1
|
The yeast cap binding complex modulates transcription factor recruitment and establishes proper histone H3K36 trimethylation during active transcription. Mol Cell Biol 2012; 33:785-99. [PMID: 23230273 DOI: 10.1128/mcb.00947-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recent studies have revealed a close relationship between transcription, histone modification, and RNA processing. In fact, genome-wide analyses that correlate histone marks with RNA processing signals raise the possibility that specific RNA processing factors may modulate transcription and help to "write" chromatin marks. Here we show that the nuclear cap binding complex (CBC) directs recruitment of transcription elongation factors and establishes proper histone marks during active transcription. A directed genetic screen revealed that deletion of either subunit of the CBC confers a synthetic growth defect when combined with deletion of genes encoding either Ctk2 or Bur2, a component of the Saccharomyces cerevisiae ortholog of P-TEFb. The CBC physically associates with these complexes to recruit them during transcription and mediates phosphorylation at Ser-2 of the C-terminal domain (CTD) of RNA polymerase II. To understand how these interactions influence downstream events, histone H3K36me3 was examined, and we demonstrate that CBCΔ affects proper Set2-dependent H3K36me3. Consistent with this, the CBC and Set2 have similar effects on the ability to rapidly induce and sustain activated gene expression, and these effects are distinct from other histone methyltransferases. This work provides evidence for an emerging model that RNA processing factors can modulate the recruitment of transcription factors and influence histone modification during elongation.
Collapse
|
2
|
Hossain MA, Claggett JM, Nguyen T, Johnson TL. The cap binding complex influences H2B ubiquitination by facilitating splicing of the SUS1 pre-mRNA. RNA (NEW YORK, N.Y.) 2009; 15:1515-27. [PMID: 19561118 PMCID: PMC2714748 DOI: 10.1261/rna.1540409] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pre-messenger RNA splicing is carried out by a large ribonucleoprotein complex called the spliceosome. Despite the striking evolutionary conservation of the spliceosomal components and their functions, controversy persists about the relative importance of splicing in Saccharomyces cerevisiae-particularly given the paucity of intron-containing genes in yeast. Here we show that splicing of one pre-messenger RNA, SUS1, a component of the histone H2B ubiquitin protease machinery, is essential for establishing the proper modification state of chromatin. One protein complex that is intimately involved in pre-mRNA splicing, the yeast cap-binding complex, appears to be particularly important, as evidenced by its extensive and unique genetic interactions with enzymes that catalyze histone H2B ubiquitination. Microarray studies show that cap binding complex (CBC) deletion has a global effect on gene expression, and for approximately 20% of these genes, this effect is suppressed when ubiquitination of histone H2B is eliminated. Consistent with this finding of histone H2B dependent effects on gene expression, deletion of the yeast cap binding complex leads to overubiquitination of histone H2B. A key component of the ubiquitin-protease module of the SAGA complex, Sus1, is encoded by a gene that contains two introns and is misspliced when the CBC is deleted, leading to destabilization of the ubiquitin protease complex and defective modulation of cellular H2B levels. These data demonstrate that pre-mRNA splicing plays a critical role in histone H2B ubiquitination and that the CBC in particular helps to establish the proper state of chromatin and proper expression of genes that are regulated at the level of histone H2B ubiquitination.
Collapse
Affiliation(s)
- Munshi Azad Hossain
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
3
|
Abstract
In eukaryotes, copying the genetic information from a DNA template into RNA is not sufficient itself to confer functional competence to the DNA-encoded message. mRNAs have to be processed by enzymes and packaged with proteins within nuclei to generate mRNP (messenger ribonucleoprotein) particles, before these can be exported to the cytoplasm. Processing and packaging factors are believed to interact with the nascent mRNA co-transcriptionally, which protects the highly reactive RNA molecule from a presumably aggressive nuclear environment while providing early commitment to its functional fate. In this review, we will describe the factors that are believed to provide the appropriate 'dress code' to the mRNA and the mechanisms underlying the proofreading events that guarantee its quality, focusing on yeast as a model system.
