1
|
Decroly T, Vila R, Lohse K, Mackintosh A. Rewinding the Ratchet: Rare Recombination Locally Rescues Neo-W Degeneration and Generates Plateaus of Sex-Chromosome Divergence. Mol Biol Evol 2024; 41:msae124. [PMID: 38950035 PMCID: PMC11232697 DOI: 10.1093/molbev/msae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Natural selection is less efficient in the absence of recombination. As a result, nonrecombining sequences, such as sex chromosomes, tend to degenerate over time. Although the outcomes of recombination arrest are typically observed after many millions of generations, recent neo-sex chromosomes can give insight into the early stages of this process. Here, we investigate the evolution of neo-sex chromosomes in the Spanish marbled white butterfly, Melanargia ines, where a Z-autosome fusion has turned the homologous autosome into a nonrecombining neo-W chromosome. We show that these neo-sex chromosomes are likely limited to the Iberian population of M. ines, and that they arose around the time when this population split from North-African populations, around 1.5 million years ago. Recombination arrest of the neo-W chromosome has led to an excess of premature stop-codons and frame-shift mutations, and reduced gene expression compared to the neo-Z chromosome. Surprisingly, we identified two regions of ∼1 Mb at one end of the neo-W that are both less diverged from the neo-Z and less degraded than the rest of the chromosome, suggesting a history of rare but repeated genetic exchange between the two neo-sex chromosomes. These plateaus of neo-sex chromosome divergence suggest that neo-W degradation can be locally reversed by rare recombination between neo-W and neo-Z chromosomes.
Collapse
Affiliation(s)
- Thomas Decroly
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, ESP-08003 Barcelona, Spain
| | - Konrad Lohse
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Alexander Mackintosh
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
2
|
Charlesworth et al. on Background Selection and Neutral Diversity. Genetics 2017; 204:829-832. [PMID: 28114095 DOI: 10.1534/genetics.116.196170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
3
|
Song X, Goicoechea JL, Ammiraju JSS, Luo M, He R, Lin J, Lee SJ, Sisneros N, Watts T, Kudrna DA, Golser W, Ashley E, Collura K, Braidotti M, Yu Y, Matzkin LM, McAllister BF, Markow TA, Wing RA. The 19 genomes of Drosophila: a BAC library resource for genus-wide and genome-scale comparative evolutionary research. Genetics 2011; 187:1023-30. [PMID: 21321134 PMCID: PMC3070512 DOI: 10.1534/genetics.111.126540] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/05/2011] [Indexed: 11/18/2022] Open
Abstract
The genus Drosophila has been the subject of intense comparative phylogenomics characterization to provide insights into genome evolution under diverse biological and ecological contexts and to functionally annotate the Drosophila melanogaster genome, a model system for animal and insect genetics. Recent sequencing of 11 additional Drosophila species from various divergence points of the genus is a first step in this direction. However, to fully reap the benefits of this resource, the Drosophila community is faced with two critical needs: i.e., the expansion of genomic resources from a much broader range of phylogenetic diversity and the development of additional resources to aid in finishing the existing draft genomes. To address these needs, we report the first synthesis of a comprehensive set of bacterial artificial chromosome (BAC) resources for 19 Drosophila species from all three subgenera. Ten libraries were derived from the exact source used to generate 10 of the 12 draft genomes, while the rest were generated from a strategically selected set of species on the basis of salient ecological and life history features and their phylogenetic positions. The majority of the new species have at least one sequenced reference genome for immediate comparative benefit. This 19-BAC library set was rigorously characterized and shown to have large insert sizes (125-168 kb), low nonrecombinant clone content (0.3-5.3%), and deep coverage (9.1-42.9×). Further, we demonstrated the utility of this BAC resource for generating physical maps of targeted loci, refining draft sequence assemblies and identifying potential genomic rearrangements across the phylogeny.
