1
|
Baaziz H, Makhlouf R, McClelland M, Hsu BB. Bacterial resistance to temperate phage is influenced by the frequency of lysogenic establishment. iScience 2024; 27:109595. [PMID: 38623331 PMCID: PMC11016777 DOI: 10.1016/j.isci.2024.109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Temperate phages can shape bacterial community dynamics and evolution through lytic and lysogenic life cycles. In response, bacteria that resist phage infection can emerge. This study explores phage-based factors that influence bacterial resistance using a model system of temperate P22 phage and Salmonella both inside and outside the mammalian host. Phages that remained functional despite gene deletions had minimal impact on lysogeny and phage resistance except for deletions in the immI region that substantially reduced lysogeny and increased phage resistance to levels comparable to that observed with an obligately lytic P22. This immI deletion does not make the lysogen less competitive but instead increases the frequency of bacterial lysis. Thus, subtle changes in the balance between lysis and lysogeny during the initial stages of infection can significantly influence the extent of phage resistance in the bacterial population. Our work highlights the complex nature of the phage-bacteria-mammalian host triad.
Collapse
Affiliation(s)
- Hiba Baaziz
- Department of Biological Sciences, Fralin Life Sciences Institute, Center for Emerging, and Zoonotic, Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rita Makhlouf
- Department of Biological Sciences, Fralin Life Sciences Institute, Center for Emerging, and Zoonotic, Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Bryan B. Hsu
- Department of Biological Sciences, Fralin Life Sciences Institute, Center for Emerging, and Zoonotic, Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Piya D, Nolan N, Moore ML, Ramirez Hernandez LA, Cress BF, Young R, Arkin AP, Mutalik VK. Systematic and scalable genome-wide essentiality mapping to identify nonessential genes in phages. PLoS Biol 2023; 21:e3002416. [PMID: 38048319 PMCID: PMC10695390 DOI: 10.1371/journal.pbio.3002416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/02/2023] [Indexed: 12/06/2023] Open
Abstract
Phages are one of the key ecological drivers of microbial community dynamics, function, and evolution. Despite their importance in bacterial ecology and evolutionary processes, phage genes are poorly characterized, hampering their usage in a variety of biotechnological applications. Methods to characterize such genes, even those critical to the phage life cycle, are labor intensive and are generally phage specific. Here, we develop a systematic gene essentiality mapping method scalable to new phage-host combinations that facilitate the identification of nonessential genes. As a proof of concept, we use an arrayed genome-wide CRISPR interference (CRISPRi) assay to map gene essentiality landscape in the canonical coliphages λ and P1. Results from a single panel of CRISPRi probes largely recapitulate the essential gene roster determined from decades of genetic analysis for lambda and provide new insights into essential and nonessential loci in P1. We present evidence of how CRISPRi polarity can lead to false positive gene essentiality assignments and recommend caution towards interpreting CRISPRi data on gene essentiality when applied to less studied phages. Finally, we show that we can engineer phages by inserting DNA barcodes into newly identified inessential regions, which will empower processes of identification, quantification, and tracking of phages in diverse applications.
Collapse
Affiliation(s)
- Denish Piya
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California, United States of America
| | - Nicholas Nolan
- Department of Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
| | - Madeline L. Moore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Luis A. Ramirez Hernandez
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Brady F. Cress
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California, United States of America
| | - Ry Young
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, Texas, United States of America
| | - Adam P. Arkin
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California, United States of America
- Department of Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Vivek K. Mutalik
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
3
|
King RA, Babbs M, Baugh K, Hamilton C. Isolation and Characterization of Phages That Bypass the Requirement for RNA-Mediated Antitermination. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:82-89. [PMID: 37350996 PMCID: PMC10282786 DOI: 10.1089/phage.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Introduction The rpoCY75N mutation in the zinc-binding domain of the β' subunit of Escherichia coli RNA polymerase blocks the RNA-based mechanism of transcription antitermination utilized by bacteriophage HK022. Materials and Methods Mutant phages that overcome the block imposed by the rpoCY75N mutation are described. These phages, designated "orc" (overcomes rpoC), carry mutations that create new promoters. Promoter activity was assessed by cloning the respective regions from the wild-type and orc phages into a promoterless lacZ reporter vector. Results Reporter assays showed that the sequence originating from orc phages had significant promoter activity when compared with the equivalent sequence cloned from the parental phage. Conclusions The newly created promoters facilitate the expression of phage genes that are essential for growth on the rpoCY75N strain by bypassing transcription terminators. The small plaque phenotype of orc phages, when grown on the mutant host, suggests that suppression of the rpoCY75N mutation is incomplete.
