1
|
Mitotic Gene Conversion Tracts Associated with Repair of a Defined Double-Strand Break in Saccharomyces cerevisiae. Genetics 2017; 207:115-128. [PMID: 28743762 DOI: 10.1534/genetics.117.300057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/18/2017] [Indexed: 11/18/2022] Open
Abstract
Mitotic recombination between homologous chromosomes leads to the uncovering of recessive alleles through loss of heterozygosity. In the current study, a defined double-strand break was used to initiate reciprocal loss of heterozygosity between diverged homologs of chromosome IV in Saccharomyces cerevisiae These events resulted from the repair of two broken chromatids, one of which was repaired as a crossover and the other as a noncrossover. Associated gene conversion tracts resulting from the donor-directed repair of mismatches formed during strand exchange (heteroduplex DNA) were mapped using microarrays. Gene conversion tracts associated with individual crossover and noncrossover events were similar in size and position, with half of the tracts being unidirectional and mapping to only one side of the initiating break. Among crossover events, this likely reflected gene conversion on only one side of the break, with restoration-type repair occurring on the other side. For noncrossover events, an ectopic system was used to directly compare gene conversion tracts produced in a wild-type strain to heteroduplex DNA tracts generated in the absence of the Mlh1 mismatch-repair protein. There was a strong bias for unidirectional tracts in the absence, but not in the presence, of Mlh1 This suggests that mismatch repair acts on heteroduplex DNA that is only transiently present in noncrossover intermediates of the synthesis dependent strand annealing pathway. Although the molecular features of events associated with loss of heterozygosity generally agreed with those predicted by current recombination models, there were unexpected complexities in associated gene conversion tracts.
Collapse
|
2
|
Abstract
Double-strand breaks (DSBs) pose a severe challenge to genome integrity; consequently, cells have developed efficient mechanisms to repair DSBs through several pathways of homologous recombination and other nonhomologous end-joining processes. Much of our understanding of these pathways has come from the analysis of site-specific DSBs created by the HO endonuclease in the budding yeast Saccharomyces cerevisiae. I was fortunate to get in on the ground floor of analyzing the fate of synchronously induced DSBs through the study of what I coined "in vivo biochemistry." I have had the remarkable good fortune to profit from the development of new techniques that have permitted an ever more detailed dissection of these repair mechanisms, which are described here.
Collapse
Affiliation(s)
- James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02453;
| |
Collapse
|
3
|
Mancera E, Bourgon R, Huber W, Steinmetz LM. Genome-wide survey of post-meiotic segregation during yeast recombination. Genome Biol 2011; 12:R36. [PMID: 21481229 PMCID: PMC3218862 DOI: 10.1186/gb-2011-12-4-r36] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/27/2011] [Accepted: 04/11/2011] [Indexed: 11/24/2022] Open
Abstract
Background When mismatches in heteroduplex DNA formed during meiotic recombination are left unrepaired, post-meiotic segregation of the two mismatched alleles occurs during the ensuing round of mitosis. This gives rise to somatic mosaicism in multicellular organisms and leads to unexpected allelic combinations among progeny. Despite its implications for inheritance, post-meiotic segregation has been studied at only a few loci. Results By genotyping tens of thousands of genetic markers in yeast segregants and their clonal progeny, we analyzed post-meiotic segregation at a genome-wide scale. We show that post-meiotic segregation occurs in close to 10% of recombination events. Although the overall number of markers affected in a single meiosis is small, the rate of post-meiotic segregation is more than five orders of magnitude larger than the base substitution mutation rate. Post-meiotic segregation took place with equal relative frequency in crossovers and non-crossovers, and usually at the edges of gene conversion tracts. Furthermore, post-meiotic segregation tended to occur in markers that are isolated from other heterozygosities and preferentially at polymorphism types that are relatively uncommon in the yeast species. Conclusions Overall, our survey reveals the genome-wide characteristics of post-meiotic segregation. The results show that post-meiotic segregation is widespread in meiotic recombination and could be a significant determinant of allelic inheritance and allele frequencies at the population level.