Collapse
Affiliation(s)
- Xiang Song
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Jose Luis Goicoechea
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Jetty S. S. Ammiraju
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Meizhong Luo
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Ruifeng He
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Jinke Lin
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - So-Jeong Lee
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Nicholas Sisneros
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Tom Watts
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - David A. Kudrna
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Wolfgang Golser
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Elizabeth Ashley
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Kristi Collura
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Michele Braidotti
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Yeisoo Yu
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Luciano M. Matzkin
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Bryant F. McAllister
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Therese Ann Markow
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Rod A. Wing
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
4
|
Abstract
In Drosophila, dosage compensation of the single male X chromosome involves upregulation of expression of X linked genes. Dosage compensation complex or the male specific lethal (MSL) complex is intimately involved in this regulation. The MSL complex members decorate the male X chromosome by binding on hundreds of sites along the X chromosome. Recent genome wide analysis has brought new light into X chromosomal regulation. It is becoming increasingly clear that although the X chromosome achieves male specific regulation via the MSL complex members, a number of general factors also impinge on this regulation. Future studies integrating these aspects promise to shed more light into this epigenetic phenomenon.
Collapse
|
5
|
The evolution of restricted recombination in sex chromosomes. Trends Ecol Evol 2009; 24:94-102. [DOI: 10.1016/j.tree.2008.09.010] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 07/30/2008] [Accepted: 09/23/2008] [Indexed: 11/20/2022]
|
6
|
Schaeffer SW, Bhutkar A, McAllister BF, Matsuda M, Matzkin LM, O'Grady PM, Rohde C, Valente VLS, Aguadé M, Anderson WW, Edwards K, Garcia ACL, Goodman J, Hartigan J, Kataoka E, Lapoint RT, Lozovsky ER, Machado CA, Noor MAF, Papaceit M, Reed LK, Richards S, Rieger TT, Russo SM, Sato H, Segarra C, Smith DR, Smith TF, Strelets V, Tobari YN, Tomimura Y, Wasserman M, Watts T, Wilson R, Yoshida K, Markow TA, Gelbart WM, Kaufman TC. Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps. Genetics 2008; 179:1601-55. [PMID: 18622037 PMCID: PMC2475758 DOI: 10.1534/genetics.107.086074] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Accepted: 03/13/2008] [Indexed: 11/18/2022] Open
Abstract
The sequencing of the 12 genomes of members of the genus Drosophila was taken as an opportunity to reevaluate the genetic and physical maps for 11 of the species, in part to aid in the mapping of assembled scaffolds. Here, we present an overview of the importance of cytogenetic maps to Drosophila biology and to the concepts of chromosomal evolution. Physical and genetic markers were used to anchor the genome assembly scaffolds to the polytene chromosomal maps for each species. In addition, a computational approach was used to anchor smaller scaffolds on the basis of the analysis of syntenic blocks. We present the chromosomal map data from each of the 11 sequenced non-Drosophila melanogaster species as a series of sections. Each section reviews the history of the polytene chromosome maps for each species, presents the new polytene chromosome maps, and anchors the genomic scaffolds to the cytological maps using genetic and physical markers. The mapping data agree with Muller's idea that the majority of Drosophila genes are syntenic. Despite the conservation of genes within homologous chromosome arms across species, the karyotypes of these species have changed through the fusion of chromosomal arms followed by subsequent rearrangement events.
Collapse
Affiliation(s)
- Stephen W Schaeffer
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Independent origins of new sex-linked chromosomes in the melanica and robusta species groups of Drosophila. BMC Evol Biol 2008; 8:33. [PMID: 18230153 PMCID: PMC2268673 DOI: 10.1186/1471-2148-8-33] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 01/29/2008] [Indexed: 01/03/2023] Open
Abstract
Background Recent translocations of autosomal regions to the sex chromosomes represent important systems for identifying the evolutionary forces affecting convergent patterns of sex-chromosome heteromorphism. Additions to the sex chromosomes have been reported in the melanica and robusta species groups, two sister clades of Drosophila. The close relationship between these two species groups and the similarity of their rearranged karyotypes motivates this test of alternative hypotheses; the rearranged sex chromosomes in both groups are derived through a common origin, or the rearrangements are derived through at least two independent origins. Here we examine chromosomal arrangement in representatives of the melanica and the robusta species groups and test these alternative hypotheses using a phylogenetic approach. Results Two mitochondrial and two nuclear gene sequences were used to reconstruct phylogenetic relationships of a set of nine ingroup species having fused and unfused sex chromosomes and representing a broad sample of both species groups. Different methods of phylogenetic inference, coupled with concurrent cytogenetic analysis, indicate that the hypothesis of independent origins of rearranged sex chromosomes within each species group is significantly more likely than the alternative hypothesis of a single common origin. An estimate tightly constrained around 8 My was obtained for the age of the rearranged sex chromosomes in the melanica group; however, a more loosely constrained estimate of 10–15 My was obtained for the age of the rearrangement in the robusta group. Conclusion Independent acquisition of new chromosomal arms by the sex chromosomes in the melanica and robusta species groups represents a case of striking convergence at the karyotypic level. Our findings indicate that the parallel divergence experienced by newly sex-linked genomic regions in these groups represents an excellent system for studying the tempo of sex chromosome evolution.