Collapse
Affiliation(s)
- Rodney A. King
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, USA
| | - Millicent Babbs
- Owensboro Family Medicine, University of Louisville, Owensboro, Kentucky, USA
| | - Kimberly Baugh
- Department of Pharmacy, Franciscan Health Lafayette East, Lafayette, Indiana, USA
| | - Courtney Hamilton
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Zaworski J, McClung C, Ruse C, Weigele PR, Hendrix RW, Ko CC, Edgar R, Hatfull GF, Casjens SR, Raleigh EA. Genome analysis of Salmonella enterica serovar Typhimurium bacteriophage L, indicator for StySA (StyLT2III) restriction-modification system action. G3-GENES GENOMES GENETICS 2021; 11:6044188. [PMID: 33561243 PMCID: PMC8022706 DOI: 10.1093/g3journal/jkaa037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023]
Abstract
Bacteriophage L, a P22-like phage of Salmonella enterica sv Typhimurium LT2, was important for definition of mosaic organization of the lambdoid phage family and for characterization of restriction-modification systems of Salmonella. We report the complete genome sequences of bacteriophage L cI–40 13–am43 and L cII–101; the deduced sequence of wildtype L is 40,633 bp long with a 47.5% GC content. We compare this sequence with those of P22 and ST64T, and predict 72 Coding Sequences, 2 tRNA genes and 14 intergenic rho-independent transcription terminators. The overall genome organization of L agrees with earlier genetic and physical evidence; for example, no secondary immunity region (immI: ant, arc) or known genes for superinfection exclusion (sieA and sieB) are present. Proteomic analysis confirmed identification of virion proteins, along with low levels of assembly intermediates and host cell envelope proteins. The genome of L is 99.9% identical at the nucleotide level to that reported for phage ST64T, despite isolation on different continents ∼35 years apart. DNA modification by the epigenetic regulator Dam is generally incomplete. Dam modification is also selectively missing in one location, corresponding to the P22 phase-variation-sensitive promoter region of the serotype-converting gtrABC operon. The number of sites for SenLTIII (StySA) action may account for stronger restriction of L (13 sites) than of P22 (3 sites).
Collapse
Affiliation(s)
- Julie Zaworski
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Colleen McClung
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Cristian Ruse
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Peter R Weigele
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ching-Chung Ko
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Robert Edgar
- Bioengineering Department, University of Pittsburgh, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.,School of Biological Science, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
5
|
Metabolic and Redox Signaling of the Nucleoredoxin-Like-1 Gene for the Treatment of Genetic Retinal Diseases. Int J Mol Sci 2020; 21:ijms21051625. [PMID: 32120883 PMCID: PMC7084304 DOI: 10.3390/ijms21051625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
The loss of cone photoreceptor function in retinitis pigmentosa (RP) severely impacts the central and daily vision and quality of life of patients affected by this disease. The loss of cones follows the degeneration of rods, in a manner independent of the causing mutations in numerous genes associated with RP. We have explored this phenomenon and proposed that the loss of rods triggers a reduction in the expression of rod-derived cone viability factor (RdCVF) encoded by the nucleoredoxin-like 1 (NXNL1) gene which interrupts the metabolic and redox signaling between rods and cones. After providing scientific evidence supporting this mechanism, we propose a way to restore this lost signaling and prevent the cone vision loss in animal models of RP. We also explain how we could restore this signaling to prevent cone vision loss in animal models of the disease and how we plan to apply this therapeutic strategy by the administration of both products of NXNL1 encoding the trophic factor RdCVF and the thioredoxin enzyme RdCVFL using an adeno-associated viral vector. We describe in detail all the steps of this translational program, from the design of the drug, its production, biological validation, and analytical and preclinical qualification required for a future clinical trial that would, if successful, provide a treatment for this incurable disease.
