1
|
Chen J, Chen H, Li S, Lin X, Hu R, Zhang K, Liu L. Structural and mechanistic insights into ribosomal ITS2 RNA processing by nuclease-kinase machinery. eLife 2024; 12:RP86847. [PMID: 38180340 PMCID: PMC10942766 DOI: 10.7554/elife.86847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Precursor ribosomal RNA (pre-rRNA) processing is a key step in ribosome biosynthesis and involves numerous RNases. A HEPN (higher eukaryote and prokaryote nucleotide binding) nuclease Las1 and a polynucleotide kinase Grc3 assemble into a tetramerase responsible for rRNA maturation. Here, we report the structures of full-length Saccharomyces cerevisiae and Cyberlindnera jadinii Las1-Grc3 complexes, and C. jadinii Las1. The Las1-Grc3 structures show that the central coiled-coil domain of Las1 facilitates pre-rRNA binding and cleavage, while the Grc3 C-terminal loop motif directly binds to the HEPN active center of Las1 and regulates pre-rRNA cleavage. Structural comparison between Las1 and Las1-Grc3 complex exhibits that Grc3 binding induces conformational rearrangements of catalytic residues associated with HEPN nuclease activation. Biochemical assays identify that Las1 processes pre-rRNA at the two specific sites (C2 and C2'), which greatly facilitates rRNA maturation. Our structures and specific pre-rRNA cleavage findings provide crucial insights into the mechanism and pathway of pre-rRNA processing in ribosome biosynthesis.
Collapse
Affiliation(s)
- Jiyun Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Hong Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Shanshan Li
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Xiaofeng Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Rong Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Kaiming Zhang
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Liang Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| |
Collapse
|
2
|
Osuna-Cruz CM, Bilcke G, Vancaester E, De Decker S, Bones AM, Winge P, Poulsen N, Bulankova P, Verhelst B, Audoor S, Belisova D, Pargana A, Russo M, Stock F, Cirri E, Brembu T, Pohnert G, Piganeau G, Ferrante MI, Mock T, Sterck L, Sabbe K, De Veylder L, Vyverman W, Vandepoele K. The Seminavis robusta genome provides insights into the evolutionary adaptations of benthic diatoms. Nat Commun 2020; 11:3320. [PMID: 32620776 PMCID: PMC7335047 DOI: 10.1038/s41467-020-17191-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Benthic diatoms are the main primary producers in shallow freshwater and coastal environments, fulfilling important ecological functions such as nutrient cycling and sediment stabilization. However, little is known about their evolutionary adaptations to these highly structured but heterogeneous environments. Here, we report a reference genome for the marine biofilm-forming diatom Seminavis robusta, showing that gene family expansions are responsible for a quarter of all 36,254 protein-coding genes. Tandem duplications play a key role in extending the repertoire of specific gene functions, including light and oxygen sensing, which are probably central for its adaptation to benthic habitats. Genes differentially expressed during interactions with bacteria are strongly conserved in other benthic diatoms while many species-specific genes are strongly upregulated during sexual reproduction. Combined with re-sequencing data from 48 strains, our results offer insights into the genetic diversity and gene functions in benthic diatoms.
Collapse
Affiliation(s)
- Cristina Maria Osuna-Cruz
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Gust Bilcke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000, Ghent, Belgium
| | - Emmelien Vancaester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Sam De Decker
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Atle M Bones
- Cell Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Per Winge
- Cell Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Nicole Poulsen
- B CUBE Center for Molecular Bioengineering, Technical University of Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Petra Bulankova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Bram Verhelst
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Sien Audoor
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Darja Belisova
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Aikaterini Pargana
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Monia Russo
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Frederike Stock
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Emilio Cirri
- Friedrich Schiller University Jena, Institute of Inorganic and Analytical Chemistry, Lessingstrasse 8, 07745, Jena, Germany
| | - Tore Brembu
- Cell Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Georg Pohnert
- Friedrich Schiller University Jena, Institute of Inorganic and Analytical Chemistry, Lessingstrasse 8, 07745, Jena, Germany
| | - Gwenael Piganeau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins BIOM, Observatoire Océanologique, F-66650, Banyuls-sur-Mer, France
| | | | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Koen Sabbe
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Wim Vyverman
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium.
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052, Ghent, Belgium.
| |
Collapse
|
3
|
Pillon MC, Lo YH, Stanley RE. IT'S 2 for the price of 1: Multifaceted ITS2 processing machines in RNA and DNA maintenance. DNA Repair (Amst) 2019; 81:102653. [PMID: 31324529 PMCID: PMC6764878 DOI: 10.1016/j.dnarep.2019.102653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cells utilize sophisticated RNA processing machines to ensure the quality of RNA. Many RNA processing machines have been further implicated in regulating the DNA damage response signifying a strong link between RNA processing and genome maintenance. One of the most intricate and highly regulated RNA processing pathways is the processing of the precursor ribosomal RNA (pre-rRNA), which is paramount for the production of ribosomes. Removal of the Internal Transcribed Spacer 2 (ITS2), located between the 5.8S and 25S rRNA, is one of the most complex steps of ribosome assembly. Processing of the ITS2 is initiated by the newly discovered endoribonuclease Las1, which cleaves at the C2 site within the ITS2, generating products that are further processed by the polynucleotide kinase Grc3, the 5'→3' exonuclease Rat1, and the 3'→5' RNA exosome complex. In addition to their defined roles in ITS2 processing, these critical cellular machines participate in other stages of ribosome assembly, turnover of numerous cellular RNAs, and genome maintenance. Here we summarize recent work defining the molecular mechanisms of ITS2 processing by these essential RNA processing machines and highlight their emerging roles in transcription termination, heterochromatin function, telomere maintenance, and DNA repair.
Collapse
Affiliation(s)
- Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Yu-Hua Lo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
4
|
Pillon MC, Stanley RE. Nuclease integrated kinase super assemblies (NiKs) and their role in RNA processing. Curr Genet 2017; 64:183-190. [PMID: 28929238 DOI: 10.1007/s00294-017-0749-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 01/24/2023]
Abstract
Here we highlight the Grc3/Las1 complex, an essential RNA processing machine that is well conserved across eukaryotes and required for processing the pre-ribosomal RNA (pre-rRNA). Las1 is an endoribonuclease that cleaves the pre-rRNA while Grc3 is a polynucleotide kinase that phosphorylates the Las1-cleaved RNA product. Recently we showed that Grc3 and Las1 assemble into a higher-order complex composed of a dimer of Grc3/Las1 heterodimers that is required for nuclease and kinase activity. Unexpectedly, we found that the Grc3/Las1 complex draws numerous parallels with two other eukaryotic nucleases, Ire1 and RNase L. In this perspective we explore the similarities and differences between this family of nuclease integrated kinase super assemblies (NiKs) and their distinct roles in RNA cleavage.