Collapse
|
4
|
Wong CM, Qiu H, Hu C, Dong J, Hinnebusch AG. Yeast cap binding complex impedes recruitment of cleavage factor IA to weak termination sites. Mol Cell Biol 2007; 27:6520-31. [PMID: 17636014 PMCID: PMC2099607 DOI: 10.1128/mcb.00733-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear cap binding complex (CBC) is recruited cotranscriptionally and stimulates spliceosome assembly on nascent mRNAs; however, its possible functions in regulating transcription elongation or termination were not well understood. We show that, while CBC appears to be dispensable for normal rates and processivity of elongation by RNA polymerase II (Pol II), it plays a direct role in preventing polyadenylation at weak termination sites. Similarly to Npl3p, with which it interacts, CBC suppresses the weak terminator of the gal10-Delta56 mutant allele by impeding recruitment of termination factors Pcf11p and Rna15p (subunits of cleavage factor IA [CF IA]) and does so without influencing Npl3p occupancy at the termination site. Importantly, deletion of CBC subunits or NPL3 also increases termination at a naturally occurring weak poly(A) site in the RNA14 coding sequences. We also show that CBC is most likely recruited directly to the cap of nascent transcripts rather than interacting first with transcriptional activators or the phosphorylated C-terminal domain of Pol II. Thus, our findings illuminate the mechanism of CBC recruitment and extend its function in Saccharomyces cerevisiae beyond mRNA splicing and degradation of aberrant nuclear mRNAs to include regulation of CF IA recruitment at poly(A) selection sites.
Collapse
Affiliation(s)
- Chi-Ming Wong
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
A nuclear mRNA degradation (DRN) system was identified from analysis of mRNA turnover rates in nup116-Delta strains of Saccharomyces cerevisiae lacking the ability to export all RNAs, including poly(A) mRNAs, at the restrictive temperature. Northern blotting, in situ hybridization, and blocking transcription with thiolutin in nup116-delta strains revealed a rapid degradation of mRNAs in the nucleus that was suppressed by the rrp6-delta, rai1-delta, and cbc1-delta deletions, but not by the upf1-delta deletion, suggesting that DRN requires Rrp6p, a 3'-to-5' nuclear exonuclease, the Rat1p, a 5'-to-3' nuclear exonuclease, and Cbc1p, a component of CBC, the nuclear cap binding complex, which may direct the mRNAs to the site of degradation. We propose that certain normal mRNAs retained in the nucleus are degraded by the DRN system, similar to degradation of transcripts with 3' end formation defects in certain mutants.
Collapse
Affiliation(s)
- Biswadip Das
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
6
|
Merker RJ, Klein HL. Role of transcription in plasmid maintenance in the hpr1Delta mutant of Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:8763-73. [PMID: 12446793 PMCID: PMC139893 DOI: 10.1128/mcb.22.24.8763-8773.2002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae hyperrecombination mutation hpr1Delta results in instability of sequences between direct repeats that is dependent on transcription of the repeat. Here it is shown that the HPR1 gene also functions in plasmid stability in the presence of destabilizing transcription elongation. In the hpr1Delta mutant, plasmid instability results from unchecked transcription elongation, which can be suppressed by a strong transcription terminator. The plasmid system has been used to examine in vivo aspects of transcription in the absence of Hpr1p. Nuclear run-on studies suggest that there is an increased RNA polymerase II density in the hpr1Delta mutant strain, but this is not accompanied by an increase in accumulation of cytoplasmic mRNA. Suppression of plasmid instability in hpr1Delta can also be achieved by high-copy expression of the RNA splicing factor SUB2, which has recently been proposed to function in mRNA export, in addition to its role in pre-mRNA splicing. High-copy-number SUB2 expression is accompanied by an increase in message accumulation from the plasmid, suggesting that the mechanism of suppression by Sub2p involves the formation of mature mRNA. Models for the role of Hpr1p in mature mRNA formation and the cause of plasmid instability in the absence of the Hpr1 protein are discussed.