Collapse
|
6
|
Shin H, Lee JH, Yoon H, Kang DH, Ryu S. Genomic investigation of lysogen formation and host lysis systems of the Salmonella temperate bacteriophage SPN9CC. Appl Environ Microbiol 2014; 80:374-84. [PMID: 24185850 PMCID: PMC3911004 DOI: 10.1128/aem.02279-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/23/2013] [Indexed: 12/20/2022] Open
Abstract
To understand phage infection and host cell lysis mechanisms in pathogenic Salmonella, a novel Salmonella enterica serovar Typhimurium-targeting bacteriophage, SPN9CC, belonging to the Podoviridae family was isolated and characterized. The phage infects S. Typhimurium via the O antigen of lipopolysaccharide (LPS) and forms clear plaques with cloudy centers due to lysogen formation. Phylogenetic analysis of phage major capsid proteins revealed that this phage is a member of the lysogen-forming P22-like phage group. However, comparative genomic analysis of SPN9CC with P22-like phages indicated that their lysogeny control regions and host cell lysis gene clusters show very low levels of identity, suggesting that lysogen formation and host cell lysis mechanisms may be diverse among phages in this group. Analysis of the expression of SPN9CC host cell lysis genes encoding holin, endolysin, and Rz/Rz1-like proteins individually or in combinations in S. Typhimurium and Escherichia coli hosts revealed that collaboration of these lysis proteins is important for the lysis of both hosts and that holin is a key protein. To further investigate the role of the lysogeny control region in phage SPN9CC, a ΔcI mutant (SPN9CCM) of phage SPN9CC was constructed. The mutant does not produce a cloudy center in the plaques, suggesting that this mutant phage is virulent and no longer temperate. Subsequent comparative one-step growth analysis and challenge assays revealed that SPN9CCM has shorter eclipse/latency periods and a larger burst size, as well as higher host cell lysis activity, than SPN9CC. The present work indicates the possibility of engineering temperate phages as promising biocontrol agents similar to virulent phages.
Collapse
Affiliation(s)
- Hakdong Shin
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ju-Hoon Lee
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Hyunjin Yoon
- Department of Food Technology and Services, Eulji University, Seongnam, South Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Ray J, Dondrup M, Modha S, Steen IH, Sandaa RA, Clokie M. Finding a needle in the virus metagenome haystack--micro-metagenome analysis captures a snapshot of the diversity of a bacteriophage armoire. PLoS One 2012; 7:e34238. [PMID: 22509283 PMCID: PMC3324506 DOI: 10.1371/journal.pone.0034238] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/24/2012] [Indexed: 12/12/2022] Open
Abstract
Viruses are ubiquitous in the oceans and critical components of marine microbial communities, regulating nutrient transfer to higher trophic levels or to the dissolved organic pool through lysis of host cells. Hydrothermal vent systems are oases of biological activity in the deep oceans, for which knowledge of biodiversity and its impact on global ocean biogeochemical cycling is still in its infancy. In order to gain biological insight into viral communities present in hydrothermal vent systems, we developed a method based on deep-sequencing of pulsed field gel electrophoretic bands representing key viral fractions present in seawater within and surrounding a hydrothermal plume derived from Loki's Castle vent field at the Arctic Mid-Ocean Ridge. The reduction in virus community complexity afforded by this novel approach enabled the near-complete reconstruction of a lambda-like phage genome from the virus fraction of the plume. Phylogenetic examination of distinct gene regions in this lambdoid phage genome unveiled diversity at loci encoding superinfection exclusion- and integrase-like proteins. This suggests the importance of fine-tuning lyosgenic conversion as a viral survival strategy, and provides insights into the nature of host-virus and virus-virus interactions, within hydrothermal plumes. By reducing the complexity of the viral community through targeted sequencing of prominent dsDNA viral fractions, this method has selectively mimicked virus dominance approaching that hitherto achieved only through culturing, thus enabling bioinformatic analysis to locate a lambdoid viral "needle" within the greater viral community "haystack". Such targeted analyses have great potential for accelerating the extraction of biological knowledge from diverse and poorly understood environmental viral communities.