Collapse
Affiliation(s)
- Monica C Pillon
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
5
|
Tomecki R, Sikorski PJ, Zakrzewska-Placzek M. Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases. FEBS Lett 2017; 591:1801-1850. [PMID: 28524231 DOI: 10.1002/1873-3468.12682] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Abstract
Proper regulation of ribosome biosynthesis is mandatory for cellular adaptation, growth and proliferation. Ribosome biogenesis is the most energetically demanding cellular process, which requires tight control. Abnormalities in ribosome production have severe consequences, including developmental defects in plants and genetic diseases (ribosomopathies) in humans. One of the processes occurring during eukaryotic ribosome biogenesis is processing of the ribosomal RNA precursor molecule (pre-rRNA), synthesized by RNA polymerase I, into mature rRNAs. It must not only be accurate but must also be precisely coordinated with other phenomena leading to the synthesis of functional ribosomes: RNA modification, RNA folding, assembly with ribosomal proteins and nucleocytoplasmic RNP export. A multitude of ribosome biogenesis factors ensure that these events take place in a correct temporal order. Among them are endo- and exoribonucleases involved in pre-rRNA processing. Here, we thoroughly present a wide spectrum of ribonucleases participating in rRNA maturation, focusing on their biochemical properties, regulatory mechanisms and substrate specificity. We also discuss cooperation between various ribonucleolytic activities in particular stages of pre-rRNA processing, delineating major similarities and differences between three representative groups of eukaryotes: yeast, plants and humans.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | | | | |
Collapse
|
6
|
Castle CD, Sardana R, Dandekar V, Borgianini V, Johnson AW, Denicourt C. Las1 interacts with Grc3 polynucleotide kinase and is required for ribosome synthesis in Saccharomyces cerevisiae. Nucleic Acids Res 2012; 41:1135-50. [PMID: 23175604 PMCID: PMC3553937 DOI: 10.1093/nar/gks1086] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Ribosome biogenesis is a multi-step process that couples cell growth with cell proliferation. Although several large-scale analysis of pre-ribosomal particles have identified numerous trans-acting factors involved in this process, many proteins involved in pre-rRNA processing and ribosomal subunit maturation have yet to be identified. Las1 was originally identified in Saccharomyces cerevisiae as a protein involved in cell morphogenesis. We previously demonstrated that the human homolog, Las1L, is required for efficient ITS2 rRNA processing and synthesis of the 60S ribosomal subunit. Here, we report that the functions of Las1 in ribosome biogenesis are also conserved in S. cerevisiae. Depletion of Las1 led to the accumulation of both the 27S and 7S rRNA intermediates and impaired the synthesis of the 60S subunit. We show that Las1 co-precipitates mainly with the 27S rRNA and associates with an Nsa1 and Rix1-containing pre-60S particle. We further identify Grc3 as a major Las1-interacting protein. We demonstrate that the kinase activity of Grc3 is required for efficient pre-rRNA processing and that depletion of Grc3 leads to rRNA processing defects similar to the ones observed in Las1-depleted cells. We propose that Las1 and Grc3 function together in a conserved mechanism to modulate rRNA processing and eukaryotic ribosome biogenesis.
Collapse
Affiliation(s)
- Christopher D Castle
- Department of Integrative Biology and Pharmacology, Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
7
|
Fanis P, Gillemans N, Aghajanirefah A, Pourfarzad F, Demmers J, Esteghamat F, Vadlamudi RK, Grosveld F, Philipsen S, van Dijk TB. Five friends of methylated chromatin target of protein-arginine-methyltransferase[prmt]-1 (chtop), a complex linking arginine methylation to desumoylation. Mol Cell Proteomics 2012; 11:1263-73. [PMID: 22872859 DOI: 10.1074/mcp.m112.017194] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin target of Prmt1 (Chtop) is a vertebrate-specific chromatin-bound protein that plays an important role in transcriptional regulation. As its mechanism of action remains unclear, we identified Chtop-interacting proteins using a biotinylation-proteomics approach. Here we describe the identification and initial characterization of Five Friends of Methylated Chtop (5FMC). 5FMC is a nuclear complex that can only be recruited by Chtop when the latter is arginine-methylated by Prmt1. It consists of the co-activator Pelp1, the Sumo-specific protease Senp3, Wdr18, Tex10, and Las1L. Pelp1 functions as the core of 5FMC, as the other components become unstable in the absence of Pelp1. We show that recruitment of 5FMC to Zbp-89, a zinc-finger transcription factor, affects its sumoylation status and transactivation potential. Collectively, our data provide a mechanistic link between arginine methylation and (de)sumoylation in the control of transcriptional activity.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Cell Biology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Castle CD, Cassimere EK, Denicourt C. LAS1L interacts with the mammalian Rix1 complex to regulate ribosome biogenesis. Mol Biol Cell 2012; 23:716-28. [PMID: 22190735 PMCID: PMC3279398 DOI: 10.1091/mbc.e11-06-0530] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 11/14/2011] [Accepted: 12/13/2011] [Indexed: 01/02/2023] Open
Abstract
The coordination of RNA polymerase I transcription with pre-rRNA processing, preribosomal particle assembly, and nuclear export is a finely tuned process requiring the concerted actions of a number of accessory factors. However, the exact functions of some of these proteins and how they assemble in subcomplexes remain poorly defined. LAS1L was first described as a nucleolar protein required for maturation of the 60S preribosomal subunit. In this paper, we demonstrate that LAS1L interacts with PELP1, TEX10, and WDR18, the mammalian homologues of the budding yeast Rix1 complex, along with NOL9 and SENP3, to form a novel nucleolar complex that cofractionates with the 60S preribosomal subunit. Depletion of LAS1L-associated proteins results in a p53-dependent G1 arrest and leads to defects in processing of the pre-rRNA internal transcribed spacer 2 region. We further show that the nucleolar localization of this complex requires active RNA polymerase I transcription and the small ubiquitin-like modifier-specific protease SENP3. Taken together, our data identify a novel mammalian complex required for 60S ribosomal subunit synthesis, providing further insight into the intricate, yet poorly described, process of ribosome biogenesis in higher eukaryotes.