Collapse
Affiliation(s)
- Eugenio Mancera
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
4
|
de Mayolo AA, Sunjevaric I, Reid R, Mortensen UH, Rothstein R, Lisby M. The rad52-Y66A allele alters the choice of donor template during spontaneous chromosomal recombination. DNA Repair (Amst) 2009; 9:23-32. [PMID: 19892607 DOI: 10.1016/j.dnarep.2009.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/30/2009] [Accepted: 10/03/2009] [Indexed: 11/30/2022]
Abstract
Spontaneous mitotic recombination is a potential source of genetic changes such as loss of heterozygosity and chromosome translocations, which may lead to genetic disease. In this study we have used a rad52 hyper-recombination mutant, rad52-Y66A, to investigate the process of spontaneous heteroallelic recombination in the yeast Saccharomyces cerevisiae. We find that spontaneous recombination has different genetic requirements, depending on whether the recombination event occurs between chromosomes or between chromosome and plasmid sequences. The hyper-recombination phenotype of the rad52-Y66A mutation is epistatic with deletion of MRE11, which is required for establishment of DNA damage-induced cohesion. Moreover, single-cell analysis of strains expressing YFP-tagged Rad52-Y66A reveals a close to wild-type frequency of focus formation, but with foci lasting 6 times longer. This result suggests that spontaneous DNA lesions that require recombinational repair occur at the same frequency in wild-type and rad52-Y66A cells, but that the recombination process is slow in rad52-Y66A cells. Taken together, we propose that the slow recombinational DNA repair in the rad52-Y66A mutant leads to a by-pass of the window-of-opportunity for sister chromatid recombination normally promoted by MRE11-dependent damage-induced cohesion thereby causing a shift towards interchromosomal recombination.
Collapse
Affiliation(s)
- Adriana Antúnez de Mayolo
- Department of Genetics & Development, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
5
|
Rad51-independent interchromosomal double-strand break repair by gene conversion requires Rad52 but not Rad55, Rad57, or Dmc1. Mol Cell Biol 2007; 28:897-906. [PMID: 18039855 DOI: 10.1128/mcb.00524-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Homologous recombination (HR) is critical for DNA double-strand break (DSB) repair and genome stabilization. In yeast, HR is catalyzed by the Rad51 strand transferase and its "mediators," including the Rad52 single-strand DNA-annealing protein, two Rad51 paralogs (Rad55 and Rad57), and Rad54. A Rad51 homolog, Dmc1, is important for meiotic HR. In wild-type cells, most DSB repair results in gene conversion, a conservative HR outcome. Because Rad51 plays a central role in the homology search and strand invasion steps, DSBs either are not repaired or are repaired by nonconservative single-strand annealing or break-induced replication mechanisms in rad51Delta mutants. Although DSB repair by gene conversion in the absence of Rad51 has been reported for ectopic HR events (e.g., inverted repeats or between plasmids), Rad51 has been thought to be essential for DSB repair by conservative interchromosomal (allelic) gene conversion. Here, we demonstrate that DSBs stimulate gene conversion between homologous chromosomes (allelic conversion) by >30-fold in a rad51Delta mutant. We show that Rad51-independent allelic conversion and break-induced replication occur independently of Rad55, Rad57, and Dmc1 but require Rad52. Unlike DSB-induced events, spontaneous allelic conversion was detected in both rad51Delta and rad52Delta mutants, but not in a rad51Delta rad52Delta double mutant. The frequencies of crossovers associated with DSB-induced gene conversion were similar in the wild type and the rad51Delta mutant, but discontinuous conversion tracts were fivefold more frequent and tract lengths were more widely distributed in the rad51Delta mutant, indicating that heteroduplex DNA has an altered structure, or is processed differently, in the absence of Rad51.
Collapse
|
6
|
Miller CA, Bill CA, Nickoloff JA. Characterization of palindromic loop mismatch repair tracts in mammalian cells. DNA Repair (Amst) 2004; 3:421-8. [PMID: 15010318 DOI: 10.1016/j.dnarep.2003.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2003] [Indexed: 01/03/2023]
Abstract
Single- and multi-base (loop) mismatches can arise in DNA by replication errors, during recombination, and by chemical modification of DNA. Single-base and loop mismatches of several nucleotides are efficiently repaired in mammalian cells by a nick-directed, MSH2-dependent mechanism. Larger loop mismatches (> or =12 bases) are repaired by an MSH2-independent mechanism. Prior studies have shown that 12- and 14-base palindromic loops are repaired with bias toward loop retention, and that repair bias is eliminated when five single-base mismatches flank the loop mismatch. Here we show that one single-base mismatch near a 12-base palindromic loop is sufficient to eliminate loop repair bias in wild-type, but not MSH2-defective mammalian cells. We also show that palindromic loop and single-base mismatches separated by 12 bases are repaired independently at least 10% of the time in wild-type cells, and at least 30% of the time in MSH2-defective cells. Palindromic loop and single-base mismatches separated by two bases were never repaired independently. These and other data indicate that loop repair tracts are variable in length. All tracts extend at least 2 bases, some extend <12 bases, and others >12 bases, on one side of the loop. These properties distinguish palindromic loop mismatch repair from the three known excision repair pathways: base excision repair which has one to six base tracts, nucleotide excision repair which has approximately 30 base tracts, and MSH2-dependent mismatch repair, which has tracts that extend for several hundred bases.
