260-70. [PMID: 8675012 DOI: 10.1101/gad.10.10.1260] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although enhancers can exert their influence over great distances, their effect is generally limited to a single gene. To discern the mechanism by which this constraint can he mediated, we have studied three neighboring Drosophila genes: decapentaplegic (dpp), SLY1 homologous (Slh) and out at first (oaf). Several dpp enhancers are positioned close to Slh and oaf, and yet these genes are unaffected by the dpp elements. However, when a transposon is located within the oaf gene, the dpp enhancers activate the more distant transposon promoters while still ignoring the closer Slh and oaf start sites. To test whether this promoter specificity accounts for the regulatory autonomy normally found for the three genes, we used in vivo gene targeting to replace the oaf promoter with a dpp-compatible one in an otherwise normal chromosome. Strikingly, this chimeric gene is now activated by the dpp enhancers. Thus, the properties of the promoters themselves are sufficient to mediate the autonomous regulation of genes in this region.
Collapse
Affiliation(s)
- C Merli
- Department of Cell and Structural Biology, University of Illinois, Urbana 61801, USA
| | | | | | | |
Collapse
|