1
|
Cloning of Maize TED Transposon into Escherichia coli Reveals the Polychromatic Sequence Landscape of Refractorily Propagated Plasmids. Int J Mol Sci 2022; 23:ijms231911993. [PMID: 36233292 PMCID: PMC9569675 DOI: 10.3390/ijms231911993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
MuDR, the founder member of the Mutator superfamily and its MURA transcripts, has been identified as toxic sequences to Escherichia coli (E. coli), which heavily hindered the elucidation of the biochemical features of MURA transposase and confined the broader application of the Mutator system in other organisms. To harness less constrained systems as alternatives, we attempted to clone TED and Jittery, two recently isolated autonomous Mutator-like elements (MULEs) from maize, respectively. Their full-length transcripts and genomic copies are successfully cloned when the incubation time for bacteria to recover from heat shock is extended appropriately prior to plating. However, during their proliferation in E. coli, TED transformed plasmids are unstable, as evidenced by derivatives from which frameshift, deletion mutations, or IS transposon insertions are readily detected. Our results suggest that neither leaky expression of the transposase nor the presence of terminal inverse repeats (TIRs) are responsible for the cloning barriers, which were once ascribed to the presence of the Shine–Dalgarno-like sequence. Instead, the internal sequence of TED (from 1250 to 2845 bp), especially the exons in this region, was the most likely causer. The findings provide novel insights into the property and function of the Mutator superfamily and shed light on the dissection of toxic effects on cloning from MULEs.
Collapse
|
2
|
Labroo MR, Studer AJ, Rutkoski JE. Heterosis and Hybrid Crop Breeding: A Multidisciplinary Review. Front Genet 2021; 12:643761. [PMID: 33719351 PMCID: PMC7943638 DOI: 10.3389/fgene.2021.643761] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
Although hybrid crop varieties are among the most popular agricultural innovations, the rationale for hybrid crop breeding is sometimes misunderstood. Hybrid breeding is slower and more resource-intensive than inbred breeding, but it allows systematic improvement of a population by recurrent selection and exploitation of heterosis simultaneously. Inbred parental lines can identically reproduce both themselves and their F1 progeny indefinitely, whereas outbred lines cannot, so uniform outbred lines must be bred indirectly through their inbred parents to harness heterosis. Heterosis is an expected consequence of whole-genome non-additive effects at the population level over evolutionary time. Understanding heterosis from the perspective of molecular genetic mechanisms alone may be elusive, because heterosis is likely an emergent property of populations. Hybrid breeding is a process of recurrent population improvement to maximize hybrid performance. Hybrid breeding is not maximization of heterosis per se, nor testing random combinations of individuals to find an exceptional hybrid, nor using heterosis in place of population improvement. Though there are methods to harness heterosis other than hybrid breeding, such as use of open-pollinated varieties or clonal propagation, they are not currently suitable for all crops or production environments. The use of genomic selection can decrease cycle time and costs in hybrid breeding, particularly by rapidly establishing heterotic pools, reducing testcrossing, and limiting the loss of genetic variance. Open questions in optimal use of genomic selection in hybrid crop breeding programs remain, such as how to choose founders of heterotic pools, the importance of dominance effects in genomic prediction, the necessary frequency of updating the training set with phenotypic information, and how to maintain genetic variance and prevent fixation of deleterious alleles.
Collapse
Affiliation(s)
| | | | - Jessica E. Rutkoski
- Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| |
Collapse
|
3
|
Xue W, Anderson SN, Wang X, Yang L, Crisp PA, Li Q, Noshay J, Albert PS, Birchler JA, Bilinski P, Stitzer MC, Ross-Ibarra J, Flint-Garcia S, Chen X, Springer NM, Doebley JF. Hybrid Decay: A Transgenerational Epigenetic Decline in Vigor and Viability Triggered in Backcross Populations of Teosinte with Maize. Genetics 2019; 213:143-160. [PMID: 31320409 PMCID: PMC6727801 DOI: 10.1534/genetics.119.302378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022] Open
Abstract
In the course of generating populations of maize with teosinte chromosomal introgressions, an unusual sickly plant phenotype was noted in individuals from crosses with two teosinte accessions collected near Valle de Bravo, Mexico. The plants of these Bravo teosinte accessions appear phenotypically normal themselves and the F1 plants appear similar to typical maize × teosinte F1s. However, upon backcrossing to maize, the BC1 and subsequent generations display a number of detrimental characteristics including shorter stature, reduced seed set, and abnormal floral structures. This phenomenon is observed in all BC individuals and there is no chromosomal segment linked to the sickly plant phenotype in advanced backcross generations. Once the sickly phenotype appears in a lineage, normal plants are never again recovered by continued backcrossing to the normal maize parent. Whole-genome shotgun sequencing reveals a small number of genomic sequences, some with homology to transposable elements, that have increased in copy number in the backcross populations. Transcriptome analysis of seedlings, which do not have striking phenotypic abnormalities, identified segments of 18 maize genes that exhibit increased expression in sickly plants. A de novo assembly of transcripts present in plants exhibiting the sickly phenotype identified a set of 59 upregulated novel transcripts. These transcripts include some examples with sequence similarity to transposable elements and other sequences present in the recurrent maize parent (W22) genome as well as novel sequences not present in the W22 genome. Genome-wide profiles of gene expression, DNA methylation, and small RNAs are similar between sickly plants and normal controls, although a few upregulated transcripts and transposable elements are associated with altered small RNA or methylation profiles. This study documents hybrid incompatibility and genome instability triggered by the backcrossing of Bravo teosinte with maize. We name this phenomenon "hybrid decay" and present ideas on the mechanism that may underlie it.