Collapse
Affiliation(s)
- Robert J Merker
- Department of Biochemistry and Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
7
|
West RW, Milgrom E. DEAD-box RNA helicase Sub2 is required for expression of lacZ fusions in Saccharomyces cerevisiae and is a dosage-dependent suppressor of RLR1 (THO2). Gene 2002; 288:19-27. [PMID: 12034490 DOI: 10.1016/s0378-1119(02)00482-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RLR1 (THO2) encodes a novel, phylogenetically-conserved KEKE motif protein involved in transcription and transcription-associated recombination in Saccharomyces cerevisiae. One characteristic aspect of RLR1 function is its requirement for expression of the Escherichia coli lacZ reporter gene regardless of the yeast promoter to which it is fused. rlr1-1 was originally isolated (employing lacZ as a transcriptional reporter) as a suppressor of a mutation in the gene encoding Sin4, a subunit of the Mediator subcomplex of the RNA polymerase II (PolII) transcriptional machinery. To clarify the function of Rlr1, we performed a genetic screen for dosage-dependent suppressors of the cold-sensitive phenotype of rlr1-1. From this screen we isolated SUB2, encoding a conserved DEAD-box RNA helicase family member having roles in both pre-mRNA splicing and mRNA export in yeast, flies, and humans. We demonstrate that Sub2, like Rlr1, is required for lacZ to be expressed in yeast, and that sub2 mutants manifest rlr1-like growth defects. Our results are consistent with a hypothesis where expression of lacZ fusions in yeast preferentially requires a Sub2-mediated mRNP assembly/export pathway linked to transcription via Rlr1.
Collapse
Affiliation(s)
- Robert W West
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse 13210, USA.
| | | |
Collapse
|
8
|
Merker RJ, Klein HL. hpr1Delta affects ribosomal DNA recombination and cell life span in Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:421-9. [PMID: 11756539 PMCID: PMC139738 DOI: 10.1128/mcb.22.2.421-429.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2001] [Revised: 07/30/2001] [Accepted: 10/08/2001] [Indexed: 11/20/2022] Open
Abstract
Multiple genetic pathways have been shown to regulate life span and aging in the yeast Saccharomyces cerevisiae. Here we show that loss of a component of the RNA polymerase II complex, Hpr1p, results in a decreased life span. Although hpr1Delta mutants have an increased rate of recombination within the ribosomal DNA (rDNA) array, this is not accompanied by an increase in extrachromosomal rDNA circles (ERCs). Analyses of mutants that affect replication of the rDNA array and suppressors that reverse the phenotypes of the hpr1Delta mutant show that the reduced life span is associated with increased genomic instability but not with increased ERC formation. The hpr1Delta mutant acts in a pathway distinct from previously described mutants that reduce life span.
Collapse
Affiliation(s)
- Robert J Merker
- Department of Biochemistry and Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
9
|
Fan HY, Merker RJ, Klein HL. High-copy-number expression of Sub2p, a member of the RNA helicase superfamily, suppresses hpr1-mediated genomic instability. Mol Cell Biol 2001; 21:5459-70. [PMID: 11463828 PMCID: PMC87268 DOI: 10.1128/mcb.21.16.5459-5470.2001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2001] [Accepted: 05/21/2001] [Indexed: 11/20/2022] Open
Abstract
We report on a novel role for a pre-mRNA splicing component in genome stability. The Hpr1 protein, a component of an RNA polymerase II complex and required for transcription elongation, is also required for genome stability. Deletion of HPR1 results in a 1,000-fold increase in genome instability, detected as direct-repeat instability. This instability can be suppressed by the high-copy-number SUB2 gene, which is the Saccharomyces cerevisiae homologue of the human splicing factor hUAP56. Although SUB2 is essential, conditional alleles grown at the permissive temperature complement the essential function of SUB2 yet reveal nonessential phenotypes. These studies have uncovered a role for SUB2 in preventing genome instability. The genomic instability observed in sub2 mutants can be suppressed by high-copy-number HPR1. A deletion mutant of CDC73, a component of a PolII complex, is also unstable for direct repeats. This too is suppressed by high-copy-number SUB2. Thus, defects in both the transcriptional machinery and the pre-mRNA splicing machinery can be sources of genome instability. The ability of a pre-mRNA splicing factor to suppress the hyperrecombination phenotype of a defective PolII complex raises the possibility of integrating transcription, RNA processing, and genome stability or a second role for SUB2.