Collapse
Affiliation(s)
- Christopher D. Castle
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030
| | - Erica K. Cassimere
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030
| |
Collapse
|
9
|
The evolutionarily conserved protein Las1 is required for pre-rRNA processing at both ends of ITS2. Mol Cell Biol 2011; 32:430-44. [PMID: 22083961 DOI: 10.1128/mcb.06019-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribosome synthesis entails the formation of mature rRNAs from long precursor molecules, following a complex pre-rRNA processing pathway. Why the generation of mature rRNA ends is so complicated is unclear. Nor is it understood how pre-rRNA processing is coordinated at distant sites on pre-rRNA molecules. Here we characterized, in budding yeast and human cells, the evolutionarily conserved protein Las1. We found that, in both species, Las1 is required to process ITS2, which separates the 5.8S and 25S/28S rRNAs. In yeast, Las1 is required for pre-rRNA processing at both ends of ITS2. It is required for Rrp6-dependent formation of the 5.8S rRNA 3' end and for Rat1-dependent formation of the 25S rRNA 5' end. We further show that the Rat1-Rai1 5'-3' exoribonuclease (exoRNase) complex functionally connects processing at both ends of the 5.8S rRNA. We suggest that pre-rRNA processing is coordinated at both ends of 5.8S rRNA and both ends of ITS2, which are brought together by pre-rRNA folding, by an RNA processing complex. Consistently, we note the conspicuous presence of ~7- or 8-nucleotide extensions on both ends of 5.8S rRNA precursors and at the 5' end of pre-25S RNAs suggestive of a protected spacer fragment of similar length.
Collapse
|
10
|
Kitano E, Hayashi A, Kanai D, Shinmyozu K, Nakayama JI. Roles of fission yeast Grc3 protein in ribosomal RNA processing and heterochromatic gene silencing. J Biol Chem 2011; 286:15391-402. [PMID: 21385875 PMCID: PMC3083176 DOI: 10.1074/jbc.m110.201343] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 03/01/2011] [Indexed: 01/26/2023] Open
Abstract
Grc3 is an evolutionarily conserved protein. Genome-wide budding yeast studies suggest that Grc3 is involved in rRNA processing. In the fission yeast Schizosaccharomyces pombe, Grc3 was identified as a factor exhibiting distinct nuclear dot localization, yet its exact physiological function remains unknown. Here, we show that S. pombe Grc3 is required for both rRNA processing and heterochromatic gene silencing. Cytological analysis revealed that Grc3 nuclear dots correspond to heterochromatic regions and that some Grc3 is also present in the nucleolar peripheral region. Depleting the heterochromatic proteins Swi6 or Clr4 abolished heterochromatic localization of Grc3 and resulted in its preferential accumulation in the perinucleolar region, suggesting its dynamic association with these nuclear compartments. Cells expressing mutant grc3 showed defects in 25 S rRNA maturation and in heterochromatic gene silencing. Protein analysis of Grc3-containing complexes led to the identification of Las1 and components of the IPI complex (Rix1, Ipi1, and Crb3). All of these Grc3-interacting proteins showed a dynamic nuclear localization similar to that observed for Grc3, and those conditional mutants showed defects in both rRNA processing and silencing of centromeric transcripts. Our data suggest that Grc3 functions cooperatively with Las1 and the IPI complex in both ribosome biogenesis and heterochromatin assembly.
Collapse
Affiliation(s)
- Erina Kitano
- From the Laboratory for Chromatin Dynamics and
- the Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan, and
| | - Aki Hayashi
- From the Laboratory for Chromatin Dynamics and
| | - Daigo Kanai
- From the Laboratory for Chromatin Dynamics and
- the Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda 669-1337, Japan
| | - Kaori Shinmyozu
- Proteomics Support Unit, RIKEN Center for Developmental Biology, Kobe Hyogo 650-0047, Japan
| | - Jun-ichi Nakayama
- From the Laboratory for Chromatin Dynamics and
- the Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda 669-1337, Japan
| |
Collapse
|
11
|
Las1L is a nucleolar protein required for cell proliferation and ribosome biogenesis. Mol Cell Biol 2010; 30:4404-14. [PMID: 20647540 DOI: 10.1128/mcb.00358-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribosome biogenesis is a highly regulated process ensuring that cell growth (increase in biomass) is coordinated with cell proliferation. The formation of eukaryotic ribosomes is a multistep process initiated by the transcription and processing of rRNA in the nucleolus. Concomitant with this, several preribosomal particles, which transiently associate with numerous nonribosomal factors before mature 60S and 40S subunits are formed and exported in the cytoplasm, are generated. Here we identify Las1L as a previously uncharacterized nucleolar protein required for ribosome biogenesis. Depletion of Las1L causes inhibition of cell proliferation characterized by a G1 arrest dependent on the tumor suppressor p53. Moreover, we demonstrate that Las1L is crucial for ribosome biogenesis and that depletion of Las1L leads to inhibition of rRNA processing and failure to synthesize the mature 28S rRNA. Taken together, our data demonstrate that Las1L is essential for cell proliferation and biogenesis of the 60S ribosomal subunit.
Collapse
|
12
|
Druzhinina IS, Komoń-Zelazowska M, Atanasova L, Seidl V, Kubicek CP. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLoS One 2010; 5:e9191. [PMID: 20169200 PMCID: PMC2820547 DOI: 10.1371/journal.pone.0009191] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 01/18/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Trichoderma reesei, a mitosporic green mould, was recognized during the WW II based on a single isolate from the Solomon Islands and since then used in industry for production of cellulases. It is believed to be an anamorph (asexual stage) of the common pantropical ascomycete Hypocrea jecorina. METHODOLOGY/PRINCIPAL FINDINGS We combined molecular evolutionary analysis and multiple methods of phenotype profiling in order to reveal the genetic relationship of T. reesei to H. jecorina. The resulting data show that the isolates which were previously identified as H. jecorina by means of morphophysiology and ITS1 and 2 (rRNA gene cluster) barcode in fact comprise several species: i) H. jecorina/T. reesei sensu stricto which contains most of the teleomorphs (sexual stages) found on dead wood and the wild-type strain of T. reesei QM 6a; ii) T. parareesei nom. prov., which contains all strains isolated as anamorphs from soil; iii) and two other hypothetical new species for which only one or two isolates are available. In silico tests for recombination and in vitro mating experiments revealed a history of sexual reproduction for H. jecorina and confirmed clonality for T. parareesei nom. prov. Isolates of both species were consistently found worldwide in pantropical climatic zone. Ecophysiological comparison of H. jecorina and T. parareesei nom. prov. revealed striking differences in carbon source utilization, conidiation intensity, photosensitivity and mycoparasitism, thus suggesting adaptation to different ecological niches with the high opportunistic potential for T. parareesei nom. prov. CONCLUSIONS Our data prove that T. reesei belongs to a holomorph H. jecorina and displays a history of worldwide gene flow. We also show that its nearest genetic neighbour--T. parareesei nom. prov., is a cryptic phylogenetic agamospecies which inhabits the same biogeographic zone. These two species thus provide a so far rare example of sympatric speciation within saprotrophic fungi, with divergent ecophysiological adaptations and reproductive strategies.