Collapse
|
8
|
Evans AL, Mena PA, McAllister BF. Positive selection near an inversion breakpoint on the neo-X chromosome of Drosophila americana. Genetics 2007; 177:1303-19. [PMID: 17660565 PMCID: PMC2147947 DOI: 10.1534/genetics.107.073932] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 07/25/2007] [Indexed: 12/23/2022] Open
Abstract
Unique features of heteromorphic sex chromosomes are produced as a consequence of sex-linked transmission. Alternative models concerning the evolution of sex chromosomes can be classified in terms of genetic drift or positive selection being the primary mechanism of divergence between this chromosomal pair. This study examines early changes on a newly acquired chromosomal arm of the X in Drosophila americana, which was derived from a centromeric fusion between the ancestral X and previously autosomal chromosome 4 (element B). Breakpoints of a chromosomal inversion In(4)a, which is restricted to the neo-X, are identified and used to guide a sequence analysis along chromosome 4. Loci flanking the distal breakpoint exhibit patterns of sequence diversity consistent with neutral evolution, yet loci near the proximal breakpoint reveal distinct imprints of positive selection within the neo-X chromosomal class containing In(4)a. Data from six separate positions examined throughout the proximal region reveal a pattern of recent turnover driven by two independent sweeps among chromosomes with the inverted gene arrangement. Selection-mediated establishment of an extended haplotype associated with recombination-suppressing inversions on the neo-X indicates a pattern of active coadaptation apparently initiated by X-linked transmission and potentially sustained by intralocus sexual conflict.
Collapse
Affiliation(s)
- Amy L Evans
- Department of Biological Sciences and the Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
9
|
McAllister BF, Evans AL. Increased nucleotide diversity with transient Y linkage in Drosophila americana. PLoS One 2006; 1:e112. [PMID: 17205116 PMCID: PMC1762432 DOI: 10.1371/journal.pone.0000112] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 11/21/2006] [Indexed: 11/19/2022] Open
Abstract
Recombination shapes nucleotide variation within genomes. Patterns are thought to arise from the local recombination landscape, influencing the degree to which neutral variation experiences hitchhiking with selected variation. This study examines DNA polymorphism along Chromosome 4 (element B) of Drosophila americana to identify effects of hitchhiking arising as a consequence of Y-linked transmission. A centromeric fusion between the X and 4(th) chromosomes segregates in natural populations of D. americana. Frequency of the X-4 fusion exhibits a strong positive correlation with latitude, which has explicit consequences for unfused 4(th) chromosomes. Unfused Chromosome 4 exists as a non-recombining Y chromosome or as an autosome proportional to the frequency of the X-4 fusion. Furthermore, Y linkage along the unfused 4 is disrupted as a function of the rate of recombination with the centromere. Inter-population and intra-chromosomal patterns of nucleotide diversity were assayed using six regions distributed along unfused 4(th) chromosomes derived from populations with different frequencies of the X-4 fusion. No difference in overall level of nucleotide diversity was detected among populations, yet variation along the chromosome exhibits a distinct pattern in relation to the X-4 fusion. Sequence diversity is inflated at loci experiencing the strongest Y linkage. These findings are inconsistent with the expected reduction in nucleotide diversity resulting from hitchhiking due to background selection or selective sweeps. In contrast, excessive polymorphism is accruing in association with transient Y linkage, and furthermore, hitchhiking with sexually antagonistic alleles is potentially responsible.
Collapse
Affiliation(s)
- Bryant F McAllister
- Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, Iowa, United States of America.
| | | |
Collapse
|
10
|
Charlesworth D, Charlesworth B, Marais G. Steps in the evolution of heteromorphic sex chromosomes. Heredity (Edinb) 2005; 95:118-28. [PMID: 15931241 DOI: 10.1038/sj.hdy.6800697] [Citation(s) in RCA: 618] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We review some recently published results on sex chromosomes in a diversity of species. We focus on several fish and some plants whose sex chromosomes appear to be 'young', as only parts of the chromosome are nonrecombining, while the rest is pseudoautosomal. However, the age of these systems is not yet very clear. Even without knowing what proportions of their genes are genetically degenerate, these cases are of great interest, as they may offer opportunities to study in detail how sex chromosomes evolve. In particular, we review evidence that recombination suppression occurs progressively in evolutionarily independent cases, suggesting that selection drives loss of recombination over increasingly large regions. We discuss how selection during the period when a chromosome is adapting to its role as a Y chromosome might drive such a process.