Collapse
Affiliation(s)
- H Y Fan
- Department of Biochemistry and Kaplan Cancer Center, New York University Medical Center, New York, New York 10016, USA
| | | | | |
Collapse
|
10
|
Gallardo M, Aguilera A. A new hyperrecombination mutation identifies a novel yeast gene, THP1, connecting transcription elongation with mitotic recombination. Genetics 2001; 157:79-89. [PMID: 11139493 PMCID: PMC1461480 DOI: 10.1093/genetics/157.1.79] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Given the importance of the incidence of recombination in genomic instability, it is of great interest to know the elements or processes controlling recombination in mitosis. One such process is transcription, which has been shown to induce recombination in bacteria, yeast, and mammals. To further investigate the genetic control of the incidence of recombination and genetic instability and, in particular, its connection with transcription, we have undertaken a search for hyperrecombination mutants among a large number of strains deleted in genes of unknown function. We have identified a new gene, THP1 (YOL072w), whose deletion mutation strongly stimulates recombination between repeats. In addition, thp1 Delta impairs transcription, a defect that is particularly strong at the level of elongation through particular DNA sequences such as lacZ. The hyperrecombination phenotype of thp1 Delta cells is fully dependent on transcription elongation of the repeat construct. When transcription is impeded either by shutting off the promoter or by using a premature transcription terminator, hyperrecombination between repeats is abolished, providing new evidence that transcription-elongation impairment may be a source of recombinogenic substrates in mitosis. We show that Thp1p and two other proteins previously shown to control transcription-associated recombination, Hpr1p and Tho2p, act in the same "pathway" connecting transcription elongation with the incidence of mitotic recombination.
Collapse
Affiliation(s)
- M Gallardo
- Departamento de Genética, Universidad de Sevilla, 41012 Seville, Spain
| | | |
Collapse
|
11
|
Das B, Guo Z, Russo P, Chartrand P, Sherman F. The role of nuclear cap binding protein Cbc1p of yeast in mRNA termination and degradation. Mol Cell Biol 2000; 20:2827-38. [PMID: 10733586 PMCID: PMC85501 DOI: 10.1128/mcb.20.8.2827-2838.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyc1-512 mutation in Saccharomyces cerevisiae causes a 90% reduction in the level of iso-1-cytochrome c because of the lack of a proper 3'-end-forming signal, resulting in low levels of eight aberrantly long cyc1-512 mRNAs which differ in length at their 3' termini. cyc1-512 can be suppressed by deletion of either of the nonessential genes CBC1 and CBC2, which encode the CBP80 and CBP20 subunits of the nuclear cap binding complex, respectively, or by deletion of the nonessential gene UPF1, which encodes a major component of the mRNA surveillance complex. The upf1-Delta deletion suppressed the cyc1-512 defect by diminishing degradation of the longer subset of cyc1-512 mRNAs, suggesting that downstream elements or structures occurred in the extended 3' region, similar to the downstream elements exposed by transcripts bearing premature nonsense mutations. On the other hand, suppression of cyc1-512 defects by cbc1-Delta occurred by two different mechanisms. The levels of the shorter cyc1-512 transcripts were enhanced in the cbc1-Delta mutants by promoting 3'-end formation at otherwise-weak sites, whereas the levels of the longer cyc1-512 transcripts, as well as of all mRNAs, were slightly enhanced by diminishing degradation. Furthermore, cbc1-Delta greatly suppressed the degradation of mRNAs and other phenotypes of a rat7-1 strain which is defective in mRNA export. We suggest that Cbc1p defines a novel degradation pathway that acts on mRNAs partially retained in nuclei.