Collapse
Affiliation(s)
- Cheryl A Miller
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
7
|
Symington LS. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 2002; 66:630-70, table of contents. [PMID: 12456786 PMCID: PMC134659 DOI: 10.1128/mmbr.66.4.630-670.2002] [Citation(s) in RCA: 790] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.
Collapse
Affiliation(s)
- Lorraine S Symington
- Department of Microbiology and Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| |
Collapse
|
8
|
Kim PM, Paffett KS, Solinger JA, Heyer WD, Nickoloff JA. Spontaneous and double-strand break-induced recombination, and gene conversion tract lengths, are differentially affected by overexpression of wild-type or ATPase-defective yeast Rad54. Nucleic Acids Res 2002; 30:2727-35. [PMID: 12087154 PMCID: PMC117068 DOI: 10.1093/nar/gkf413] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2002] [Revised: 05/14/2002] [Accepted: 05/14/2002] [Indexed: 11/12/2022] Open
Abstract
Rad54 plays key roles in homologous recombination (HR) and double-strand break (DSB) repair in yeast, along with Rad51, Rad52, Rad55 and Rad57. Rad54 belongs to the Swi2/Snf2 family of DNA-stimulated ATPases. Rad51 nucleoprotein filaments catalyze DNA strand exchange and Rad54 augments this activity of Rad51. Mutations in the Rad54 ATPase domain (ATPase(-)) impair Rad54 function in vitro, sensitize yeast to killing by methylmethane sulfonate and reduce spontaneous gene conversion. We found that overexpression of ATPase(-) Rad54 reduced spontaneous direct repeat gene conversion and increased both spontaneous direct repeat deletion and spontaneous allelic conversion. Overexpression of ATPase(-) Rad54 decreased DSB-induced allelic conversion, but increased chromosome loss and DSB-dependent lethality. Thus, ATP hydrolysis by Rad54 contributes to genome stability by promoting high-fidelity DSB repair and suppressing spontaneous deletions. Overexpression of wild-type Rad54 did not alter DSB-induced HR levels, but conversion tract lengths were reduced. Interestingly, ATPase(-) Rad54 decreased overall HR levels and increased tract lengths. These tract length changes provide new in vivo evidence that Rad54 functions in the post-synaptic phase during recombinational repair of DSBs.
Collapse
Affiliation(s)
- Perry M Kim
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
9
|
Bill CA, Nickoloff JA. Spontaneous and ultraviolet light-induced direct repeat recombination in mammalian cells frequently results in repeat deletion. Mutat Res 2001; 487:41-50. [PMID: 11595407 DOI: 10.1016/s0921-8777(01)00101-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recombination is enhanced by transcription and by DNA damage caused by ultraviolet light (UV). Recombination between direct repeats can occur by gene conversion without an associated crossover, which maintains the gross repeat structure. There are several possible mechanisms that delete one repeat and the intervening sequences (gene conversion associated with a crossover, unequal sister chromatid exchange, and single-strand annealing). We examined transcription-enhanced spontaneous recombination, and UV-induced recombination between neomycin (neo) direct repeats. One neo gene was driven by the inducible MMTV promoter. Multiple (silent) markers in the second neo gene were used to map conversion tracts. These markers are thought to inhibit spontaneous recombination, and our data suggest that this inhibition is partially overcome by high level transcription. Recombination was stimulated by transcription and by UV doses of 6-12J/m(2), but not by 18J/m(2). About 70% of spontaneous and UV-induced products were deletions. In contrast, only 3% of DSB-induced products were deletions. We propose that these product spectra differ because spontaneous and UV-induced recombination is replication-dependent, whereas DSB-induced recombination is replication-independent.