Collapse
Affiliation(s)
- Irina S Druzhinina
- Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria.
| | | | | | | | | |
Collapse
|
13
|
Ssd1 is required for thermotolerance and Hsp104-mediated protein disaggregation in Saccharomyces cerevisiae. Mol Cell Biol 2008; 29:187-200. [PMID: 18936161 DOI: 10.1128/mcb.02271-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, the Hsp104-mediated disaggregation of protein aggregates is essential for thermotolerance and to facilitate the maintenance of prions. In humans, protein aggregation is associated with neuronal death and dysfunction in many neurodegenerative diseases. Mechanisms of aggregation surveillance that regulate protein disaggregation are likely to play a major role in cell survival after acute stress. However, such mechanisms have not been studied. In a screen using the yeast gene deletion library for mutants unable to survive an aggregation-inducing heat stress, we find that SSD1 is required for Hsp104-mediated protein disaggregation. SSD1 is a polymorphic gene that plays a role in cellular integrity, longevity, and pathogenicity in yeast. Allelic variants of SSD1 regulate the level of thermotolerance and cell wall remodeling. We have shown that Ssd1 influences the ability of Hsp104 to hexamerize, to interact with the cochaperone Sti1, and to bind protein aggregates. These results provide a paradigm for linking Ssd1-mediated cellular integrity and Hsp104-mediated disaggregation to ensure the survival of cells with fewer aggregates.
Collapse
|
14
|
Martins LF, Montero-Lomelí M, Masuda CA, Fortes FS, Previato JO, Mendonça-Previato L. Lithium-mediated suppression of morphogenesis and growth in Candida albicans. FEMS Yeast Res 2008; 8:615-21. [DOI: 10.1111/j.1567-1364.2008.00376.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
15
|
López-Mirabal HR, Winther JR, Thorsen M, Kielland-Brandt MC. Mutations in the RAM network confer resistance to the thiol oxidant 4,4'-dipyridyl disulfide. Mol Genet Genomics 2008; 279:629-42. [PMID: 18357467 DOI: 10.1007/s00438-008-0339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 03/04/2008] [Indexed: 11/29/2022]
Abstract
Thiol oxidants are expected to have multiple effects in living cells. Hence, mutations giving resistance to such agents are likely to reveal important targets and/or mechanisms influencing the cellular capacity to withstand thiol oxidation. A screen for mutants resistant to the thiol-specific oxidant dipyridyl disulfide (DPS) yielded tao3-516, which is impaired in the function of the RAM signaling network protein Tao3/Pag1p. We suggest that the DPS-resistance of the tao3-516 mutant might be due to deficient cell-cycle-regulated production of the chitinase Cts1p, which functions in post-mitotic cell separation and depends on Tao3p and the RAM network for regulated expression. Consistent with this, deletion of other RAM genes or CTS1 also resulted in increased resistance to DPS. Exposure to DPS caused extensive depolarization of the actin cytoskeleton. We found that tao3-516 is resistant to latrunculin, a specific inhibitor of actin polymerization, and that ram, Deltaace2, and Deltacts1 mutants are resistant to benomyl, a microtubule-destabilizing drug. Since septum build-up depends on the organization of cytoskeletal proteins, the resistance to cytoskeletal stress of Cts1p-deficient mutants might relate to bypass for abnormal septum-associated protein sorting. The broad resistance toward oxidants (DPS, diamide and H(2)O(2)) of the Deltacts1 strain links cell wall function to the resistance to oxidative stress and suggests the existence of targets that are common for these oxidants.
Collapse
|
16
|
Tanaka S, Yamada K, Yabumoto K, Fujii S, Huser A, Tsuji G, Koga H, Dohi K, Mori M, Shiraishi T, O'Connell R, Kubo Y. Saccharomyces cerevisiae SSD1 orthologues are essential for host infection by the ascomycete plant pathogens Colletotrichum lagenarium and Magnaporthe grisea. Mol Microbiol 2007; 64:1332-49. [PMID: 17542924 DOI: 10.1111/j.1365-2958.2007.05742.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fungal plant pathogens have evolved diverse strategies to overcome the multilayered plant defence responses that confront them upon host invasion. Here we show that pathogenicity of the cucumber anthracnose fungus, Colletotrichum lagenarium, and the rice blast fungus, Magnaporthe grisea, requires a gene orthologous to Saccharomyces cerevisiae SSD1, a regulator of cell wall assembly. Screening for C. lagenarium insertional mutants deficient in pathogenicity led to the identification of ClaSSD1. Following targeted gene replacement, appressoria of classd1 mutants retained the potential for penetration but were unable to penetrate into host epidermal cells. Transmission electron microscopy suggested that appressorial penetration by classd1 mutants was restricted by plant cell wall-associated defence responses, which were observed less frequently with the wild-type strain. Interestingly, on non-host onion epidermis classd1 mutants induced papilla formation faster and more abundantly than the wild type. Similarly, colonization of rice leaves by M. grisea was severely reduced after deletion of the orthologous MgSSD1 gene and attempted infection by the mutants was accompanied by the accumulation of reactive oxygen species within the host cell. These results suggest that appropriate assembly of the fungal cell wall as regulated by SSD1 allows these pathogens to establish infection by avoiding the induction of host defence responses.