Collapse
Affiliation(s)
- B Das
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
12
|
Schneiter R, Guerra CE, Lampl M, Gogg G, Kohlwein SD, Klein HL. The Saccharomyces cerevisiae hyperrecombination mutant hpr1Delta is synthetically lethal with two conditional alleles of the acetyl coenzyme A carboxylase gene and causes a defect in nuclear export of polyadenylated RNA. Mol Cell Biol 1999; 19:3415-22. [PMID: 10207065 PMCID: PMC84134 DOI: 10.1128/mcb.19.5.3415] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a screen for mutants that display synthetic lethal interaction with hpr1Delta, a hyperrecombination mutant of Saccharomyces cerevisiae, we have isolated a novel cold-sensitive allele of the acetyl coenzyme A (CoA) carboxylase gene, acc1(cs), encoding the rate-limiting enzyme of fatty acid synthesis. The synthetic lethal phenotype of the acc1(cs) hpr1Delta double mutant was only partially complemented by exogenous fatty acids. hpr1Delta was also synthetically lethal with a previously isolated, temperature-sensitive allele of ACC1, mtr7 (mRNA transport), indicating that the lethality of the acc1(cs) hpr1Delta double mutant was not allele specific. The basis for the interaction between conditional acc1 alleles and hpr1Delta was investigated in more detail. In the hpr1Delta mutant background, acetyl-CoA carboxylase enzyme activity was reduced about 15-fold and steady-state levels of biotinylated Acc1p and ACC1 mRNA were reduced 2-fold. The reduced Acc1p activity in hpr1Delta cells, however, did not result in an altered lipid or fatty acid composition of the mutant membranes but rendered cells hypersensitive to soraphen A, an inhibitor of Acc1p. Similar to mtr7, hpr1Delta and acc1(cs) mutant cells displayed a defect in nuclear export of polyadenylated RNA. Oversized transcripts were detected in hpr1Delta, and rRNA processing was disturbed, but pre-mRNA splicing appeared wild type. Surprisingly, the transport defect of hpr1Delta and acc1(cs) mutant cells was accompanied by an altered ring-shaped structure of the nucleolus. These observations suggest that the basis for the synthetic lethal interaction between hpr1Delta and acc1 may lie in a functional overlap of the two mutations in nuclear poly(A)+ RNA production and export that results in an altered structure of the nucleolus.
Collapse
Affiliation(s)
- R Schneiter
- Institut für Biochemie und Lebensmittelchemie, Technische Universität Graz, A-8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
13
|
Uemura H, Nakamoto K, Sugioka S, Tadenuma M. Isolation and sequence of the GCR3 homologue from Candida albicans by complementation of (delta)gcr3 strain of Saccharomyces cerevisiae. Yeast 1999; 15:323-7. [PMID: 10206191 DOI: 10.1002/(sici)1097-0061(19990315)15:4<323::aid-yea363>3.0.co;2-l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To study the function of GCR3, a gene involved in the expression of glycolytic genes in Saccharomyces cerevisiae, a Candida albicans gene which complements the growth defect of the (delta)gcr3 mutant was isolated. Transformants of this gene also recovered the glycolytic enzyme activities. Its DNA sequencing predicted an 886 amino acid protein with 30.4% identity to the Gcr3p of S. cerevisiae.
Collapse
Affiliation(s)
- H Uemura
- Department of Molecular Biology, National Institute of Bioscience and Human-Technology, Tsukuba, Ibaraki, Japan.
| | | | | | | |
Collapse
|
14
|
Spingola M, Grate L, Haussler D, Ares M. Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 1999; 5:221-34. [PMID: 10024174 PMCID: PMC1369754 DOI: 10.1017/s1355838299981682] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Introns have typically been discovered in an ad hoc fashion: introns are found as a gene is characterized for other reasons. As complete eukaryotic genome sequences become available, better methods for predicting RNA processing signals in raw sequence will be necessary in order to discover genes and predict their expression. Here we present a catalog of 228 yeast introns, arrived at through a combination of bioinformatic and molecular analysis. Introns annotated in the Saccharomyces Genome Database (SGD) were evaluated, questionable introns were removed after failing a test for splicing in vivo, and known introns absent from the SGD annotation were added. A novel branchpoint sequence, AAUUAAC, was identified within an annotated intron that lacks a six-of-seven match to the highly conserved branchpoint consensus UACUAAC. Analysis of the database corroborates many conclusions about pre-mRNA substrate requirements for splicing derived from experimental studies, but indicates that splicing in yeast may not be as rigidly determined by splice-site conservation as had previously been thought. Using this database and a molecular technique that directly displays the lariat intron products of spliced transcripts (intron display), we suggest that the current set of 228 introns is still not complete, and that additional intron-containing genes remain to be discovered in yeast. The database can be accessed at http://www.cse.ucsc.edu/research/compbi o/yeast_introns.html.