Collapse
Affiliation(s)
- C A Bill
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, Albuquerque, NM 87131, USA
| | | |
Collapse
|
10
|
Kim PM, Allen C, Wagener BM, Shen Z, Nickoloff JA. Overexpression of human RAD51 and RAD52 reduces double-strand break-induced homologous recombination in mammalian cells. Nucleic Acids Res 2001; 29:4352-60. [PMID: 11691922 PMCID: PMC60192 DOI: 10.1093/nar/29.21.4352] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Double-strand breaks (DSBs) can be repaired by homologous recombination (HR) in mammalian cells, often resulting in gene conversion. RAD51 functions with RAD52 and other proteins to effect strand exchange during HR, forming heteroduplex DNA (hDNA) that is resolved by mismatch repair to yield a gene conversion tract. In mammalian cells RAD51 and RAD52 overexpression increase the frequency of spontaneous HR, and one study indicated that overexpression of mouse RAD51 enhances DSB-induced HR in Chinese hamster ovary (CHO) cells. We tested the effects of transient and stable overexpression of human RAD51 and/or human RAD52 on DSB-induced HR in CHO cells and in human cells. DSBs were targeted to chromosomal recombination substrates with I-SceI nuclease. In all cases, excess RAD51 and/or RAD52 reduced DSB-induced HR, contrasting with prior studies. These distinct results may reflect differences in recombination substrate structures or different levels of overexpression. Excess RAD51/RAD52 did not increase conversion tract lengths, nor were product spectra otherwise altered, indicating that excess HR proteins can have dominant negative effects on HR initiation, but do not affect later steps such as hDNA formation, mismatch repair or the resolution of intermediates.
Collapse
Affiliation(s)
- P M Kim
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
11
|
Corrette-Bennett SE, Mohlman NL, Rosado Z, Miret JJ, Hess PM, Parker BO, Lahue RS. Efficient repair of large DNA loops in Saccharomyces cerevisiae. Nucleic Acids Res 2001; 29:4134-43. [PMID: 11600702 PMCID: PMC60213 DOI: 10.1093/nar/29.20.4134] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Small looped mispairs are efficiently corrected by mismatch repair. The situation with larger loops is less clear. Repair activity on large loops has been reported as anywhere from very low to quite efficient. There is also uncertainty about how many loop repair activities exist and whether any are conserved. To help address these issues, we studied large loop repair in Saccharomyces cerevisiae using in vivo and in vitro assays. Transformation of heteroduplexes containing 1, 16 or 38 nt loops led to >90% repair for all three substrates. Repair of the 38 base loop occurred independently of mutations in key genes for mismatch repair (MR) and nucleotide excision repair (NER), unlike other reported loop repair functions in yeast. Correction of the 16 base loop was mostly independent of MR, indicating that large loop repair predominates for this size heterology. Similarities between mammalian and yeast large loop repair were suggested by the inhibitory effects of loop secondary structure and by the role of defined nicks on the relative proportions of loop removal and loop retention products. These observations indicate a robust large loop repair pathway in yeast, distinct from MR and NER, and conserved in mammals.
Collapse
Affiliation(s)
- S E Corrette-Bennett
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Box 986805, Omaha, NE 68198-6805, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Bill CA, Taghian DG, Duran WA, Nickoloff JA. Repair bias of large loop mismatches during recombination in mammalian cells depends on loop length and structure. Mutat Res 2001; 485:255-65. [PMID: 11267836 DOI: 10.1016/s0921-8777(01)00065-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Repair of loop mismatches was investigated in wild-type and mismatch binding-defective Chinese hamster ovary (CHO) cells. Loop mismatches were formed in vivo during extrachromosomal recombination between heteroallelic plasmid substrates. Recombination was expected to occur primarily by single-strand annealing (SSA), yielding 12- or 26-base nonpalindromic loop mismatches, and 12-, 26-, or 40-base palindromic loop mismatches. Nonpalindromic loops were repaired efficiently and with bias toward loop loss. In contrast, the 12-base palindromic loop was repaired with bias toward loop retention, indicating that repair bias depends on loop structure. Among the palindromic loops, repair bias was dependent on loop length, with bias shifting from loop retention to loop loss with increasing loop size. For both palindromic and nonpalindromic loops, repair efficiencies and biases were independent of the general (MSH/MLH) mismatch repair pathway. These results are discussed with respect to the maintenance of large nonpalindromic insertions, and of small and large palindromes, in eukaryotic genomes.