Collapse
Affiliation(s)
- Jessica Ray
- Department of Biology, University of Bergen, Bergen, Norway
| | | | - Sejal Modha
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | | | - Ruth-Anne Sandaa
- Department of Biology, University of Bergen, Bergen, Norway
- * E-mail:
| | - Martha Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
8
|
Sloan S, Rutkai E, King RA, Velikodvorskaya T, Weisberg RA. Protection of antiterminator RNA by the transcript elongation complex. Mol Microbiol 2007; 63:1197-208. [PMID: 17238921 DOI: 10.1111/j.1365-2958.2006.05579.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nascent transcripts encoded by the putL and putR sites of phage HK022 bind the transcript elongation complex and suppress termination at downstream transcription terminators. We report here that the chemical stability of putL RNA is considerably greater than that of the typical Escherichia coli message because the elongation complex protects this RNA from degradation. When binding to the elongation complex was prevented by mutation of either putL or RNA polymerase, RNA stability decreased more than 50-fold. The functional modification conferred by putL RNA on the elongation complex is also long-lived: the efficiency of terminator suppression remained high for at least 10 kb from the putL site. We find that RNase III rapidly and efficiently cleaved the transcript just downstream of the putL sequences, but such cleavage changed neither the stability of putL RNA nor the efficiency of antitermination. These results argue that the continuity of the RNA that connects put sequences to the growing point is not required for persistence of the antiterminating modification in vivo.
Collapse
Affiliation(s)
- Sieghild Sloan
- Section on Microbial Genetics, Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, Bethesda, MD 20892-2785, USA
| | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Donald L Court
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
10
|
Zhou Y, Shi T, Mozola MA, Olson ER, Henthorn K, Brown S, Gussin GN, Friedman DI. Evidence that the promoter can influence assembly of antitermination complexes at downstream RNA sites. J Bacteriol 2006; 188:2222-32. [PMID: 16513752 PMCID: PMC1428141 DOI: 10.1128/jb.188.6.2222-2232.2006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The N protein of phage lambda acts with Escherichia coli Nus proteins at RNA sites, NUT, to modify RNA polymerase (RNAP) to a form that overrides transcription terminators. These interactions have been thought to be the primary determinants of the effectiveness of N-mediated antitermination. We present evidence that the associated promoter, in this case the lambda early P(R) promoter, can influence N-mediated modification of RNAP even though modification occurs at a site (NUTR) located downstream of the intervening cro gene. As predicted by genetic analysis and confirmed by in vivo transcription studies, a combination of two mutations in P(R), at positions -14 and -45 (yielding P(R-GA)), reduces effectiveness of N modification, while an additional mutation at position -30 (yielding P(R-GCA)) suppresses this effect. In vivo, the level of P(R-GA)-directed transcription was twice as great as the wild-type level, while transcription directed by P(R-GCA) was the same as that directed by the wild-type promoter. However, the rate of open complex formation at P(R-GA) in vitro was roughly one-third the rate for wild-type P(R). We ascribe this apparent discrepancy to an effect of the mutations in P(R-GCA) on promoter clearance. Based on the in vivo experiments, one plausible explanation for our results is that increased transcription can lead to a failure to form active antitermination complexes with NUT RNA, which, in turn, causes failure to read through downstream termination sites. By blocking antitermination and thus expression of late functions, the effect of increased transcription through nut sites could be physiologically important in maintaining proper regulation of gene expression early in phage development.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hayes S, Asai K, Chu AM, Hayes C. NinR- and red-mediated phage-prophage marker rescue recombination in Escherichia coli: recovery of a nonhomologous immlambda DNA segment by infecting lambdaimm434 phages. Genetics 2005; 170:1485-99. [PMID: 15956667 PMCID: PMC1449759 DOI: 10.1534/genetics.105.042341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We examined the requirement of lambda recombination functions for marker rescue of cryptic prophage genes within the Escherichia coli chromosome. We infected lysogenic host cells with lambdaimm434 phages and selected for recombinant immlambda phages that had exchanged the imm434 region of the infecting phage for the heterologous 2.6-kb immlambda region from the prophage. Phage-encoded activity, provided by either Red or NinR functions, was required for the substitution. Red(-) phages with DeltaNinR, internal NinR deletions of rap-ninH, or orf-ninC were 117-, 12-, and 5-fold reduced for immlambda rescue in a Rec(+) host, suggesting the participation of several NinR activities. RecA was essential for NinR-dependent immlambda rescue, but had slight influence on Red-dependent rescue. The host recombination activities RecBCD, RecJ, and RecQ participated in NinR-dependent recombination while they served to inhibit Red-mediated immlambda rescue. The opposite effects of several host functions toward NinR- and Red-dependent immlambda rescue explains why the independent pathways were not additive in a Rec(+) host and why the NinR-dependent pathway appeared dominant. We measured the influence of the host recombination functions and DnaB on the appearance of orilambda-dependent replication initiation and whether orilambda replication initiation was required for immlambda marker rescue.