Collapse
Affiliation(s)
- Wei Xue
- College of Agronomy, Shenyang Agricultural University, 110866 Liaoning Province, China
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Sarah N Anderson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Xufeng Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, 518060 Guangdong Province, China
| | - Liyan Yang
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
- Life Science College, Shanxi Normal University, 041004 Shanxi Province, China
| | - Peter A Crisp
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Qing Li
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Jaclyn Noshay
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Patrice S Albert
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
| | - Paul Bilinski
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Michelle C Stitzer
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Sherry Flint-Garcia
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Agricultural Research Service, United States Department of Agriculture, Columbia, Missouri 65211
| | - Xuemei Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, 518060 Guangdong Province, China
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - John F Doebley
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
4
|
Stitzer MC, Ross-Ibarra J. Maize domestication and gene interaction. THE NEW PHYTOLOGIST 2018; 220:395-408. [PMID: 30035321 DOI: 10.1111/nph.15350] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/05/2018] [Indexed: 05/24/2023]
Abstract
Contents Summary 395 I. Introduction 395 II. The genetic basis of maize domestication 396 III. The tempo of maize domestication 401 IV. Genetic interactions and selection during maize domestication 401 V. Gene networks of maize domestication alleles 404 VI. Implications of gene interactions on evolution and selection404 VII. Conclusions 405 Acknowledgements 405 References 405 SUMMARY: Domestication is a tractable system for following evolutionary change. Under domestication, wild populations respond to shifting selective pressures, resulting in adaptation to the new ecological niche of cultivation. Owing to the important role of domesticated crops in human nutrition and agriculture, the ancestry and selection pressures transforming a wild plant into a domesticate have been extensively studied. In Zea mays, morphological, genetic and genomic studies have elucidated how a wild plant, the teosinte Z. mays subsp. parviglumis, was transformed into the domesticate Z. mays subsp. mays. Five major morphological differences distinguish these two subspecies, and careful genetic dissection has pinpointed the molecular changes responsible for several of these traits. But maize domestication was a consequence of more than just five genes, and regions throughout the genome contribute. The impacts of these additional regions are contingent on genetic background, both the interactions between alleles of a single gene and among alleles of the multiple genes that modulate phenotypes. Key genetic interactions include dominance relationships, epistatic interactions and pleiotropic constraint, including how these variants are connected in gene networks. Here, we review the role of gene interactions in generating the dramatic phenotypic evolution seen in the transition from teosinte to maize.
Collapse
Affiliation(s)
- Michelle C Stitzer
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
- Center for Population Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
- Center for Population Biology, University of California, Davis, Davis, CA, 95616, USA
- Genome Center, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
5
|
Caldu-Primo JL, Mastretta-Yanes A, Wegier A, Piñero D. Finding a Needle in a Haystack: Distinguishing Mexican Maize Landraces Using a Small Number of SNPs. Front Genet 2017; 8:45. [PMID: 28458682 PMCID: PMC5394175 DOI: 10.3389/fgene.2017.00045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/29/2017] [Indexed: 11/20/2022] Open
Abstract
In Mexico's territory, the center of origin and domestication of maize (Zea mays), there is a large phenotypic diversity of this crop. This diversity has been classified into “landraces.” Previous studies have reported that genomic variation in Mexican maize is better explained by environmental factors, particularly those related with altitude, than by landrace. Still, landraces are extensively used by agronomists, who recognize them as stable and discriminatory categories for the classification of samples. In order to investigate the genomic foundation of maize landraces, we analyzed genomic data (35,909 SNPs from Illumina MaizeSNP50 BeadChip) obtained from 50 samples representing five maize landraces (Comiteco, Conejo, Tehua, Zapalote Grande, and Zapalote Chico), and searched for markers suitable for landrace assignment. Landrace clusters could not be identified taking all the genomic information, but they become manifest taking only a subset of SNPs with high FST among landraces. Discriminant analysis of principal components was conducted to classify samples using SNP data. Two classification analyses were done, first classifying samples by landrace and then by altitude category. Through this classification method, we identified 20 landrace-informative SNPs and 14 altitude-informative SNPs, with only 6 SNPs in common for both analyses. These results show that Mexican maize phenotypic diversity can be classified in landraces using a small number of genomic markers, given the fact that landrace genomic diversity is influenced by environmental factors as well as artificial selection due to bio-cultural practices.