Collapse
Affiliation(s)
- M Spingola
- Center for the Molecular Biology of RNA, Sinsheimer Laboratories, University of California-Santa Cruz, 95064, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Transcription initiation by RNA polymerase II (RNA pol II) requires interaction between cis-acting promoter elements and trans-acting factors. The eukaryotic promoter consists of core elements, which include the TATA box and other DNA sequences that define transcription start sites, and regulatory elements, which either enhance or repress transcription in a gene-specific manner. The core promoter is the site for assembly of the transcription preinitiation complex, which includes RNA pol II and the general transcription fctors TBP, TFIIB, TFIIE, TFIIF, and TFIIH. Regulatory elements bind gene-specific factors, which affect the rate of transcription by interacting, either directly or indirectly, with components of the general transcriptional machinery. A third class of transcription factors, termed coactivators, is not required for basal transcription in vitro but often mediates activation by a broad spectrum of activators. Accordingly, coactivators are neither gene-specific nor general transcription factors, although gene-specific coactivators have been described in metazoan systems. Transcriptional repressors include both gene-specific and general factors. Similar to coactivators, general transcriptional repressors affect the expression of a broad spectrum of genes yet do not repress all genes. General repressors either act through the core transcriptional machinery or are histone related and presumably affect chromatin function. This review focuses on the global effectors of RNA polymerase II transcription in yeast, including the general transcription factors, the coactivators, and the general repressors. Emphasis is placed on the role that yeast genetics has played in identifying these factors and their associated functions.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA.
| |
Collapse
|
16
|
Chávez S, Aguilera A. The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability. Genes Dev 1997; 11:3459-70. [PMID: 9407037 PMCID: PMC316820 DOI: 10.1101/gad.11.24.3459] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The yeast HPR1 gene plays an important role in genome stability, as indicated by the observation that hpr1 mutants have high frequencies of DNA repeat recombination and chromosome loss. Here we report that HPR1 is required for transcriptional elongation. Transcription driven from constitutive and regulated yeast promoters cannot elongate through the bacterial lacZ coding region in hpr1Delta cells, but progresses efficiently through other sequences such as yeast PHO5. We show that HPR1 is not required for transcription activation and that the previously reported effects of hpr1Delta on the activation of different promoters is a consequence of the incapacity of hpr1Delta cells to elongate transcription through lacZ, used as reporter. Transcriptional defects are also observed in yeast DNA sequences of hpr1Delta cells in the presence of the transcription elongation inhibitor 6-azauracil. In all cases, the blockage of transcription elongation in hpr1Delta is associated with both the high frequency of deletions and the increase in plasmid instability that we report here. Therefore, in addition to the identification of a new element involved in transcriptional elongation, our work provides evidence for a new source of genomic instability.
Collapse
Affiliation(s)
- S Chávez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | | |
Collapse
|
17
|
Piruat JI, Chávez S, Aguilera A. The yeast HRS1 gene is involved in positive and negative regulation of transcription and shows genetic characteristics similar to SIN4 and GAL11. Genetics 1997; 147:1585-94. [PMID: 9409823 PMCID: PMC1208333 DOI: 10.1093/genetics/147.4.1585] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We provide genetic evidence that HRS1/PGD1, a yeast gene previously identified as a suppressor of the hyper-recombination phenotype of hpr1, has positive and negative roles in transcriptional regulation. We have analyzed three differently regulated promoters, GAL1, PHO5 and HSP26, by beta-galactosidase assays of lacZ-fused promoters and by Northern analysis of the endogenous genes. Transcription of these promoters was derepressed in hrs1delta mutants under conditions in which it is normally repressed in wild type. Under induced conditions it was either strongly reduced or significantly enhanced depending on the promoter system analyzed. Constitutive transcription was not affected, as determined in ADH1 and TEF2. In addition, Hrs1p was required for mating-factor expression, telomere-linked DNA silencing and DNA supercoiling of plasmids. Furthermore, hrs1delta suppressed Ty-insertion mutations and conferred a Gal- phenotype. Many of these phenotypes also result from mutations in GAL11, SIN4 or RGR1, which encode proteins of the RNA polII mediator. We also show that gal11delta and sin4delta partially suppress the hyper-rec phenotype of hpr1 mutants, although to a lesser extent than hrs1delta. Our results provide new evidence for the connection between hpr1delta-induced deletions and transcription. We discuss the possibility that Hrs1p might be a component of the RNA polII transcription machinery.
Collapse
Affiliation(s)
- J I Piruat
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | |
Collapse
|