1
|
Characterization and Genomic Analysis of ɸSHP3, a New Transposable Bacteriophage Infecting Stenotrophomonas maltophilia. J Virol 2021; 95:JVI.00019-21. [PMID: 33536173 DOI: 10.1128/jvi.00019-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/29/2021] [Indexed: 01/21/2023] Open
Abstract
This study describes a novel transposable bacteriophage, ɸSHP3, continuously released by Stenotrophomonas maltophilia strain c31. Morphological observation and genomic analysis revealed that ɸSHP3 is a siphovirus with a 37,611-bp genome that encodes 51 putative proteins. Genomic comparisons indicated that ɸSHP3 is a B3-like transposable phage. Its genome configuration is similar to that of Pseudomonas phage B3, except for the DNA modification module. Similar to B3-like phages, the putative transposase B of ɸSHP3 is a homolog of the type two secretion component ExeA, which is proposed to serve as a potential virulence factor. Moreover, most proteins of ɸSHP3 have homologs in transposable phages, but only ɸSHP3 carries an RdgC-like protein encoded by gene 3, which exhibits exonuclease activity in vitro Two genes and their promoters coding for ɸSHP3 regulatory proteins were identified and appear to control the lytic-lysogenic switch. One of the proteins represses one promoter activity and confers immunity to ɸSHP3 superinfection in vivo The short regulatory region, in addition to the canonical bacterial promoter sequences, displays one LexA and two CpxR recognition sequences. This suggests that LexA and the CpxR/CpxA two-component system might be involved in the control of the ɸSHP3 genetic switch.IMPORTANCE S. maltophilia is an emerging global pathogenic bacterium that displays genetic diversity in both environmental and clinical strains. Transposable phages have long been known to improve the genetic diversity of bacterial strains by transposition. More than a dozen phages of S. maltophilia have been characterized. However, no transposable phage infecting S. maltophilia has been reported to date. Characterization of the first transposable phage, ɸSHP3, from S. maltophilia will contribute to our understanding of host-phage interactions and genetic diversity, especially the interchange of genetic materials among S. maltophilia.
Collapse
|
2
|
Prasad D, Arora D, Nandicoori VK, Muniyappa K. Elucidating the functional role of Mycobacterium smegmatis recX in stress response. Sci Rep 2019; 9:10912. [PMID: 31358794 PMCID: PMC6662834 DOI: 10.1038/s41598-019-47312-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
The RecX protein has attracted considerable interest because the recX mutants exhibit multiple phenotypes associated with RecA functions. To further our understanding of the functional relationship between recA and recX, the effect of different stress treatments on their expression profiles, cell yield and viability were investigated. A significant correlation was found between the expression of Mycobacterium smegmatis recA and recX genes at different stages of growth, and in response to different stress treatments albeit recX exhibiting lower transcript and protein abundance at the mid-log and stationary phases of the bacterial growth cycle. To ascertain their roles in vivo, a targeted deletion of the recX and recArecX was performed in M. smegmatis. The growth kinetics of these mutant strains and their sensitivity patterns to different stress treatments were assessed relative to the wild-type strain. The deletion of recA affected normal cell growth and survival, while recX deletion showed no significant effect. Interestingly, deletion of both recX and recA genes results in a phenotype that is intermediate between the phenotypes of the ΔrecA mutant and the wild-type strain. Collectively, these results reveal a previously unrecognized role for M. smegmatis recX and support the notion that it may regulate a subset of the yet unknown genes involved in normal cell growth and DNA-damage repair.
Collapse
Affiliation(s)
- Deepika Prasad
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Divya Arora
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
3
|
Complete genome sequence of Halomonas ventosae virulent halovirus QHHSV-1. Arch Virol 2017; 162:3215-3219. [PMID: 28608126 DOI: 10.1007/s00705-017-3415-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
A virulent halovirus QHHSV-1 which lyses Halomonas ventosae QH52-2 originating from the Qiaohou salt mine in Yunnan, Southwest China was characterized. The complete genome of QHHSV-1 is composed of a circular double-stranded DNA of 37,270 base pairs in length, with 66.8% G+C content and 69 putative open reading frames (ORFs), which were classified into five functional groups, including morphogenesis, replication/regulation, packaging, lysis and lysogeny. A putative Cro repressor gene and an integrase gene were found in the genome, showing that QHHSV-1 may utilize a lambda-like repression system under unfavorable conditions. QHHSV-1 is the first report of the whole genome sequence of the virulent Halomonas phage belonging to the family Siphoviridae.