Collapse
Affiliation(s)
- C A Bill
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
13
|
Elliott B, Jasin M. Repair of double-strand breaks by homologous recombination in mismatch repair-defective mammalian cells. Mol Cell Biol 2001; 21:2671-82. [PMID: 11283247 PMCID: PMC86898 DOI: 10.1128/mcb.21.8.2671-2682.2001] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chromosomal double-strand breaks (DSBs) stimulate homologous recombination by several orders of magnitude in mammalian cells, including murine embryonic stem (ES) cells, but the efficiency of recombination decreases as the heterology between the repair substrates increases (B. Elliott, C. Richardson, J. Winderbaum, J. A. Nickoloff, and M. Jasin, Mol. Cell. Biol. 18:93-101, 1998). We have now examined homologous recombination in mismatch repair (MMR)-defective ES cells to investigate both the frequency of recombination and the outcome of events. Using cells with a targeted mutation in the msh2 gene, we found that the barrier to recombination between diverged substrates is relaxed for both gene targeting and intrachromosomal recombination. Thus, substrates with 1.5% divergence are 10-fold more likely to undergo DSB-promoted recombination in Msh2(-/-) cells than in wild-type cells. Although mutant cells can repair DSBs efficiently, examination of gene conversion tracts in recombinants demonstrates that they cannot efficiently correct mismatched heteroduplex DNA (hDNA) that is formed adjacent to the DSB. As a result, >20-fold more of the recombinants derived from mutant cells have uncorrected tracts compared with recombinants from wild-type cells. The results indicate that gene conversion repair of DSBs in mammalian cells frequently involves mismatch correction of hDNA rather than double-strand gap formation. In cells with MMR defects, therefore, aberrant recombinational repair may be an additional mechanism that contributes to genomic instability and possibly tumorigenesis.
Collapse
Affiliation(s)
- B Elliott
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | |
Collapse
|
14
|
Clikeman JA, Wheeler SL, Nickoloff JA. Efficient incorporation of large (>2 kb) heterologies into heteroduplex DNA: Pms1/Msh2-dependent and -independent large loop mismatch repair in Saccharomyces cerevisiae. Genetics 2001; 157:1481-91. [PMID: 11290705 PMCID: PMC1461601 DOI: 10.1093/genetics/157.4.1481] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA double-strand break (DSB) repair in yeast is effected primarily by gene conversion. Conversion can conceivably result from gap repair or from mismatch repair of heteroduplex DNA (hDNA) in recombination intermediates. Mismatch repair is normally very efficient, but unrepaired mismatches segregate in the next cell division, producing sectored colonies. Conversion of small heterologies (single-base differences or insertions <15 bp) in meiosis and mitosis involves mismatch repair of hDNA. The repair of larger loop mismatches in plasmid substrates or arising by replication slippage is inefficient and/or independent of Pms1p/Msh2p-dependent mismatch repair. However, large insertions convert readily (without sectoring) during meiotic recombination, raising the question of whether large insertions convert by repair of large loop mismatches or by gap repair. We show that insertions of 2.2 and 2.6 kbp convert efficiently during DSB-induced mitotic recombination, primarily by Msh2p- and Pms1p-dependent repair of large loop mismatches. These results support models in which Rad51p readily incorporates large heterologies into hDNA. We also show that large heterologies convert more frequently than small heterologies located the same distance from an initiating DSB and propose that this reflects Msh2-independent large loop-specific mismatch repair biased toward loop loss.
Collapse
Affiliation(s)
- J A Clikeman
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|
15
|
Clikeman JA, Khalsa GJ, Barton SL, Nickoloff JA. Homologous recombinational repair of double-strand breaks in yeast is enhanced by MAT heterozygosity through yKU-dependent and -independent mechanisms. Genetics 2001; 157:579-89. [PMID: 11156980 PMCID: PMC1461527 DOI: 10.1093/genetics/157.2.579] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are repaired by homologous recombination (HR) and nonhomologous end-joining (NHEJ). NHEJ in yeast chromosomes has been observed only when HR is blocked, as in rad52 mutants or in the absence of a homologous repair template. We detected yKu70p-dependent imprecise NHEJ at a frequency of approximately 0.1% in HR-competent Rad+ haploid cells. Interestingly, yku70 mutation increased DSB-induced HR between direct repeats by 1.3-fold in a haploid strain and by 1.5-fold in a MAT homozygous (a/a) diploid, but yku70 had no effect on HR in a MAT heterozygous (a/alpha) diploid. yku70 might increase HR because it eliminates the competing precise NHEJ (religation) pathway and/or because yKu70p interferes directly or indirectly with HR. Despite the yku70-dependent increase in a/a cells, HR remained 2-fold lower than in a/alpha cells. Cell survival was also lower in a/a cells and correlated with the reduction in HR. These results indicate that MAT heterozygosity enhances DSB-induced HR by yKu-dependent and -independent mechanisms, with the latter mechanism promoting cell survival. Surprisingly, yku70 strains survived a DSB slightly better than wild type. We propose that this reflects enhanced HR, not by elimination of precise NHEJ since this pathway produces viable products, but by elimination of yKu-dependent interference of HR.