Collapse
Affiliation(s)
- Shigeyuki Tanaka
- Laboratory of Plant Pathology, Graduate school of Agriculture, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Freimoser FM, Hu G, Leger RJS. Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro. Microbiology (Reading) 2005; 151:361-371. [PMID: 15699187 DOI: 10.1099/mic.0.27560-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metarhizium anisopliaeinfects a broad range of insects by direct penetration of the host cuticle. To explore the molecular basis of this process, its gene expression responses to diverse insect cuticles were surveyed, using cDNA microarrays constructed from an expressed sequence tag (EST) clone collection of 837 genes. During growth in culture containing caterpillar cuticle (Manduca sexta),M. anisopliaeupregulated 273 genes, representing a broad spectrum of biological functions, including cuticle-degradation (e.g. proteases), amino acid/peptide transport and transcription regulation. There were also many genes of unknown function. The 287 down-regulated genes were also distinctive, and included a large set of ribosomal protein genes. The response to nutrient deprivation partially overlapped with the response toMan. sextacuticle, but unique expression patterns in response to cuticles from another caterpillar (Lymantria dispar), a cockroach (Blaberus giganteus) and a beetle (Popilla japonica) indicate that the pathogen can respond in a precise and specialized way to specific conditions. The subtilisins provided an example of a large gene family in which differences in regulation could potentially allow virulence determinants to target different hosts and stages of infection. Comparisons betweenM. anisopliaeand published data onTrichoderma reeseiandSaccharomyces cerevisiaeidentified differences in the regulation of glycolysis-related genes and citric acid cycle/oxidative phosphorylation functions. In particular,M. anisopliaehas multiple forms of several catabolic enzymes that are differentially regulated in response to sugar levels. These may increase the flexibility ofM. anisopliaeas it responds to nutritional changes in its environment.
Collapse
Affiliation(s)
- Florian M Freimoser
- Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742, USA
| | - Gang Hu
- Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742, USA
| | - Raymond J St Leger
- Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742, USA
| |
Collapse
|
18
|
Hernandez JM, Heine GF, Irani NG, Feller A, Kim MG, Matulnik T, Chandler VL, Grotewold E. Different mechanisms participate in the R-dependent activity of the R2R3 MYB transcription factor C1. J Biol Chem 2004; 279:48205-13. [PMID: 15347654 DOI: 10.1074/jbc.m407845200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The R2R3 MYB transcription factor C1 requires the basic helix-loop-helix factor R as an essential co-activator for the transcription of maize anthocyanin genes. In contrast, the R2R3 MYB protein P1 activates a subset of the C1-regulated genes independently of R. Substitution of six amino acids in P1 with the C1 amino acids results in P1(*), whose activity on C1-regulated and P1-regulated genes is R-dependent or R-enhanced, respectively. We have used P1(*) in combination with various promoters to uncover two mechanisms for R function. On synthetic promoters that contain only C1/P1 binding sites, R is an essential co-activator of C1. This function of R is unlikely to simply be the result of an increase in the C1 DNA-binding affinity, since transcriptional activity of a C1 mutant that binds DNA at a higher affinity, comparable with P1, remains R-dependent. The differential transcriptional activity of C1 fusions with the yeast Gal4 DNA-binding domain in yeast and maize cells suggests that part of the function of R is to relieve C1 from a plant-specific inhibitor. A second function of R requires cis-regulatory elements in addition to the C1/P1 DNA-binding sites for R-enhanced transcription of a1. We hypothesize that R functions in this mode by binding or recruiting additional factors to the anthocyanin regulatory element conserved in the promoters of several anthocyanin genes. Together, these findings suggest a model in which combinatorial interactions with co-activators enable R2R3 MYB factors with very similar DNA binding preferences to discriminate between target genes in vivo.
Collapse
Affiliation(s)
- J Marcela Hernandez
- Ohio State Biochemistry Program, Department of Plant Cellular and Molecular Biology, and Plant Biotechnology Center, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee CM, Nantel A, Jiang L, Whiteway M, Shen SH. The serine/threonine protein phosphatase SIT4 modulates yeast-to-hypha morphogenesis and virulence in Candida albicans. Mol Microbiol 2004; 51:691-709. [PMID: 14731272 DOI: 10.1111/j.1365-2958.2003.03879.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SIT4 encodes the multifunctional catalytic subunit of a type 2A-related protein phosphatase of Saccharomyces cerevisiae and has been implicated in cell cycle regulation and nitrogen sensing. We have identified the Candida albicans homologue of SIT4, and we show that its disruption caused a significant reduction in general growth rate, in hyphal outgrowth and in virulence in a mouse infection model. These phenotypes were reversed by the reintroduction of the wild-type SIT4 gene. We used glass DNA microarrays to measure the transcriptional profiles of 6287 open reading frames in sit4 cells undergoing the yeast-to-hypha transition induced by serum. Although differential expression of many of the hyphae-specific genes was not affected by the SIT4 deletion, the transcription of two new hyphae-induced genes, XOG1 and YNR67, was entirely reliant upon Sit4p. Both genes represent glucanases, indicating that SIT4 may play a role in controlling cell wall biogenesis. Furthermore, sit4 cells exhibited a reduced heat shock response to treatment with serum/37 degrees C, suggesting that SIT4 acts to co-ordinate the stress response signals during morphological switching. Finally, sit4 cells displayed reduced transcript levels for the genes encoding the Hog1p MAP kinase and several modulators of protein biosynthesis. Sit4p thus plays important roles during hyphal growth in Candida albicans through the regulation of cell wall biogenesis, osmosensing and protein translation.
Collapse
Affiliation(s)
- Chang-Muk Lee
- Mammalian Cell Genetics, Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada
| | | | | | | | | |
Collapse
|
20
|
Kaeberlein M, Andalis AA, Liszt GB, Fink GR, Guarente L. Saccharomyces cerevisiae SSD1-V Confers Longevity by a Sir2p-Independent Mechanism. Genetics 2004. [DOI: 10.1093/genetics/166.4.1661] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The SSD1 gene of Saccharomyces cerevisiae is a polymorphic locus that affects diverse cellular processes including cell integrity, cell cycle progression, and growth at high temperature. We show here that the SSD1-V allele is necessary for cells to achieve extremely long life span. Furthermore, addition of SSD1-V to cells can increase longevity independently of SIR2, although SIR2 is necessary for SSD1-V cells to attain maximal life span. Past studies of yeast aging have been performed in short-lived ssd1-d strain backgrounds. We propose that SSD1-V defines a previously undescribed pathway affecting cellular longevity and suggest that future studies on longevity-promoting genes should be carried out in long-lived SSD1-V strains.