Collapse
|
4
|
Abstract
This review provides a brief review of the current understanding of the structure-function relationship of the Escherichia coli nucleoid developed after the overview by Pettijohn focusing on the physical properties of nucleoids. Isolation of nucleoids requires suppression of DNA expansion by various procedures. The ability to control the expansion of nucleoids in vitro has led to purification of nucleoids for chemical and physical analyses and for high-resolution imaging. Isolated E. coli genomes display a number of individually intertwined supercoiled loops emanating from a central core. Metabolic processes of the DNA double helix lead to three types of topological constraints that all cells must resolve to survive: linking number, catenates, and knots. The major species of nucleoid core protein share functional properties with eukaryotic histones forming chromatin; even the structures are different from histones. Eukaryotic histones play dynamic roles in the remodeling of eukaryotic chromatin, thereby controlling the access of RNA polymerase and transcription factors to promoters. The E. coli genome is tightly packed into the nucleoid, but, at each cell division, the genome must be faithfully replicated, divided, and segregated. Nucleoid activities such as transcription, replication, recombination, and repair are all affected by the structural properties and the special conformations of nucleoid. While it is apparent that much has been learned about the nucleoid, it is also evident that the fundamental interactions organizing the structure of DNA in the nucleoid still need to be clearly defined.
Collapse
|
5
|
Senčilo A, Luhtanen AM, Saarijärvi M, Bamford DH, Roine E. Cold-active bacteriophages from the Baltic Sea ice have diverse genomes and virus-host interactions. Environ Microbiol 2014; 17:3628-41. [PMID: 25156651 DOI: 10.1111/1462-2920.12611] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/20/2014] [Indexed: 11/28/2022]
Abstract
Heterotrophic bacteria are the major prokaryotic component of the Baltic Sea ice microbiome, and it is postulated that phages are among their major parasites. In this study, we sequenced the complete genomes of six earlier reported phage isolates from the Baltic Sea ice infecting Shewanella sp. and Flavobacterium sp. hosts as well as characterized the phage-host interactions. Based on the genome sequences, the six phages were classified into five new genera. Only two phages, 1/4 and 1/40, both infecting Shewanella sp. strains, showed significant nucleotide sequence similarity to each other and could be grouped into the same genus. These two phages are also related to Vibrio-specific phages sharing approximately 25% of the predicted gene products. Nevertheless, cross-titrations showed that the cold-active phages studied are host specific: none of the seven additionally tested, closely related Shewanella strains served as hosts for the phages. Adsorption experiments of two Shewanella phages, 1/4 and 3/49, conducted at 4 °C and at 15 °C revealed relatively fast adsorption rates that are, for example, comparable with those of phages infective in mesophilic conditions. Despite the small number of Shewanella phages characterized here, we could already find different types of phage-host interactions including a putative abortive infection.