Collapse
Affiliation(s)
- Sidney Hayes
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | | | | | | |
Collapse
|
12
|
Łobocka MB, Rose DJ, Plunkett G, Rusin M, Samojedny A, Lehnherr H, Yarmolinsky MB, Blattner FR. Genome of bacteriophage P1. J Bacteriol 2004; 186:7032-68. [PMID: 15489417 PMCID: PMC523184 DOI: 10.1128/jb.186.21.7032-7068.2004] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 07/09/2004] [Indexed: 11/20/2022] Open
Abstract
P1 is a bacteriophage of Escherichia coli and other enteric bacteria. It lysogenizes its hosts as a circular, low-copy-number plasmid. We have determined the complete nucleotide sequences of two strains of a P1 thermoinducible mutant, P1 c1-100. The P1 genome (93,601 bp) contains at least 117 genes, of which almost two-thirds had not been sequenced previously and 49 have no homologs in other organisms. Protein-coding genes occupy 92% of the genome and are organized in 45 operons, of which four are decisive for the choice between lysis and lysogeny. Four others ensure plasmid maintenance. The majority of the remaining 37 operons are involved in lytic development. Seventeen operons are transcribed from sigma(70) promoters directly controlled by the master phage repressor C1. Late operons are transcribed from promoters recognized by the E. coli RNA polymerase holoenzyme in the presence of the Lpa protein, the product of a C1-controlled P1 gene. Three species of P1-encoded tRNAs provide differential controls of translation, and a P1-encoded DNA methyltransferase with putative bifunctionality influences transcription, replication, and DNA packaging. The genome is particularly rich in Chi recombinogenic sites. The base content and distribution in P1 DNA indicate that replication of P1 from its plasmid origin had more impact on the base compositional asymmetries of the P1 genome than replication from the lytic origin of replication.
Collapse
Affiliation(s)
- Małgorzata B Łobocka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Ul. Pawinskiego 5A, 02-106 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Vieu E, Rahmouni AR. Dual role of boxB RNA motif in the mechanisms of termination/antitermination at the lambda tR1 terminator revealed in vivo. J Mol Biol 2004; 339:1077-87. [PMID: 15178249 DOI: 10.1016/j.jmb.2004.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 04/02/2004] [Accepted: 04/06/2004] [Indexed: 11/30/2022]
Abstract
Rho-dependent transcription termination at the phage lambda tR1 terminator is governed primarily by the upstream rut element that encodes two RNA regions rutA and rutB. The two regions are separated by the boxB RNA motif, which is believed to be dispensable for Rho activity but serves as a binding site for lambda N protein in the antitermination process. By using a minimal in vivo termination system, we show that the intervening boxB RNA motif has a double function in the mechanisms of termination/antitermination at lambdatR1. As a folded hairpin structure, it acts as a clamp that holds rutA and rutB side by side for optimal interactions with Rho leading to efficient termination. Conversely, the binding of N protein to boxB induces antitermination at lambdatR1 by preventing access of Rho to the rut sequences. This dual role was clearly shown in vivo by studying the effects of multiple mutations within the boxB hairpin stem on transcription termination and by substituting the N/boxB couple with the unrelated coat protein of phage MS2 and its stem-loop RNA binding site.