Collapse
Affiliation(s)
- J A Clikeman
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
16
|
Weng YS, Xing D, Clikeman JA, Nickoloff JA. Transcriptional effects on double-strand break-induced gene conversion tracts. Mutat Res 2000; 461:119-32. [PMID: 11018585 DOI: 10.1016/s0921-8777(00)00043-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcription stimulates spontaneous homologous recombination, but prior studies have not investigated the effects of transcription on double-strand break (DSB)-induced recombination in yeast. We examined products of five ura3 direct repeat substrates in yeast using alleles that were transcribed at low or high levels. In each strain, recombination was stimulated by DSBs created in vivo at an HO site in one copy of ura3. Increasing transcription levels in donor or recipient alleles did not further stimulate DSB-induced recombination, nor did it alter the relative frequencies of conversion and deletion (pop-out) events. This result is consistent with the idea that transcription enhances spontaneous recombination by increasing initiation. Gene conversion tracts were measured using silent restriction fragment length polymorphisms (RFLPs) at approximately 100bp intervals. Transcription did not alter average tract lengths, but increased transcription in donor alleles increased both the frequency of promoter-proximal (5') unidirectional tracts and conversion of 5' markers. Increased transcription in recipient alleles increased the frequency of bidirectional tracts. We demonstrate that these effects are due to transcription per se, and not just transcription factor binding. These results suggest that transcription influences aspects of gene conversion after initiation, such as strand invasion and/or mismatch repair (MMR).
Collapse
Affiliation(s)
- Y S Weng
- Department of Cancer Biology, Harvard University, School of Public Health, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
17
|
Inbar O, Liefshitz B, Bitan G, Kupiec M. The relationship between homology length and crossing over during the repair of a broken chromosome. J Biol Chem 2000; 275:30833-8. [PMID: 10924495 DOI: 10.1074/jbc.c000133200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination can result in the transfer of genetic information from one DNA molecule to another (gene conversion). These events are often accompanied by a reciprocal exchange between the interacting molecules (termed "crossing over"). This association suggests that the two types of events could be mechanistically related. We have analyzed the repair, by homologous recombination, of a broken chromosome in yeast. We show that gene conversion can be uncoupled from crossing over when the length of homology of the interacting substrates is below a certain threshold. In addition, a minimal length of homology on each broken chromosomal arm is needed for crossing over. We also show that the coupling between gene conversion and crossing over is affected by the mismatch repair system; mutations in the MSH2 or MSH6 genes cause an increase in the crossing over observed for short alleles. Our results provide a mechanism to explain how chromosomal recombinational repair can take place without altering the stability of the genome.
Collapse
Affiliation(s)
- O Inbar
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | |
Collapse
|
18
|
Affiliation(s)
- J E Haber
- Brandeis University, Rosenstiel Center, Mailstop 029, Waltham, MA 02454-9110, USA.
| |
Collapse
|
19
|
Li J, Baker MD. Use of a small palindrome genetic marker to investigate mechanisms of double-strand-break repair in mammalian cells. Genetics 2000; 154:1281-9. [PMID: 10757769 PMCID: PMC1460998 DOI: 10.1093/genetics/154.3.1281] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We examined mechanisms of mammalian homologous recombination using a gene targeting assay in which the vector-borne region of homology to the chromosome bore small palindrome insertions that frequently escape mismatch repair when encompassed within heteroduplex DNA (hDNA). Our assay permitted the product(s) of each independent recombination event to be recovered for molecular analysis. The results revealed the following: (i) vector-borne double-strand break (DSB) processing usually did not yield a large double-strand gap (DSG); (ii) in 43% of the recombinants, the results were consistent with crossover at or near the DSB; and (iii) in the remaining recombinants, hDNA was an intermediate. The sectored (mixed) genotypes observed in 38% of the recombinants provided direct evidence for involvement of hDNA, while indirect evidence was obtained from the patterns of mismatch repair (MMR). Individual hDNA tracts were either long or short and asymmetric or symmetric on the one side of the DSB examined. Clonal analysis of the sectored recombinants revealed how vector-borne and chromosomal markers were linked in each strand of individual hDNA intermediates. As expected, vector-borne and chromosomal markers usually resided on opposite strands. However, in one recombinant, they were linked on the same strand. The results are discussed with particular reference to the double-strand-break repair (DSBR) model of recombination.