Collapse
Affiliation(s)
- Ana Senčilo
- Department of Biosciences, University of Helsinki, P.O. Box 56, Viikinkaari 5, Helsinki, FI-00014, Finland.,Institute of Biotechnology, University of Helsinki, P.O. Box 56, Viikinkaari 5, Helsinki, FI-00014, Finland
| | - Anne-Mari Luhtanen
- Department of Biosciences, University of Helsinki, P.O. Box 56, Viikinkaari 5, Helsinki, FI-00014, Finland.,Finnish Environmental Institute, Marine Research Center, Erik Palménin Aukio 1, Helsinki, FI-00560, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palménin Tie 260, Hanko, 10900, Finland
| | - Mikko Saarijärvi
- Department of Biosciences, University of Helsinki, P.O. Box 56, Viikinkaari 5, Helsinki, FI-00014, Finland
| | - Dennis H Bamford
- Department of Biosciences, University of Helsinki, P.O. Box 56, Viikinkaari 5, Helsinki, FI-00014, Finland.,Institute of Biotechnology, University of Helsinki, P.O. Box 56, Viikinkaari 5, Helsinki, FI-00014, Finland
| | - Elina Roine
- Department of Biosciences, University of Helsinki, P.O. Box 56, Viikinkaari 5, Helsinki, FI-00014, Finland.,Institute of Biotechnology, University of Helsinki, P.O. Box 56, Viikinkaari 5, Helsinki, FI-00014, Finland
| |
Collapse
|
6
|
Li S, Zhao H, Li Y, Niu S, Cai B. Complete nucleotide sequence of plasmid pND6-2 from Pseudomonas putida ND6 and characterization of conjugative genes. Gene 2013; 512:148-56. [DOI: 10.1016/j.gene.2012.09.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/22/2012] [Accepted: 09/12/2012] [Indexed: 11/27/2022]
|
7
|
Abstract
Homologous recombination is an ubiquitous process that shapes genomes and repairs DNA damage. The reaction is classically divided into three phases: presynaptic, synaptic, and postsynaptic. In Escherichia coli, the presynaptic phase involves either RecBCD or RecFOR proteins, which act on DNA double-stranded ends and DNA single-stranded gaps, respectively; the central synaptic steps are catalyzed by the ubiquitous DNA-binding protein RecA; and the postsynaptic phase involves either RuvABC or RecG proteins, which catalyze branch-migration and, in the case of RuvABC, the cleavage of Holliday junctions. Here, we review the biochemical properties of these molecular machines and analyze how, in light of these properties, the phenotypes of null mutants allow us to define their biological function(s). The consequences of point mutations on the biochemical properties of recombination enzymes and on cell phenotypes help refine the molecular mechanisms of action and the biological roles of recombination proteins. Given the high level of conservation of key proteins like RecA and the conservation of the principles of action of all recombination proteins, the deep knowledge acquired during decades of studies of homologous recombination in bacteria is the foundation of our present understanding of the processes that govern genome stability and evolution in all living organisms.
Collapse
|
8
|
Vink C, Rudenko G, Seifert HS. Microbial antigenic variation mediated by homologous DNA recombination. FEMS Microbiol Rev 2012; 36:917-948. [PMID: 22212019 PMCID: PMC3334452 DOI: 10.1111/j.1574-6976.2011.00321.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 11/27/2022] Open
Abstract
Pathogenic microorganisms employ numerous molecular strategies in order to delay or circumvent recognition by the immune system of their host. One of the most widely used strategies of immune evasion is antigenic variation, in which immunogenic molecules expressed on the surface of a microorganism are continuously modified. As a consequence, the host is forced to constantly adapt its humoral immune response against this pathogen. An antigenic change thus provides the microorganism with an opportunity to persist and/or replicate within the host (population) for an extended period of time or to effectively infect a previously infected host. In most cases, antigenic variation is caused by genetic processes that lead to the modification of the amino acid sequence of a particular antigen or to alterations in the expression of biosynthesis genes that induce changes in the expression of a variant antigen. Here, we will review antigenic variation systems that rely on homologous DNA recombination and that are found in a wide range of cellular, human pathogens, including bacteria (such as Neisseria spp., Borrelia spp., Treponema pallidum, and Mycoplasma spp.), fungi (such as Pneumocystis carinii) and parasites (such as the African trypanosome Trypanosoma brucei). Specifically, the various DNA recombination-based antigenic variation systems will be discussed with a focus on the employed mechanisms of recombination, the DNA substrates, and the enzymatic machinery involved.