Collapse
Affiliation(s)
- Erwann Vieu
- Centre de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans, France
| | | |
Collapse
|
14
|
Neely MN, Friedman DI. Analyzing transcription antitermination in lambdoid phages encoding toxin genes. Methods Enzymol 2003; 371:418-38. [PMID: 14712719 DOI: 10.1016/s0076-6879(03)71032-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Melody N Neely
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | |
Collapse
|
15
|
Sen R, King RA, Mzhavia N, Madsen PL, Weisberg RA. Sequence-specific interaction of nascent antiterminator RNA with the zinc-finger motif of Escherichia coli RNA polymerase. Mol Microbiol 2002; 46:215-22. [PMID: 12366844 DOI: 10.1046/j.1365-2958.2002.03154.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The N-terminal Zn-finger motif of the beta' subunit of RNA polymerase contains two pairs of invariant cysteines flanking a moderately well-conserved segment of 13 amino acids that is rich in basic residues. Previous work showed that replacement of certain Zn-finger residues prevented transcription antitermination in response to phage HK022 put sites. Nascent put RNA binds to and modifies transcribing polymerase, so that it becomes resistant to termination. To characterize the Zn finger further, we replaced each of the basic residues with alanine and determined the effects of the substitutions on termination, antitermination and cell viability. All the mutants were defective in put-mediated antitermination. The severity of the defect depended on the mutant and on the sequence of the upstream stem-loop of put RNA. Some, but not all, mutants distinguished between put variants that differed in this region. This suggests that the Zn-finger motif interacts directly and specifically with put RNA. All the mutants in the basic residues complemented a temperature-sensitive beta' mutant for cell growth at a non-permissive temperature, and those mutant enzymes that were tested transcribed and terminated normally in vitro on a template that lacked a put site.
Collapse
Affiliation(s)
- Ranjan Sen
- Section on Microbial Genetics, Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, 6B/3B308, NIH, Bethesda, MD 20892-2785, USA
| | | | | | | | | |
Collapse
|
16
|
Zhou Y, Filter JJ, Court DL, Gottesman ME, Friedman DI. Requirement for NusG for transcription antitermination in vivo by the lambda N protein. J Bacteriol 2002; 184:3416-8. [PMID: 12029062 PMCID: PMC135089 DOI: 10.1128/jb.184.12.3416-3418.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription antitermination by the bacteriophage lambda N protein is stimulated in vitro by the Escherichia coli NusG protein. Earlier work suggested that NusG was not required for N activity in vivo. Here we present evidence that NusG also stimulates N-mediated transcription antitermination in intact cells.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Microbiology and Immunology, The University of Michigan, Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | | | | | | | |
Collapse
|
17
|
Zhou Y, Mah TF, Greenblatt J, Friedman DI. Evidence that the KH RNA-binding domains influence the action of the E. coli NusA protein. J Mol Biol 2002; 318:1175-88. [PMID: 12083510 DOI: 10.1016/s0022-2836(02)00238-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The NusA transcription elongation protein, which binds RNA, contains sequences corresponding to the S1 and KH classes of identified RNA binding domains. An essential function in E. coli, NusA is also one of the host factors required for action of the N transcription antitermination protein of lambda. Tandem KH domains have been identified downstream of the S1 domain. We changed the first Gly to Asp of the GXXG motif, a tetrapeptide diagnostic of KH domains, of both NusA KH domains. The change in the first, G253D, has a large effect, while the change in the second, G319D, has a small effect on NusA action. The changes in both KH domains interfere with NusA binding to RNA. A change of a highly conserved Arg in the S1 domain, R199A, has previously been reported to interfere with RNA binding while exerting a small effect on NusA action. However, a nusA allele with both the R199A and G319D changes encodes a functionally inactive NusA protein. These studies provide direct evidence that the both KH as well as the S1 RNA binding domains are important for NusA action in support of bacterial viability as well as transcription antitermination mediated by the lambda N protein.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | | | | | |
Collapse
|
18
|
Tarkowski TA, Mooney D, Thomason LC, Stahl FW. Gene products encoded in the ninR region of phage lambda participate in Red-mediated recombination. Genes Cells 2002; 7:351-63. [PMID: 11952832 DOI: 10.1046/j.1365-2443.2002.00531.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The ninR region of phage lambda contains two recombination genes, orf (ninB) and rap (ninG), that were previously shown to have roles when the RecF and RecBCD recombination pathways of E. coli, respectively, operate on phage lambda. RESULTS When lambda DNA replication is blocked, recombination is focused at the termini of the virion chromosome. Deletion of the ninR region of lambda decreases the sharpness of the focusing without diminishing the overall rate of recombination. The phenotype is accounted for in large part by the deletion of rap and of orf. Mutation of the recJ gene of the host partially suppresses the Rap- phenotype. CONCLUSION ninR functions Orf and Rap participate in Red recombination, the primary pathway operating when wild-type lambda grows lytically in rec+ cells. The ability of recJ mutation to suppress the Rap- phenotype indicates that RecJ exonuclease can participate in Red-mediated recombination, at least in the absence of Rap function. A model is presented for Red-mediated RecA-dependent recombination that includes these newly identified participants.
Collapse
Affiliation(s)
- Trudee A Tarkowski
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | | | | | | |
Collapse
|
19
|
Zhou Y, Mah TF, Yu YT, Mogridge J, Olson ER, Greenblatt J, Friedman DI. Interactions of an Arg-rich region of transcription elongation protein NusA with NUT RNA: implications for the order of assembly of the lambda N antitermination complex in vivo. J Mol Biol 2001; 310:33-49. [PMID: 11419935 DOI: 10.1006/jmbi.2001.4722] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The E. coli NusA transcription elongation protein (NusA(Ec)), identified because of its requirement for transcription antitermination by the N protein, has an Arg-rich S1 RNA-binding domain. A complex of N and NusA with other host factors binding at NUT sites in the RNA renders RNA polymerase termination-resistant. An E. coli haploid for nusA944, having nine different codons replacing four normally found in the Arg-rich region, is defective in support of N action. Another variant, haploid for the nusAR199A allele, with a change in a highly conserved Arg codon in the S1 domain, effectively supports N-mediated antitermination. However, nusAR199A is recessive to nusA944, while nusA(Ec) is dominant to nusA944 for support of N-mediated antitermination, suggesting a competition between NusA944 and NusAR199A during complex formation. Complex formation with the variant NusA proteins was assessed by mobility gel shifts. NusAR199A, unlike NusA(Ec) and NusA944, fails to form a complex with N and NUT RNA. However, while NusAR199A, like wild-type NusA, forms an enlarged complex with NUT RNA, N, RNA polymerase, and other host proteins required for efficient N-mediated antitermination, NusA944 does not form this enlarged complex. Consistent with the in vivo results, NusA944 prevents NusAR199A but not NusA(Ec) from forming the enlarged complex. The simplest conclusion from these dominance studies is that in the formation of the complete active antitermination complex in vivo, NusA and N binding to the newly synthesized NUT RNA precedes addition of the other factors. Alternative less effective routes to the active complex that allows bypass of this preferred pathway may also exist.