Collapse
Affiliation(s)
- D Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, UK.
| | | | | |
Collapse
|
11
|
Ranganath HA, Aruna S. Hybridization, transgressive segregation and evolution of new genetic systems inDrosophila. J Genet 2003; 82:163-77. [PMID: 15133193 DOI: 10.1007/bf02715816] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Introgressive hybridization facilitates incorporation of genes from one species into the gene pool of another. Studies on long-term effects of introgressive hybridization in animal systems are sparse. Drosophila nasuta (2n = 8) and D. albomicans (2n = 6)-a pair of allopatric, morphologically almost identical, cross-fertile members of the nasuta subgroup of the immigrans species group-constitute an excellent system to analyse the impact of hybridization followed by transgressive segregation of parental characters in the hybrid progeny. Hybrid populations of D. nasuta and D. albomicans maintained for over 500 generations in the laboratory constitute new recombinant hybrid genomes, here termed cytoraces. The impact of hybridization, followed by introgression and transgressive segregation, on chromosomal constitution and karyotypes, some fitness parameters, isozymes, components of mating behaviour and mating preference reveals a complex pattern of interracial divergence among parental species and cytoraces. This assemblage of characters in different combinations in a laboratory hybrid zone allows us to study the emergence of new genetic systems. Here, we summarize results from our ongoing studies comparing these hybrid cytoraces with the parental species, and discuss the implications of these findings for our understanding of the evolution of new genetic systems.
Collapse
Affiliation(s)
- H A Ranganath
- Drosophila Stock Centre, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore 570 006, India.
| | | |
Collapse
|
12
|
Traut W, Winking H. Meiotic chromosomes and stages of sex chromosome evolution in fish: zebrafish, platyfish and guppy. Chromosome Res 2002; 9:659-72. [PMID: 11778689 DOI: 10.1023/a:1012956324417] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We describe SC complements and results from comparative genomic hybridization (CGH) on mitotic and meiotic chromosomes of the zebrafish Danio rerio, the platyfish Xiphophorus maculatus and the guppy Poecilia reticulata. The three fish species represent basic steps of sex chromosome differentiation: (1) the zebrafish with an all-autosome karyotype; (2) the platyfish with genetically defined sex chromosomes but no differentiation between X and Y visible in the SC or with CGH in meiotic and mitotic chromosomes; (3) the guppy with genetically and cytogenetically differentiated sex chromosomes. The acrocentric Y chromosomes of the guppy consists of a proximal homologous and a distal differential segment. The proximal segment pairs in early pachytene with the respective X chromosome segment. The differential segment is unpaired in early pachytene but synapses later in an 'adjustment' or 'equalization' process. The segment includes a postulated sex determining region and a conspicuous variable heterochromatic region whose structure depends on the particular Y chromosome line. CGH differentiates a large block of predominantly male-specific repetitive DNA and a block of common repetitive DNA in that region.
Collapse
Affiliation(s)
- W Traut
- Institut für Biologie, Medizinische Universität zu Lübeck, Germany.
| | | |
Collapse
|
13
|
McAllister BF. Chromosomal and allelic variation in Drosophila americana: selective maintenance of a chromosomal cline. Genome 2002; 45:13-21. [PMID: 11908655 DOI: 10.1139/g01-112] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Geographically structured genetic variation, as represented by clines and hybrid zones, offers unique opportunities to study adaptation and speciation in natural populations. A hybrid zone has been reported between Drosophila americana americana and Drosophila americana texana, two taxa that are distinguished solely by the arrangement of their X and 4th chromosomes. In this study, samples of D. americana were collected along a latitudinal transect across the inferred hybrid zone, and the frequency of the alternative chromosomal arrangements is reported. These data illustrate that the alternative chromosomal arrangements are distributed along a shallow cline over a broad geographic region, and that the frequency of the arrangements is tightly correlated with latitude. Allelic variants at 13 RFLP loci in three genes on chromosome 4 exhibit no evidence of association with the cline. Presence of a cline for the chromosomal arrangements, as well as a general absence of geographic structure for variation at these genes, is interpreted as evidence that natural selection is responsible for the maintenance of this chromosomal cline. Furthermore, these results demonstrate that taxonomic subdivision of D. americana is unwarranted, because it exists as a cohesive species that is segregating a chromosomal fusion.