Collapse
Affiliation(s)
- Cornelis Vink
- Department of Pediatrics, Erasmus MC, Rotterdam, The Netherlands
| | - Gloria Rudenko
- Division of Cell and Molecular Biology, Imperial College-South Kensington, London, UK
| | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
9
|
Briggs GS, Yu J, Mahdi AA, Lloyd RG. The RdgC protein employs a novel mechanism involving a finger domain to bind to circular DNA. Nucleic Acids Res 2010; 38:6433-46. [PMID: 20525790 PMCID: PMC2965237 DOI: 10.1093/nar/gkq509] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The DNA-binding protein RdgC has been identified as an inhibitor of RecA-mediated homologous recombination in Escherichia coli. In Neisseria species, RdgC also has a role in virulence-associated antigenic variation. We have previously solved the crystal structure of the E. coli RdgC protein and shown it to form a toroidal dimer. In this study, we have conducted a mutational analysis of residues proposed to mediate interactions at the dimer interfaces. We demonstrate that destabilizing either interface has a serious effect on in vivo function, even though a stable complex with circular DNA was still observed. We conclude that tight binding is required for inhibition of RecA activity. We also investigated the role of the RdgC finger domain, and demonstrate that it plays a crucial role in the binding of circular DNA. Together, these data allow us to propose a model for how RdgC loads onto DNA. We discuss how RdgC might inhibit RecA-mediated strand exchange, and how RdgC might be displaced by other DNA metabolism enzymes such as polymerases and helicases.
Collapse
Affiliation(s)
- Geoffrey S Briggs
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | | | | | |
Collapse
|
10
|
Leblanc C, Caumont-Sarcos A, Comeau AM, Krisch HM. Isolation and genomic characterization of the first phage infecting Iodobacteria: ϕPLPE, a myovirus having a novel set of features. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:499-509. [PMID: 23765928 DOI: 10.1111/j.1758-2229.2009.00055.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The aquatic phage ϕPLPE infects a bacterium of the genus Iodobacter that are common inhabitants of rivers, streams and canals that produce violacein-like pigments. Our characterization of ϕPLPE reveals it to be a small, contractile-tailed phage whose 47.5 kb genome sequence is phylogenetically distant from all previously characterized phages. The genome has a generally modular organization (e.g. replication/recombination, structure/morphogenesis, lysis/lysogeny) and approximately half of its 84 open reading frames have no known homologues. It behaves as a virulent phage under the host growth conditions we have employed and, with the exception of an anti-repressor (ant) homologue, the genome lacks all the genes associated with a lysogenic lifestyle. Thus, either ϕPLPE was once a temperate phage that has lost most of its lysogeny cassette or it is a virulent phage that acquired an ant-like gene presumably for some function other than the control of lysogeny. The ϕPLPE genome has few bacterial gene homologues with the interesting exception of a putative acylhydrolase (acylase). This function has been implicated in bacterial quorum sensing since it degrades homoserine-lactone signalling molecules and can disrupt or modulate quorum signalling from either the emitter or its competitors. ϕPLPE may be an example of a phage co-opting components of the bacterial quorum-sensing apparatus to its own advantage.
Collapse
Affiliation(s)
- Cécile Leblanc
- Centre National de la Recherche Scientifique, LMGM, F-31000 Toulouse, France. Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000 Toulouse, France
| | | | | | | |
Collapse
|
11
|
Abstract
All organisms possess a diverse set of genetic programs that are used to alter cellular physiology in response to environmental cues. The gram-negative bacterium, Escherichia coli, mounts what is known as the "SOS response" following DNA damage, replication fork arrest, and a myriad of other environmental stresses. For over 50 years, E. coli has served as the paradigm for our understanding of the transcriptional, and physiological changes that occur following DNA damage (400). In this chapter, we summarize the current view of the SOS response and discuss how this genetic circuit is regulated. In addition to examining the E. coli SOS response, we also include a discussion of the SOS regulatory networks in other bacteria to provide a broader perspective on how prokaryotes respond to DNA damage.