Collapse
Affiliation(s)
- Y Zhou
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Neely MN, Friedman DI. N-mediated transcription antitermination in lambdoid phage H-19B is characterized by alternative NUT RNA structures and a reduced requirement for host factors. Mol Microbiol 2000; 38:1074-85. [PMID: 11123680 DOI: 10.1046/j.1365-2958.2000.02217.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gene expression in lambdoid phages in part is controlled by transcription antitermination. For most lambdoid phages, maximal expression of delayed early genes requires an RNA polymerase modified by the phage N and host Nus proteins at RNA NUT sites. The NUT sites (NUTL and NUTR) are made up of three elements: BOXA, BOXB and an intervening spacer sequence. We report on N antitermination in H-19B, a lambdoid phage carrying shiga toxin 1 genes. H-19B N requires NusA, but not two other host factors required by lambda N, NusB and ribosomal protein S10. The H-19B NUT site BOXA is not required, whereas the BOXB is required for N action. H-19B nut sites have dyad symmetries in the spacer regions that are not in other nut sites. Changes in one arm of the dyad symmetry inactivate the NUT RNA. Compensating changes increasing the number of mutant nucleotides but restoring dyad symmetry restore activity. Deletion of the sequences encoding the dyad symmetry has little effect. Thus, the specific nucleotides composing the dyad symmetry seem relatively unimportant. We propose that the RNA stem-loop structure, called the 'reducer', by sequestering nucleotides from the linear RNA brings into proximity sites on either side of the dyad symmetry that contribute to forming an active NUT site.
Collapse
Affiliation(s)
- M N Neely
- Department of Microbiology and Immunology, Medical School, 5641 Medical Science Building II, University of Michigan, Ann Arbor, MI 48109-0620, USA
| | | |
Collapse
|
21
|
Neely MN, Friedman DI. Arrangement and functional identification of genes in the regulatory region of lambdoid phage H-19B, a carrier of a Shiga-like toxin. Gene 1998; 223:105-13. [PMID: 9858702 DOI: 10.1016/s0378-1119(98)00236-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
H-19B is a lambdoid phage that carries the genes (stx-I) encoding the two toxin subunits of a Shiga-like toxin; Escherichia coli lysogens of H-19B are converted to toxin producers. Based on the determination of a 17-kb region of the H-19B genome and functional studies, we have identified the early regulatory region and associated genes of H-19B, as well as the location of the late regulatory region and the toxin and lysis genes. A comparative analysis of the sequence of the H-19B genome reveals the presence of ORFs and genes found in analogous positions on the genomes of a number of other lambdoid phages. A cloned genomic fragment that confers immunity to an infecting H-19B phage contains an ORF of an analogous size and genomic location for a repressor gene, adjacent to a putative operator region. The lambda replication genes, O and P, are conserved in H-19B except for a 39-bp insert in the O gene creating two new O protein-binding sites in the origin of replication (ori), giving H-19B six binding sites as opposed to the four sites found in lambda. We identify ORFs and sequences involved in transcriptional regulation encoding N-like antitermination systems like those found in other lambdoid phages and nearly identical to sequences found in phage HK97. Our functional studies show that these sequences support antitermination even though they contain significant differences from those of other lambdoid phages. We also identify ORFs and sequences analogous to the Q-p'R late antiterminators-promoters found in other lambdoid phages. The Shiga-like stx-I genes are located directly downstream of the promoter, p'R, for the late genes, and upstream of the lysis genes.
Collapse
Affiliation(s)
- M N Neely
- University of Michigan, Department of Microbiology and Immunology, Ann Arbor, MI 48109-0620, USA
| | | |
Collapse
|
22
|
Sharples GJ, Corbett LM, Graham IR. lambda Rap protein is a structure-specific endonuclease involved in phage recombination. Proc Natl Acad Sci U S A 1998; 95:13507-12. [PMID: 9811830 PMCID: PMC24849 DOI: 10.1073/pnas.95.23.13507] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage lambda encodes a number of genes involved in the recombinational repair of DNA double-strand breaks. The product of one of these genes, rap, has been purified. Truncated Rap proteins that copurify with the full-length form are derived, at least in part, from a rho-dependent transcription terminator located within its coding sequence. Full-length and certain truncated Rap polypeptides bind preferentially to branched DNA substrates, including synthetic Holliday junctions and D-loops. In the presence of manganese ions, Rap acts as an endonuclease that cleaves at the branch point of Holliday and D-loop substrates. It shows no obvious sequence preference or symmetry of cleavage on a Holliday junction. The biochemical analysis of Rap gives an insight into how recombinants could be generated by the nicking of a D-loop without the formation of a classical Holliday junction.
Collapse
Affiliation(s)
- G J Sharples
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | | | | |
Collapse
|