Collapse
Affiliation(s)
- Matt Kaeberlein
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Alex A Andalis
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Gregory B Liszt
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Gerald R Fink
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Leonard Guarente
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
21
|
Sydorskyy Y, Dilworth DJ, Yi EC, Goodlett DR, Wozniak RW, Aitchison JD. Intersection of the Kap123p-mediated nuclear import and ribosome export pathways. Mol Cell Biol 2003; 23:2042-54. [PMID: 12612077 PMCID: PMC149464 DOI: 10.1128/mcb.23.6.2042-2054.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2002] [Revised: 08/28/2002] [Accepted: 12/13/2002] [Indexed: 11/20/2022] Open
Abstract
Kap123p is a yeast beta-karyopherin that imports ribosomal proteins into the nucleus prior to their assembly into preribosomal particles. Surprisingly, Kap123p is not essential for growth, under normal conditions. To further explore the role of Kap123p in nucleocytoplasmic transport and ribosome biogenesis, we performed a synthetic fitness screen designed to identify genes that interact with KAP123. Through this analysis we have identified three other karyopherins, Pse1p/Kap121p, Sxm1p/Kap108p, and Nmd5p/Kap119p. We propose that, in the absence of Kap123p, these karyopherins are able to supplant Kap123p's role in import. In addition to the karyopherins, we identified Rai1p, a protein previously implicated in rRNA processing. Rai1p is also not essential, but deletion of the RAI1 gene is deleterious to cell growth and causes defects in rRNA processing, which leads to an imbalance of the 60S/40S ratio and the accumulation of halfmers, 40S subunits assembled on polysomes that are unable to form functional ribosomes. Rai1p localizes predominantly to the nucleus, where it physically interacts with Rat1p and pre-60S ribosomal subunits. Analysis of the rai1/kap123 double mutant strain suggests that the observed genetic interaction results from an inability to efficiently export pre-60S subunits from the nucleus, which arises from a combination of compromised Kap123p-mediated nuclear import of the essential 60S ribosomal subunit export factor, Nmd3p, and a DeltaRAI1-induced decrease in the overall biogenesis efficiency.
Collapse
Affiliation(s)
- Y Sydorskyy
- Institute for Systems Biology, 1441 N 34th Street, Seattle, Washington 98105, USA
| | | | | | | | | | | |
Collapse
|
22
|
Torres J, Di Como CJ, Herrero E, De La Torre-Ruiz MA. Regulation of the cell integrity pathway by rapamycin-sensitive TOR function in budding yeast. J Biol Chem 2002; 277:43495-504. [PMID: 12171921 DOI: 10.1074/jbc.m205408200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The TOR (target of rapamycin) pathway controls cell growth in response to nutrient availability in eukaryotic cells. Inactivation of TOR function by rapamycin or nutrient exhaustion is accompanied by triggering various cellular mechanisms aimed at overcoming the nutrient stress. Here we report that in Saccharomyces cerevisiae the protein kinase C (PKC)-mediated mitogen-activated protein kinase pathway is regulated by TOR function because upon specific Tor1 and Tor2 inhibition by rapamycin, Mpk1 is activated rapidly in a process mediated by Sit4 and Tap42. Osmotic stabilization of the plasma membrane prevents both Mpk1 activation by rapamycin and the growth defect that occurs upon the simultaneous absence of Tor1 and Mpk1 function, suggesting that, at least partially, TOR inhibition is sensed by the PKC pathway at the cell envelope. This process involves activation of cell surface sensors, Rom2, and downstream elements of the mitogen-activated protein kinase cascade. Rapamycin also induces depolarization of the actin cytoskeleton through the TOR proteins, Sit4 and Tap42, in an osmotically suppressible manner. Finally, we show that entry into stationary phase, a physiological situation of nutrient depletion, also leads to the activation of the PKC pathway, and we provide further evidence demonstrating that Mpk1 is essential for viability once cells enter G(0).
Collapse
Affiliation(s)
- Jordi Torres
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida 25198, Spain
| | | | | | | |
Collapse
|
23
|
McDonald HB, Helfant AH, Mahony EM, Khosla SK, Goetsch L. Mutational analysis reveals a role for the C terminus of the proteasome subunit Rpt4p in spindle pole body duplication in Saccharomyces cerevisiae. Genetics 2002; 162:705-20. [PMID: 12399382 PMCID: PMC1462277 DOI: 10.1093/genetics/162.2.705] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ubiquitin/proteasome pathway plays a key role in regulating cell cycle progression. Previously, we reported that a conditional mutation in the Saccharomyces cerevisiae gene RPT4/PCS1, which encodes one of six ATPases in the proteasome 19S cap complex/regulatory particle (RP), causes failure of spindle pole body (SPB) duplication. To improve our understanding of Rpt4p, we created 58 new mutations, 53 of which convert clustered, charged residues to alanine. Virtually all mutations that affect the N-terminal region, which contains a putative nuclear localization signal and coiled-coil motif, result in a wild-type phenotype. Nine mutations that affect the central ATPase domain and the C-terminal region confer recessive lethality. The two conditional mutations identified, rpt4-145 and rpt4-150, affect the C terminus. After shift to high temperature, these mutations generally cause cells to progress slowly through the first cell cycle and to arrest in the second cycle with large buds, a G2 content of DNA, and monopolar spindles, although this phenotype can vary depending on the medium. Additionally, we describe a genetic interaction between RPT4 and the naturally polymorphic gene SSD1, which in wild-type form modifies the rpt4-145 phenotype such that cells arrest in G2 of the first cycle with complete bipolar spindles.
Collapse
Affiliation(s)
- Heather B McDonald
- Department of Biology, Colgate University, Hamilton, New York 13346, USA.
| | | | | | | | | |
Collapse
|
24
|
Rosenwald AG, Rhodes MA, Van Valkenburgh H, Palanivel V, Chapman G, Boman A, Zhang CJ, Kahn RA. ARL1 and membrane traffic in Saccharomyces cerevisiae. Yeast 2002; 19:1039-56. [PMID: 12210899 DOI: 10.1002/yea.897] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
To examine the functions of the Arf-like protein, Arl1p, in Saccharomyces cerevisiae, a null allele, arl1delta::HIS3, was constructed in two strains. In one background only, loss of ARL1 resulted in temperature-sensitive (ts) growth (suppressed on high-osmolarity media). Allelic variation at the SSD1 locus accounted for differences between strains. Strains lacking ARL1 exhibited several defects in membrane traffic. First, arl1delta strains secreted less protein as measured by TCA-precipitable radioactivity found in the media of [(35)S]-labelled cells. A portion of newly synthesized carboxypeptidase Y (CPY) was secreted rather than correctly targeted to the vacuole. Uptake of the fluid-phase marker, lucifer yellow, was reduced. All these phenotypes were exacerbated in an ssd1 background. The ts phenotype of the arl1deltassd1 strain was suppressed by YPT1, the yeast Rab1a homologue, suggesting that ARL1 and YPT1 have partially overlapping functions. These findings demonstrate that ARL1 encodes a regulator of membrane traffic.