Collapse
|
12
|
Abstract
The RecA protein is a recombinase functioning in recombinational DNA repair in bacteria. RecA is regulated at many levels. The expression of the recA gene is regulated within the SOS response. The activity of the RecA protein itself is autoregulated by its own C-terminus. RecA is also regulated by the action of other proteins. To date, these include the RecF, RecO, RecR, DinI, RecX, RdgC, PsiB, and UvrD proteins. The SSB protein also indirectly affects RecA function by competing for ssDNA binding sites. The RecO and RecR, and possibly the RecF proteins, all facilitate RecA loading onto SSB-coated ssDNA. The RecX protein blocks RecA filament extension, and may have other effects on RecA activity. The DinI protein stabilizes RecA filaments. The RdgC protein binds to dsDNA and blocks RecA access to dsDNA. The PsiB protein, encoded by F plasmids, is uncharacterized, but may inhibit RecA in some manner. The UvrD helicase removes RecA filaments from RecA. All of these proteins function in a network that determines where and how RecA functions. Additional regulatory proteins may remain to be discovered. The elaborate regulatory pattern is likely to be reprised for RecA homologues in archaeans and eukaryotes.
Collapse
Affiliation(s)
- Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA.
| |
Collapse
|
13
|
Ha JY, Kim HK, Kim DJ, Kim KH, Oh SJ, Lee HH, Yoon HJ, Song HK, Suh SW. The recombination-associated protein RdgC adopts a novel toroidal architecture for DNA binding. Nucleic Acids Res 2007; 35:2671-81. [PMID: 17426134 PMCID: PMC1885664 DOI: 10.1093/nar/gkm144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
RecA plays a central role in the nonmutagenic repair of stalled replication forks in bacteria. RdgC, a recombination-associated DNA-binding protein, is a potential negative regulator of RecA function. Here, we have determined the crystal structure of RdgC from Pseudomonas aeruginosa. The J-shaped monomer has a unique fold and can be divided into three structural domains: tip domain, center domain and base domain. Two such monomers dimerize to form a ring-shaped molecule of approximate 2-fold symmetry. Of the two inter-subunit interfaces within the dimer, one interface (‘interface A’) between tip/center domains is more nonpolar than the other (‘interface B’) between base domains. The structure allows us to propose that the RdgC dimer binds dsDNA through the central hole of ∼30 Å diameter. The proposed model is supported by our DNA-binding assays coupled with mutagenesis, which indicate that the conserved positively charged residues on the protein surface around the central hole play important roles in DNA binding. The novel ring-shaped architecture of the RdgC dimer has significant implications for its role in homologous recombination.
Collapse
Affiliation(s)
- Jun Yong Ha
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea and Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Hye Kyong Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea and Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Do Jin Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea and Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Kyoung Hoon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea and Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Sung Jin Oh
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea and Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea and Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Hye Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea and Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Hyun Kyu Song
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea and Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Se Won Suh
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea and Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
- *To whom correspondence should be addressed +82-2-880-6653+82-2-889-1568
| |
Collapse
|
14
|
Briggs GS, McEwan PA, Yu J, Moore T, Emsley J, Lloyd RG. Ring structure of the Escherichia coli DNA-binding protein RdgC associated with recombination and replication fork repair. J Biol Chem 2007; 282:12353-7. [PMID: 17308310 DOI: 10.1074/jbc.c700023200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA-binding protein, RdgC, is associated with recombination and replication fork repair in Escherichia coli and with the virulence-associated, pilin antigenic variation mediated by RecA and other recombination proteins in Neisseria species. We solved the structure of the E. coli protein and refined it to 2.4A. RdgC crystallizes as a dimer with a head-to-head, tail-to-tail organization forming a ring with a 30 A diameter hole at the center. The protein fold is unique and reminiscent of a horseshoe with twin gates closing the open end. The central hole is lined with positively charged residues and provides a highly plausible DNA binding channel consistent with the nonspecific mode of binding detected in vitro and with the ability of RdgC to modulate RecA function in vivo.