Collapse
|
14
|
Mahesh G, Ramachandra NB, Ranganath HA. Autoradiographic study of transcription and dosage compensation in the sex and neo-sex chromosome of Drosophila nasuta nasuta and Drosophila nasuta albomicans. Genome 2001. [DOI: 10.1139/g00-100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular autoradiography is used to study the transcription patterns of the polytene X chromosomes in Drosophila nasuta nasuta and D. n. albomicans. D. n. nasuta, with 2n = 8, includes a pair of complete heteromorphic sex chromosomes, whereas D. n. albomicans, with 2n = 6, has a pair of metacentric neo-sex chromosomes representing incomplete heteromorphic sex chromosomes. The neo-X chromosome has two euchromatic arms, one representing the ancestral X while the other represents the ancestral autosome 3 chromosomes. The metacentric neo-Y chromosome has one arm with a complete heterochromatic ancestral Y and the other arm with a euchromatic ancestral autosome 3. The transcription study has revealed that the X chromosome in D. n. nasuta is hyperactive, suggesting complete dosage compensation, while in the neo-X chromosome of D. n. albomicans the ancestral X chromosome is hyperactive and the ancestral autosome 3, which is part of the neo-sex chromosome, is similar to any other autosomes. This finding shows dosage compensation on one arm (XLx/) of the neo-X chromosome, while the other arm (XR3/YR3) is not dosage compensated and has yet to acquire the dosage compensatory mechanism.Key words: Drosophila, chromosomal races, neo-sex chromosome, transcription and dosage compensation.
Collapse
|
15
|
Schlötterer C. Microsatellite analysis indicates genetic differentiation of the neo-sex chromosomes in Drosophila americana americana. Heredity (Edinb) 2000; 85:610-6. [PMID: 11240628 DOI: 10.1046/j.1365-2540.2000.00797.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neo-sex chromosomes of Drosophila americana americana were formed by a centric fusion between the autosomal element B and the X chromosome. Previous work has shown that the neo-Y chromosome is not degenerated genetically and that there is no evidence for genetic differentiation between neo-X and neo-Y chromosomes at the sequence level. To further address the genetic differentiation between the neo-sex chromosomes, microsatellites mapping to the neo-sex chromosome of D. a. americana were isolated. Microsatellite analysis indicated a highly significant differentiation between D. a. americana and D. a. texana as well as between the neo-X and neo-Y chromosomes in D. a. americana. Nevertheless, levels of variability were similar among the neo-sex chromosomes, indicating a very recent origin.
Collapse
Affiliation(s)
- C Schlötterer
- Institut für Tierzucht und Genetik, Veterinärmedizinische Universität Wien, Josef Baumann Gasse 1, 1210 Wien, Austria.
| |
Collapse
|
16
|
Abstract
Y chromosomes are genetically degenerate, having lost most of the active genes that were present in their ancestors. The causes of this degeneration have attracted much attention from evolutionary theorists. Four major theories are reviewed here: Muller's ratchet, background selection, the Hill Robertson effect with weak selection, and the 'hitchhiking' of deleterious alleles by favourable mutations. All of these involve a reduction in effective population size as a result of selective events occurring in a non-recombining genome, and the consequent weakening of the efficacy of selection. We review the consequences of these processes for patterns of molecular evolution and variation at loci on Y chromosomes, and discuss the results of empirical studies of these patterns for some evolving Y-chromosome and neo-Y-chromosome systems. These results suggest that the effective population sizes of evolving Y or neo-Y chromosomes are severely reduced, as expected if some or all of the hypothesized processes leading to degeneration are operative. It is, however, currently unclear which of the various processes is most important; some directions for future work to help to resolve this question are discussed.