Collapse
Affiliation(s)
- Anne G Rosenwald
- Department of Biology, Georgetown University, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Angeles de la Torre-Ruiz M, Torres J, Arino J, Herrero E. Sit4 is required for proper modulation of the biological functions mediated by Pkc1 and the cell integrity pathway in Saccharomyces cerevisiae. J Biol Chem 2002; 277:33468-76. [PMID: 12080055 DOI: 10.1074/jbc.m203515200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maintenance of cellular integrity in Saccharomyces cerevisiae is carried out by the activation of the protein kinase C-mediated mitogen-activated protein kinase (PKC1-MAPK) pathway. Here we report that correct down-regulation of both basal and induced activity of the PKC1-MAPK pathway requires the SIT4 function. Sit4 is a protein phosphatase also required for a proper cell cycle progression. We present evidence demonstrating that the G(1) to S delay in the cell cycle, which occurs as a consequence of the absence of Sit4, is mediated by up-regulation of Pkc1 activity. Sit4 operates downstream of the plasma membrane sensors Mid2, Wsc1, and Wsc2 and upstream of Pkc1. Sit4 affects all known biological functions involving Pkc1, namely Mpk1 activity and cell wall integrity, actin cytoskeleton organization, and ribosomal gene transcription.
Collapse
Affiliation(s)
- Maria Angeles de la Torre-Ruiz
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Rovira Roure 44, 25198-Lleida, Spain.
| | | | | | | |
Collapse
|
26
|
Ibeas JI, Yun DJ, Damsz B, Narasimhan ML, Uesono Y, Ribas JC, Lee H, Hasegawa PM, Bressan RA, Pardo JM. Resistance to the plant PR-5 protein osmotin in the model fungus Saccharomyces cerevisiae is mediated by the regulatory effects of SSD1 on cell wall composition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 25:271-80. [PMID: 11208019 DOI: 10.1046/j.1365-313x.2001.00967.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The capacity of plants to counter the challenge of pathogenic fungal attack depends in part on the ability of plant defense proteins to overcome fungal resistance by being able to recognize and eradicate the invading fungi. Fungal genes that control resistance to plant defense proteins are therefore important determinants that define the range of fungi from which an induced defense protein can protect the plant. Resistance of the model fungus Saccharomyces cerevisiae to osmotin, a plant defense PR-5 protein, is strongly dependent on the natural polymorphism of the SSD1 gene. Expression of the SSD1-v allele afforded resistance to the antifungal protein. Conversely, yeast strains carrying the SSD1-d allele or a null ssd1Delta mutation displayed high sensitivity to osmotin. The SSD1-v protein mediates osmotin resistance in a cell wall-dependent manner. Deletion of SSD1-v or SSD1-d impeded sorting of the PIR proteins (osmotin-resistance factors) to the cell wall without affecting mRNA levels, indicating that SSD1 functions in post-transcriptional regulation of gene expression. The sensitivity of ssd1Delta cells to osmotin was only partially suppressed by over-accumulation of PIR proteins in the cell wall, suggesting an additional function for SSD1 in cell wall-mediated resistance. Accordingly, cells carrying a null ssd1 mutation also displayed aberrant cell-wall morphology and lower levels of alkali-insoluble cell-wall glucans. Therefore SSD1 is an important regulator of fungal cell-wall biogenesis and composition, including the deposition of PIR proteins which block the action of plant antifungal PR-5 proteins.
Collapse
Affiliation(s)
- J I Ibeas
- Departamento de Ciencias Ambientales, Universidad Pablo Olavide, Sevilla, E-41013, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sutton A, Freiman R. The Cak1p protein kinase is required at G1/S and G2/M in the budding yeast cell cycle. Genetics 1997; 147:57-71. [PMID: 9286668 PMCID: PMC1208122 DOI: 10.1093/genetics/147.1.57] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The CAK1 gene encodes the major CDK-activating kinase (CAK) in budding yeast and is required for activation of Cdc28p for cell cycle progression from G2 to M phase. Here we describe the isolation of a mutant allele of CAK1 in a synthetic lethal screen with the Sit4 protein phosphatase. Analysis of several different cak1 mutants shows that although the G2 to M transition appears most sensitive to loss of Cak1p function, Cak1p is also required for activation of Cdc28p for progression from G1 into S phase. Further characterization of these mutants suggests that, unlike the CAK identified from higher eukaryotes, Cak1p of budding yeast may not play a role in general transcription. Finally, although Cak1 protein levels and in vitro protein kinase activity do not fluctuate during the cell cycle, at least a fraction of Cak1p associates with higher molecular weight proteins, which may be important for its in vivo function.
Collapse
Affiliation(s)
- A Sutton
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794, USA.
| | | |
Collapse
|
28
|
Abstract
Since the isolation of the first yeast protein phosphatase genes in 1989, much progress has been made in understanding this important group of proteins. Yeast contain genes encoding all the major types of protein phosphatase found in higher eukaryotes and the ability to use genetic approaches will complement the wealth of biochemical information available from other systems. This review will summarize recent progress in understanding the structure, function and regulation of the PPP family of protein serine-threonine phosphatases, concentrating on the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- M J Stark
- Department of Biochemistry, University of Dundee, UK
| |
Collapse
|
29
|
Evans DR, Stark MJ. Mutations in the Saccharomyces cerevisiae type 2A protein phosphatase catalytic subunit reveal roles in cell wall integrity, actin cytoskeleton organization and mitosis. Genetics 1997; 145:227-41. [PMID: 9071579 PMCID: PMC1207790 DOI: 10.1093/genetics/145.2.227] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Temperature-sensitive mutations were generated in the Saccharomyces cerevisiae PPH22 gene that, together with its homologue PPH21, encode the catalytic subunit of type 2A protein phosphatase (PP2A). At the restrictive temperature (37 degrees), cells dependent solely on pph22 alleles for PP2A function displayed a rapid arrest of proliferation. Ts pph22 mutant cells underwent lysis at 37 degrees, showing an accompanying viability loss that was suppressed by inclusion of 1 M sorbitol in the growth medium. Ts pph22 mutant cells also displayed defects in bud morphogenesis and polarization of the cortical actin cytoskeleton at 37 degrees. PP2A is therefore required for maintenance of cell integrity and polarized growth. On transfer from 24 degrees to 37 degrees, Ts- pph22 mutant cells accumulated a 2N DNA content indicating a cell cycle block before completion of mitosis. However, during prolonged incubation at 37 degrees, many Ts- pph22 mutant cells progressed through an aberrant nuclear division and accumulated multiple nuclei. Ts- pph22 mutant cells also accumulated aberrant microtubule structures at 37 degrees, while under semi-permissive conditions they were sensitive to the microtubule-destabilizing agent benomyl, suggesting that PP2A is required for normal microtubule function. Remarkably, the multiple defects of Ts- pph22 mutant cells were suppressed by a viable allele (SSD1-v1) of the polymorphic SSD1 gene.