Collapse
Affiliation(s)
- Geoffrey S Briggs
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH
| | | | | | | | | | | |
Collapse
|
15
|
The bacterial RecA protein: structure, function, and regulation. MOLECULAR GENETICS OF RECOMBINATION 2007. [DOI: 10.1007/978-3-540-71021-9_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Drees JC, Chitteni-Pattu S, McCaslin DR, Inman RB, Cox MM. Inhibition of RecA protein function by the RdgC protein from Escherichia coli. J Biol Chem 2005; 281:4708-17. [PMID: 16377615 DOI: 10.1074/jbc.m513592200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli RdgC protein is a potential negative regulator of RecA function. RdgC inhibits RecA protein-promoted DNA strand exchange, ATPase activity, and RecA-dependent LexA cleavage. The primary mechanism of RdgC inhibition appears to involve a simple competition for DNA binding sites, especially on duplex DNA. The capacity of RecA to compete with RdgC is improved by the DinI protein. RdgC protein can inhibit DNA strand exchange catalyzed by RecA nucleoprotein filaments formed on single-stranded DNA by binding to the homologous duplex DNA and thereby blocking access to that DNA by the RecA nucleoprotein filaments. RdgC protein binds to single-stranded and double-stranded DNA, and the protein can be visualized on DNA using electron microscopy. RdgC protein exists in solution as a mixture of oligomeric states in equilibrium, most likely as monomers, dimers, and tetramers. This concentration-dependent change of state appears to affect its mode of binding to DNA and its capacity to inhibit RecA. The various species differ in their capacity to inhibit RecA function.
Collapse
Affiliation(s)
- Julia C Drees
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA
| | | | | | | | | |
Collapse
|
17
|
Tessmer I, Moore T, Lloyd RG, Wilson A, Erie DA, Allen S, Tendler SJB. AFM studies on the role of the protein RdgC in bacterial DNA recombination. J Mol Biol 2005; 350:254-62. [PMID: 15923011 DOI: 10.1016/j.jmb.2005.04.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 04/04/2005] [Accepted: 04/19/2005] [Indexed: 02/03/2023]
Abstract
Genetic studies of rdgC in different bacterial systems suggest that it may play a role in replication and recombination. However, the exact function of the corresponding protein, RdgC, is unknown. In this study, we have imaged complexes of RdgC with both linear and supercoiled circular plasmid DNA using atomic force microscopy. We confirm that RdgC does not target any specific sequences in double-stranded DNA, as has been suggested from biochemical data. However, we detect an increased affinity of the protein to DNA ends, and an ability to promote bending of DNA. Similar binding preferences have been reported for enzymes involved in recombination. Protein complexes with supercoiled plasmid DNA further enabled us to study the effect of RdgC on DNA superstructure. At high concentrations of protein we observed promotion of DNA condensation. Recombination is largely enhanced by close contacts of distant regions along the DNA strands, as can occur, for instance, through condensation. Our data thus support a possible function of RdgC as a midwife of recombination.
Collapse
MESH Headings
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Bacterial/ultrastructure
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA, Superhelical/ultrastructure
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/ultrastructure
- Microscopy, Atomic Force
- Nucleic Acid Conformation
- Plasmids/chemistry
- Plasmids/genetics
- Plasmids/metabolism
- Plasmids/ultrastructure
- Protein Structure, Quaternary
- Recombination, Genetic
Collapse
Affiliation(s)
- Ingrid Tessmer
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Łobocka MB, Rose DJ, Plunkett G, Rusin M, Samojedny A, Lehnherr H, Yarmolinsky MB, Blattner FR. Genome of bacteriophage P1. J Bacteriol 2004; 186:7032-68. [PMID: 15489417 PMCID: PMC523184 DOI: 10.1128/jb.186.21.7032-7068.2004] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 07/09/2004] [Indexed: 11/20/2022] Open
Abstract
P1 is a bacteriophage of Escherichia coli and other enteric bacteria. It lysogenizes its hosts as a circular, low-copy-number plasmid. We have determined the complete nucleotide sequences of two strains of a P1 thermoinducible mutant, P1 c1-100. The P1 genome (93,601 bp) contains at least 117 genes, of which almost two-thirds had not been sequenced previously and 49 have no homologs in other organisms. Protein-coding genes occupy 92% of the genome and are organized in 45 operons, of which four are decisive for the choice between lysis and lysogeny. Four others ensure plasmid maintenance. The majority of the remaining 37 operons are involved in lytic development. Seventeen operons are transcribed from sigma(70) promoters directly controlled by the master phage repressor C1. Late operons are transcribed from promoters recognized by the E. coli RNA polymerase holoenzyme in the presence of the Lpa protein, the product of a C1-controlled P1 gene. Three species of P1-encoded tRNAs provide differential controls of translation, and a P1-encoded DNA methyltransferase with putative bifunctionality influences transcription, replication, and DNA packaging. The genome is particularly rich in Chi recombinogenic sites. The base content and distribution in P1 DNA indicate that replication of P1 from its plasmid origin had more impact on the base compositional asymmetries of the P1 genome than replication from the lytic origin of replication.