Collapse
Affiliation(s)
- B Charlesworth
- Institute for Cell, Animal and Population Biology, University of Edinburgh, Ashworth Laboratories, UK.
| | | |
Collapse
|
17
|
Bachtrog D, Charlesworth B. Reduced levels of microsatellite variability on the neo-Y chromosome of Drosophila miranda. Curr Biol 2000; 10:1025-31. [PMID: 10996069 DOI: 10.1016/s0960-9822(00)00656-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND In many species, sex is determined by a system involving X and Y chromosomes, the latter having lost much of their genetic activity. Sex chromosomes have evolved independently many times, and several different mechanisms responsible for the degeneration of the Y chromosome have been proposed. Here, we have taken advantage of the secondary sex chromosome pair in Drosophila miranda to test for the effects of evolutionary forces involved in the early stages of Y-chromosome degeneration. Because of a fusion of one of the autosomes to the Y chromosome, a neo-Y chromosome and a neo-X chromosome have been formed, resulting in the transmission of formerly autosomal genes in association with the sex chromosomes. RESULTS We found a 25-fold lower level of variation at microsatellites located on the neo-Y chromosome compared with homologous loci on the neo-X chromosome, or with autosomal and X-linked microsatellites. Sequence analyses of the region flanking the microsatellites suggested that the neo-sex chromosomes originated about 1 million years ago. CONCLUSIONS Variability of the neo-Y chromosome of D. miranda is substantially reduced below expectations at mutation-drift equilibrium. Such a reduction is predicted by theories of the degeneration of the Y chromosome. Another possibility is that there is little or no mutation at microsatellite loci on a non-recombining chromosome such as the neo-Y, but this seems inconsistent with other data.
Collapse
Affiliation(s)
- D Bachtrog
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, UK.
| | | |
Collapse
|
18
|
McAllister BF, Charlesworth B. Reduced sequence variability on the Neo-Y chromosome of Drosophila americana americana. Genetics 1999; 153:221-33. [PMID: 10471708 PMCID: PMC1460740 DOI: 10.1093/genetics/153.1.221] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sex chromosomes are generally morphologically and functionally distinct, but the evolutionary forces that cause this differentiation are poorly understood. Drosophila americana americana was used in this study to examine one aspect of sex chromosome evolution, the degeneration of nonrecombining Y chromosomes. The primary X chromosome of D. a. americana is fused with a chromosomal element that was ancestrally an autosome, causing this homologous chromosomal pair to segregate with the sex chromosomes. Sequence variation at the Alcohol Dehydrogenase (Adh) gene was used to determine the pattern of nucleotide variation on the neo-sex chromosomes in natural populations. Sequences of Adh were obtained for neo-X and neo-Y chromosomes of D. a. americana, and for Adh of D. a. texana, in which it is autosomal. No significant sequence differentiation is present between the neo-X and neo-Y chromosomes of D. a. americana or the autosomes of D. a. texana. There is a significantly lower level of sequence diversity on the neo-Y chromosome relative to the neo-X in D. a. americana. This reduction in variability on the neo-Y does not appear to have resulted from a selective sweep. Coalescent simulations of the evolutionary transition of an autosome into a Y chromosome indicate there may be a low level of recombination between the neo-X and neo-Y alleles of Adh and that the effective population size of this chromosome may have been reduced below the expected value of 25% of the autosomal effective size, possibly because of the effects of background selection or sexual selection.
Collapse
Affiliation(s)
- B F McAllister
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637-1573, USA
| | | |
Collapse
|
19
|
|
20
|
Abstract
In all living forms, the organization of the genetic material must enable two universally fundamental functions: the elaboration of biological properties and their transmission. In spite of these inexorable commonalties, genomes have a bewildering variety of forms, with differences occurring not only among distant taxa but also, in many instances, between members of the opposite sex within species. The rapidly growing field of comparative genomics offers a powerful tool for unraveling the evolutionary pathways that led to these karyotypic differences. This new method of genetic analysis [Fridolfsson et al, Proc Nat Acad Sci USA 1998; 95: 8147-8152. (Ref. 1)] complements still valuable, traditional experimental approaches.