Collapse
Affiliation(s)
- D R Evans
- Department of Biochemistry, University of Dundee, United Kingdom
| | | |
Collapse
|
30
|
Abstract
Since the isolation of the first yeast protein phosphatase genes in 1989, much progress has been made in understanding this important group of proteins. Yeast contain genes encoding all the major types of protein phosphatase found in higher eukaryotes and the ability to use genetic approaches will complement the wealth of biochemical information available from other systems. This review will summarize recent progress in understanding the structure, function and regulation of the PPP family of protein serine-threonine phosphatases, concentrating on the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- M J Stark
- Department of Biochemistry, University of Dundee, UK
| |
Collapse
|
31
|
Li B, Warner JR. Mutation of the Rab6 homologue of Saccharomyces cerevisiae, YPT6, inhibits both early Golgi function and ribosome biosynthesis. J Biol Chem 1996; 271:16813-9. [PMID: 8663225 DOI: 10.1074/jbc.271.28.16813] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A screen was designed to identify temperature-sensitive mutants of Saccharomyces cerevisiae, whose transcription of both ribosomal RNA and ribosomal protein genes is repressed at the nonpermissive temperature. The gene from one such mutant was cloned by complementation. The gene encodes a predicted product that is nearly 65% identical to the human GTPase, Rab6, and is likely to be identical to the yeast gene YPT6. It is essential for growth only at elevated temperatures. The mutant strain is partially defective in the maturation of the vacuolar protein carboxypeptidase Y, as well as in the secretion of invertase, which accumulates as a core-glycosylated form characteristic of the endoplasmic reticulum or the cis-Golgi, suggesting that Ypt6p is involved in an early step of the secretory pathway, earlier than that reported for the mammalian Rab6. The mutant protein, a truncation at codon 64 of 215, has a stronger phenotype than the null allele of YPT6. Four other mutants selected for defective ribosome synthesis at the nonpermissive temperature were also found to have defects in carboxypeptidase Y maturation, giving emphasis to our previous finding that a functional secretory pathway is essential for continued ribosome synthesis. Cloning of extragenic suppressors of the ts allele of YPT6 has revealed two additional proteins that influence the secretory pathway: Ssd1p, a suppressor of many mutations, and Imh1p, which bears some homology to the C-terminal portion of the cytoskeletal proteins integrin and myosin.
Collapse
Affiliation(s)
- B Li
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
32
|
Luke MM, Della Seta F, Di Como CJ, Sugimoto H, Kobayashi R, Arndt KT. The SAP, a new family of proteins, associate and function positively with the SIT4 phosphatase. Mol Cell Biol 1996; 16:2744-55. [PMID: 8649382 PMCID: PMC231265 DOI: 10.1128/mcb.16.6.2744] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
SIT4 is the catalytic subunit of a type 2A-related protein phosphatase in Saccharomyces cerevisiae that is required for G1 cyclin transcription and for bud formation. SIT4 associates with several high-molecular-mass proteins in a cell cycle-dependent fashion. We purified two SIT4-associated proteins, SAP155 and SAP190, and cloned the corresponding genes. By sequence homology, we isolated two additional SAP genes, SAP185 and SAP4. Through such an association is not yet proven for SAP4, each of SAP155, SAP185, and SAP190 physically associates with SIT4 in separate complexes. The SAPs function positively with SIT4, and by several criteria, the loss of all four SAPs is equivalent to the loss of SIT4. The data suggest that the SAPs are not functional in the absence of SIT4 and likewise that SIT4 is not functional in the absence of the SAPs. The SAPs are hyperphoshorylated in cells lacking SIT4, raising the possibility that the SAPs are substrates of SIT4. By sequence similarity, the SAPs fall into two groups, the SAP4/SAP155 group and the SAP185/SAP190 group. Overexpression of a SAP from one group does not suppress the defects due to the loss of the other group. These findings and others indicate that the SAPs have distinct functions.
Collapse
Affiliation(s)
- M M Luke
- Cold Spring Harbor Laboratory, New York 11724-2212, USA
| | | | | | | | | | | |
Collapse
|
33
|
Runge KW, Zakian VA. TEL2, an essential gene required for telomere length regulation and telomere position effect in Saccharomyces cerevisiae. Mol Cell Biol 1996; 16:3094-105. [PMID: 8649421 PMCID: PMC231304 DOI: 10.1128/mcb.16.6.3094] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The DNA-protein complexes at the ends of linear eukaryotic chromosomes are called the telomeres. In Saccharomyces cerevisiae, telomeric DNA consists of a variable length of the short repeated sequence C1-3A. The length of yeast telomeres can be altered by mutation, by changing the levels of telomere binding proteins, or by increasing the amount of C1-3A DNA sequences. Cells bearing the tel1-1 or tel2-1 mutations, known previously to have short telomeres, did not respond to perturbations that caused telomere lengthening in wild-type cells. The transcription of genes placed near yeast telomeres is reversibly repressed, a phenomenon called the telomere position effect. The tel2-1 mutation reduced the position effect but did not affect transcriptional repression at the silent mating type cassettes, HMRa and HML alpha. The TEL2 gene was cloned, sequenced, and disrupted. Cells lacking TEL2 function died, with some cells arresting as large cells with three or four small protrusions or "blebs."
Collapse
Affiliation(s)
- K W Runge
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA.
| | | |
Collapse
|