Collapse
Affiliation(s)
- Małgorzata B Łobocka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Ul. Pawinskiego 5A, 02-106 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Moore T, Sharples GJ, Lloyd RG. DNA binding by the meningococcal RdgC protein, associated with pilin antigenic variation. J Bacteriol 2004; 186:870-4. [PMID: 14729716 PMCID: PMC321482 DOI: 10.1128/jb.186.3.870-874.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RdgC protein of Neisseria gonorrhoeae is required for efficient pilin antigenic variation, although its precise role has yet to be established. We demonstrate that the nearly identical RdgC from Neisseria meningitidis binds DNA with little specificity for sequence or structure, like the Escherichia coli protein. We also show that neither protein is able to constrain torsional tension in relaxed DNA. These data exclude several possible roles for RdgC in pilin antigenic variation and suggest that RdgC performs a similar function in both E. coli and the Neisseria spp.
Collapse
Affiliation(s)
- Timothy Moore
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | | | | |
Collapse
|
20
|
Moore T, McGlynn P, Ngo HP, Sharples GJ, Lloyd RG. The RdgC protein of Escherichia coli binds DNA and counters a toxic effect of RecFOR in strains lacking the replication restart protein PriA. EMBO J 2003; 22:735-45. [PMID: 12554673 PMCID: PMC140733 DOI: 10.1093/emboj/cdg048] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PriA protein provides a means to load the DnaB replicative helicase at DNA replication fork and D loop structures, and is therefore a key factor in the rescue of stalled or broken forks and subsequent replication restart. We show that the nucleoid-associated RdgC protein binds non-specifically to single-stranded (ss) DNA and double-stranded DNA. It is also essential for growth of a strain lacking PriA, indicating that it might affect replication fork progression or fork rescue. dnaC suppressors of priA overcome this inviability, especially when RecF, RecO or RecR is inactivated, indicating that RdgC avoids or counters a toxic effect of these proteins. Mutations modifying ssDNA-binding (SSB) protein also negate this toxic effect, suggesting that the toxicity reflects inappropriate loading of RecA on SSB-coated ssDNA, leading to excessive or untimely RecA activity. We suggest that binding of RdgC to DNA limits RecA loading, avoiding problems at replication forks that would otherwise require PriA to promote replication restart. Mutations in RNA polymerase also reduce the toxic effect of RecFOR, providing a further link between DNA replication, transcription and repair.