Collapse
Affiliation(s)
- J Li
- Department of Molecular Biology and Genetics and Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
20
|
Nickoloff JA, Sweetser DB, Clikeman JA, Khalsa GJ, Wheeler SL. Multiple heterologies increase mitotic double-strand break-induced allelic gene conversion tract lengths in yeast. Genetics 1999; 153:665-79. [PMID: 10511547 PMCID: PMC1460766 DOI: 10.1093/genetics/153.2.665] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spontaneous and double-strand break (DSB)-induced allelic recombination in yeast was investigated in crosses between ura3 heteroalleles inactivated by an HO site and a +1 frameshift mutation, with flanking markers defining a 3.4-kbp interval. In some crosses, nine additional phenotypically silent RFLP mutations were present at approximately 100-bp intervals. Increasing heterology from 0.2 to 1% in this interval reduced spontaneous, but not DSB-induced, recombination. For DSB-induced events, 75% were continuous tract gene conversions without a crossover in this interval; discontinuous tracts and conversions associated with a crossover each comprised approximately 7% of events, and 10% also converted markers in unbroken alleles. Loss of heterozygosity was seen for all markers centromere distal to the HO site in 50% of products; such loss could reflect gene conversion, break-induced replication, chromosome loss, or G2 crossovers. Using telomere-marked strains we determined that nearly all allelic DSB repair occurs by gene conversion. We further show that most allelic conversion results from mismatch repair of heteroduplex DNA. Interestingly, markers shared between the sparsely and densely marked interval converted at higher rates in the densely marked interval. Thus, the extra markers increased gene conversion tract lengths, which may reflect mismatch repair-induced recombination, or a shift from restoration- to conversion-type repair.
Collapse
Affiliation(s)
- J A Nickoloff
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
21
|
Inbar O, Kupiec M. Homology search and choice of homologous partner during mitotic recombination. Mol Cell Biol 1999; 19:4134-42. [PMID: 10330153 PMCID: PMC104372 DOI: 10.1128/mcb.19.6.4134] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/1999] [Accepted: 03/08/1999] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination is an important DNA repair mechanism in vegetative cells. During the repair of double-strand breaks, genetic information is transferred between the interacting DNA sequences (gene conversion). This event is often accompanied by a reciprocal exchange between the homologous molecules, resulting in crossing over. The repair of DNA damage by homologous recombination with repeated sequences dispersed throughout the genome might result in chromosomal aberrations or in the inactivation of genes. It is therefore important to understand how the suitable homologous partner for recombination is chosen. We have developed a system in the yeast Saccharomyces cerevisiae that can monitor the fate of a chromosomal double-strand break without the need to select for recombinants. The broken chromosome is efficiently repaired by recombination with one of two potential partners located elsewhere in the genome. One of the partners has homology to the broken ends of the chromosome, whereas the other is homologous to sequences distant from the break. Surprisingly, a large proportion of the repair is carried out by recombination involving the sequences distant from the broken ends. This repair is very efficient, despite the fact that it requires the processing of a large chromosomal region flanking the break. Our results imply that the homology search involves extensive regions of the broken chromosome and is not carried out exclusively by sequences adjacent to the double-strand break. We show that the mechanism that governs the choice of homologous partners is affected by the length and sequence divergence of the interacting partners, as well as by mutations in the mismatch repair genes. We present a model to explain how the suitable homologous partner is chosen during recombinational repair. The model provides a mechanism that may guard the integrity of the genome by preventing recombination between dispersed repeated sequences.
Collapse
Affiliation(s)
- O Inbar
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
22
|
Abstract
In the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin mu-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal mu-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal mu-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process:The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting. In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an "end" bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence. Formation of hDNA was frequently associated with gene targeting and, in most cases, began approximately 645 bp from the DSB and could encompass a distance of at least 1469 bp. The hDNA was efficiently repaired prior to DNA replication. The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism.