Collapse
Affiliation(s)
- J C Lucchesi
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
21
|
Steinemann S, Steinemann M. The Amylase gene cluster on the evolving sex chromosomes of Drosophila miranda. Genetics 1999; 151:151-61. [PMID: 9872956 PMCID: PMC1460469 DOI: 10.1093/genetics/151.1.151] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
On the basis of chromosomal homology, the Amylase gene cluster in Drosophila miranda must be located on the secondary sex chromosome pair, neo-X (X2) and neo-Y, but is autosomally inherited in all other Drosophila species. Genetic evidence indicates no active amylase on the neo-Y chromosome and the X2-chromosomal locus already shows dosage compensation. Several lines of evidence strongly suggest that the Amy gene cluster has been lost already from the evolving neo-Y chromosome. This finding shows that a relatively new neo-Y chromosome can start to lose genes and hence gradually lose homology with the neo-X. The X2-chromosomal Amy1 is intact and Amy2 contains a complete coding sequence, but has a deletion in the 3'-flanking region. Amy3 is structurally eroded and hampered by missing regulatory motifs. Functional analysis of the X2-chromosomal Amy1 and Amy2 regions from D. miranda in transgenic D. melanogaster flies reveals ectopic AMY1 expression. AMY1 shows the same electrophoretic mobility as the single amylase band in D. miranda, while ectopic AMY2 expression is characterized by a different mobility. Therefore, only the Amy1 gene of the resident Amy cluster remains functional and hence Amy1 is the dosage compensated gene.
Collapse
Affiliation(s)
- S Steinemann
- Institut für Genetik, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | | |
Collapse
|
22
|
Traut W, Wollert B. An X/Y DNA segment from an early stage of sex chromosome differentiation in the fly Megaselia scalaris. Genome 1998; 41:289-94. [PMID: 9644837 DOI: 10.1139/g98-015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sex chromosomes of the Megaselia scalaris wild-type strain Wien are homomorphic. We studied a roughly 1.8 kb X/Y DNA segment of this strain. It includes, at one end, the first part of a coding sequence for a protein of the vespid antigen 5 family. Molecular differentiation between the X and Y chromosomes has commenced, but homology, even of short DNA stretches, is still assessable beyond doubt. The most conspicuous differences between the X and the homologous Y segment were insertions/deletions in the noncoding region: among them, deletions, a duplication, and an insertion of a mobile element. These structural changes grossly disrupted homology. In comparison, base substitutions, though more numerous, contributed little to the differentiation of the X/Y DNA segment.
Collapse
Affiliation(s)
- W Traut
- Institut für Biologie, Medizinische Universität zu Lübeck, Germany.
| | | |
Collapse
|
23
|
Amos W, Harwood J. Factors affecting levels of genetic diversity in natural populations. Philos Trans R Soc Lond B Biol Sci 1998; 353:177-86. [PMID: 9533122 PMCID: PMC1692205 DOI: 10.1098/rstb.1998.0200] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genetic variability is the clay of evolution, providing the base material on which adaptation and speciation depend. It is often assumed that most interspecific differences in variability are due primarily to population size effects, with bottlenecked populations carrying less variability than those of stable size. However, we show that population bottlenecks are unlikely to be the only factor, even in classic case studies such as the northern elephant seal and the cheetah, where genetic polymorphism is virtually absent. Instead, we suggest that the low levels of variability observed in endangered populations are more likely to result from a combination of publication biases, which tend to inflate the level of variability which is considered 'normal', and inbreeding effects, which may hasten loss of variability due to drift. To account for species with large population sizes but low variability we advance three hypotheses. First, it is known that certain metapopulation structures can result in effective population sizes far below the census size. Second, there is increasing evidence that heterozygous sites mutate more frequently than equivalent homozygous sites, plausibly because mismatch repair between homologous chromosomes during meiosis provides extra opportunities to mutate. Such a mechanism would undermine the simple relationship between heterozygosity and effective population size. Third, the fact that related species that differ greatly in variability implies that large amounts of variability can be gained or lost rapidly. We argue that such cases are best explained by rapid loss through a genome-wide selective sweep, and suggest a mechanism by which this could come about, based on forced changes to a control gene inducing coevolution in the genes it controls. Our model, based on meiotic drive in mammals, but easily extended to other systems, would tend to facilitate population isolation by generating molecular incompatabilities. Circumstances can even be envisioned in which the process could provide intrinsic impetus to speciation.
Collapse
Affiliation(s)
- W Amos
- School of Environmental and Evolutionary Biology, University of St Andrews, Fife, UK.
| | | |
Collapse
|
24
|
Zhimulev IF. Polytene chromosomes, heterochromatin, and position effect variegation. ADVANCES IN GENETICS 1997; 37:1-566. [PMID: 9352629 DOI: 10.1016/s0065-2660(08)60341-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|