Collapse
Affiliation(s)
| | | | | | - Gary J. Sharples
- Institute of Genetics, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
Present address: Centre for Infectious Diseases, University of Durham, Wolfson Research Institute, Queen’s Campus, Stockton-on-Tees TS17 6BH, UK Corresponding author e-mail:
| | - Robert G. Lloyd
- Institute of Genetics, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK
Present address: Centre for Infectious Diseases, University of Durham, Wolfson Research Institute, Queen’s Campus, Stockton-on-Tees TS17 6BH, UK Corresponding author e-mail:
| |
Collapse
|
21
|
Mehr IJ, Long CD, Serkin CD, Seifert HS. A homologue of the recombination-dependent growth gene, rdgC, is involved in gonococcal pilin antigenic variation. Genetics 2000; 154:523-32. [PMID: 10655208 PMCID: PMC1460959 DOI: 10.1093/genetics/154.2.523] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neisseria gonorrhoeae pilin undergoes high-frequency changes in primary amino acid sequence that aid in the avoidance of the host immune response and alter pilus expression. The pilin amino acid changes reflect nucleotide changes in the expressed gene, pilE, which result from nonreciprocal recombination reactions with numerous silent loci, pilS. A series of mini-transposon insertions affecting pilin antigenic variation were localized to three genes in one region of the Gc chromosome. Mutational analysis with complementation showed that a Gc gene with sequence similarity to the Escherichia coli rdgC gene is involved in pilus-dependent colony phase variation and in pilin antigenic variation. Furthermore, we show that the Gc rdgC homologue is transcriptionally linked in an operon with a gene encoding a predicted GTPase. The inability to disrupt expression of this gene suggests it is an essential gene (engA, essential neisserial GTPase). While some of the transposon mutations in rdgC and insertions in the 5'-untranslated portion of engA showed a growth defect, all transposon insertions investigated conferred an aberrant cellular morphology. Complementation analysis showed that the growth deficiencies are due to the interruption of RdgC expression and not that of EngA. The requirement of RdgC for efficient pilin variation suggests a role for this protein in specialized DNA recombination reactions.
Collapse
Affiliation(s)
- I J Mehr
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
22
|
Cox MM. Recombinational DNA repair in bacteria and the RecA protein. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:311-66. [PMID: 10506835 DOI: 10.1016/s0079-6603(08)60726-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In bacteria, the major function of homologous genetic recombination is recombinational DNA repair. This is not a process reserved only for rare double-strand breaks caused by ionizing radiation, nor is it limited to situations in which the SOS response has been induced. Recombinational DNA repair in bacteria is closely tied to the cellular replication systems, and it functions to repair damage at stalled replication forks, Studies with a variety of rec mutants, carried out under normal aerobic growth conditions, consistently suggest that at least 10-30% of all replication forks originating at the bacterial origin of replication are halted by DNA damage and must undergo recombinational DNA repair. The actual frequency may be much higher. Recombinational DNA repair is both the most complex and the least understood of bacterial DNA repair processes. When replication forks encounter a DNA lesion or strand break, repair is mediated by an adaptable set of pathways encompassing most of the enzymes involved in DNA metabolism. There are five separate enzymatic processes involved in these repair events: (1) The replication fork assembled at OriC stalls and/or collapses when encountering DNA damage. (2) Recombination enzymes provide a complementary strand for a lesion isolated in a single-strand gap, or reconstruct a branched DNA at the site of a double-strand break. (3) The phi X174-type primosome (or repair primosome) functions in the origin-independent reassembly of the replication fork. (4) The XerCD site-specific recombination system resolves the dimeric chromosomes that are the inevitable by-product of frequent recombination associated with recombinational DNA repair. (5) DNA excision repair and other repair systems eliminate lesions left behind in double-stranded DNA. The RecA protein plays a central role in the recombination phase of the process. Among its many activities, RecA protein is a motor protein, coupling the hydrolysis of ATP to the movement of DNA branches.
Collapse
Affiliation(s)
- M M Cox
- Department of Biochemistry, University of Wisconsin-Madison 53706, USA
| |
Collapse
|
23
|
Murphy LD, Rosner JL, Zimmerman SB, Esposito D. Identification of two new proteins in spermidine nucleoids isolated from Escherichia coli. J Bacteriol 1999; 181:3842-4. [PMID: 10368163 PMCID: PMC93866 DOI: 10.1128/jb.181.12.3842-3844.1999] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli nucleoid contains DNA in a condensed but functional form. Analysis of proteins released from isolated spermidine nucleoids after treatment with DNase I reveals significant amounts of two proteins not previously detected in wild-type E. coli. Partial amino-terminal sequencing has identified them as the products of rdgC and yejK. These proteins are strongly conserved in gram-negative bacteria, suggesting that they have important cellular roles.
Collapse
Affiliation(s)
- L D Murphy
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0560, USA
| | | | | | | |
Collapse
|