Collapse
Affiliation(s)
- P Ng
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
23
|
Moore H, Greenwell PW, Liu CP, Arnheim N, Petes TD. Triplet repeats form secondary structures that escape DNA repair in yeast. Proc Natl Acad Sci U S A 1999; 96:1504-9. [PMID: 9990053 PMCID: PMC15496 DOI: 10.1073/pnas.96.4.1504] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several human neurodegenerative diseases result from expansion of CTG/CAG or CGG/CCG triplet repeats. The finding that single-stranded CNG repeats form hairpin-like structures in vitro has led to the hypothesis that DNA secondary structure formation is an important component of the expansion mechanism. We show that single-stranded DNA loops containing 10 CTG/CAG or CGG/CCG repeats are inefficiently repaired during meiotic recombination in Saccharomyces cerevisiae. Comparisons of the repair of DNA loops with palindromic and nonpalindromic sequences suggest that this inefficient repair reflects the ability of these sequences to form hairpin structures in vivo.
Collapse
Affiliation(s)
- H Moore
- Department of Biology, Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | | | | | | | | |
Collapse
|
24
|
Bill CA, Duran WA, Miselis NR, Nickoloff JA. Efficient repair of all types of single-base mismatches in recombination intermediates in Chinese hamster ovary cells. Competition between long-patch and G-T glycosylase-mediated repair of G-T mismatches. Genetics 1998; 149:1935-43. [PMID: 9691048 PMCID: PMC1460289 DOI: 10.1093/genetics/149.4.1935] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Repair of all 12 single-base mismatches in recombination intermediates was investigated in Chinese hamster ovary cells. Extrachromosomal recombination was stimulated by double-strand breaks in regions of shared homology. Recombination was predicted to occur via single-strand annealing, yielding heteroduplex DNA (hDNA) with a single mismatch. Nicks were expected on opposite strands flanking hDNA, equidistant from the mismatch. Unlike studies of covalently closed artificial hDNA substrates, all mismatches were efficiently repaired, consistent with a nick-driven repair process. The average repair efficiency for all mispairs was 92%, with no significant differences among mispairs. There was significant strand-independent repair of G-T --> G-C, with a slightly greater bias in a CpG context. Repair of C-A was also biased (toward C-G), but no A-C --> G-C bias was found, a possible sequence context effect. No other mismatches showed evidence of biased repair, but among hetero-mismatches, the trend was toward retention of C or G vs. A or T. Repair of both T-T and G-T mismatches was much less efficient in mismatch repair-deficient cells (approximately 25%), and the residual G-T repair was completely biased toward G-C. Our data indicate that single-base mismatches in recombination intermediates are substrates for at least two competing repair systems.
Collapse
Affiliation(s)
- C A Bill
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
25
|
Taghian DG, Hough H, Nickoloff JA. Biased short tract repair of palindromic loop mismatches in mammalian cells. Genetics 1998; 148:1257-68. [PMID: 9539440 PMCID: PMC1460022 DOI: 10.1093/genetics/148.3.1257] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mismatch repair of palindromic loops in the presence or absence of single-base mismatches was investigated in wild-type and mismatch-binding defective mutant Chinese hamster ovary cells. Recombination intermediates with a maximum heteroduplex DNA (hDNA) region of 697 bp contained a centrally located, phenotypically silent 12-base palindromic loop mismatch, and/or five single-base mismatches. In wild-type cells, both loops and single-base mismatches were efficiently repaired (80-100%). When no other mismatches were present in hDNA, loops were retained with a 1.6-1.9:1 bias. However, this bias was eliminated when single-base mismatches were present, perhaps because single-base mismatches signal nick-directed repair. In the multiple marker crosses, most repair tracts were long and continuous, with preferential loss of markers in cis to proximal nicks, consistent with nicks directing most repair in this situation. However, approximately 25% of repair tracts were discontinuous as a result of loop-specific repair, or from segregation or short tract repair of single-base mismatches. In mutant cells, single-base mismatches were repaired less frequently, but the loop was still repaired efficiently and with bias toward loop retention, indicating that the defect in these cells does not affect loop-specific repair. Repair tracts in products from mutant cells showed a wide variety of mosaic patterns reflecting short regions of repair and segregation consistent with reduced nick-directed repair. In mutant cells, single-base mismatches were repaired more efficiently in the presence of the loop than in its absence, a likely consequence of corepair initiated at the loop.
Collapse
Affiliation(s)
- D G Taghian
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|