Collapse
Affiliation(s)
- Jose L Caldu-Primo
- Laboratorio de Genética de la Conservación, Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad UniversitariaCoyoacán, Mexico
| | - Alicia Mastretta-Yanes
- CONACYT/CONABIO, Comisión Nacional para el Conocimiento y Uso de la BiodiversidadTlalpan, Mexico
| | - Ana Wegier
- Laboratorio de Genética de la Conservación, Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad UniversitariaCoyoacán, Mexico
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad UniversitariaCoyoacán, Mexico
| |
Collapse
|
6
|
Weber N, Halpin C, Hannah LC, Jez JM, Kough J, Parrott W. Editor's choice: Crop genome plasticity and its relevance to food and feed safety of genetically engineered breeding stacks. PLANT PHYSIOLOGY 2012; 160:1842-53. [PMID: 23060369 PMCID: PMC3510115 DOI: 10.1104/pp.112.204271] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/02/2012] [Indexed: 05/22/2023]
Affiliation(s)
- Natalie Weber
- Pioneer Hi-Bred International, Wilmington, Delaware 19880, USA
| | | | | | | | | | | |
Collapse
|
7
|
Fernandes J, Dong Q, Schneider B, Morrow DJ, Nan GL, Brendel V, Walbot V. Genome-wide mutagenesis of Zea mays L. using RescueMu transposons. Genome Biol 2004; 5:R82. [PMID: 15461800 PMCID: PMC545602 DOI: 10.1186/gb-2004-5-10-r82] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 05/28/2004] [Accepted: 08/05/2004] [Indexed: 01/21/2023] Open
Abstract
Derived from the maize Mu1 transposon, RescueMu provides strategies for maize gene discovery and mutant phenotypic analysis. 9.92 Mb of gene-enriched sequences next to RescueMu insertion sites were co-assembled with expressed sequence tags and analyzed. Multiple plasmid recoveries identified probable germinal insertions and screening of RescueMu plasmid libraries identified plants containing probable germinal insertions. Although frequently recovered parental insertions and insertion hotspots reduce the efficiency of gene discovery per plasmid, RescueMu targets a large variety of genes and produces knockout mutants.
Collapse
Affiliation(s)
- John Fernandes
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Qunfeng Dong
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Bret Schneider
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Darren J Morrow
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Guo-Ling Nan
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Volker Brendel
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Virginia Walbot
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Serratos-Hernández JA, Islas-Gutiérrez F, Buendía-Rodríguez E, Berthaud J. Gene flow scenarios with transgenic maize in Mexico. ENVIRONMENTAL BIOSAFETY RESEARCH 2004; 3:149-57. [PMID: 15901097 DOI: 10.1051/ebr:2004013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Maize diversity is widespread in Mexico and it has been stewarded by campesinos in small communities until the present. With the arrival of transgenic maize, the objective of this study is to analyze possible scenarios that could result if genetically modified maize were not regulated and openly available in Mexico. By applying a simple logistic model based on the conditions of maize production in Mexico, the dispersion of transgenic maize in different situations within fields of farmers is described. In traditional open systems of freely exchanged seed within communities it is concluded that the most likely outcome of GM maize release is the incorporation of transgenes in the genome of Mexican germplasm and possibly in that of teosinte.
Collapse
|
9
|
Rudenko GN, Walbot V. Expression and post-transcriptional regulation of maize transposable element MuDR and its derivatives. THE PLANT CELL 2001; 13:553-70. [PMID: 11251096 PMCID: PMC135511 DOI: 10.1105/tpc.13.3.553] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2000] [Accepted: 01/18/2001] [Indexed: 05/18/2023]
Abstract
The transposition of Mu elements underlying Mutator activity in maize requires a transcriptionally active MuDR element. Despite variation in MuDR copy number and RNA levels in Mutator lines, transposition events are consistently late in plant development, and Mu excision frequencies are similar. Here, we report previously unsuspected and ubiquitous MuDR homologs that produce both RNA and protein. MuDR transcript levels are proportional to MuDR copy number, and homolog transcript levels increase in active Mutator lines. A subset of homologs exhibits constitutive transcription in MuDR(-) and epigenetically silenced MuDR lines, suggesting independent transcriptional regulation. Surprisingly, immunodetection demonstrated nearly invariant levels of MuDR and homolog protein products in all tested Mutator and non-Mutator stocks. These results suggest a strict control over protein production, which might explain the uniform excision frequency of Mu elements. Moreover, the nonfunctional proteins encoded by homologs may negatively regulate Mutator activity and represent part of the host defense against this transposon family.
Collapse
MESH Headings
- Base Sequence
- DNA Replication
- DNA Transposable Elements
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Regulator
- Mutation
- Phylogeny
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- Pollen
- RNA Processing, Post-Transcriptional/genetics
- RNA, Plant/biosynthesis
- RNA, Plant/genetics
- RNA, Plant/isolation & purification
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
- Zea mays/genetics
- Zea mays/metabolism
Collapse
Affiliation(s)
- G N Rudenko
- Department of Biological Sciences, 385 Serra Mall, Stanford University, Stanford, California 94305-5020, USA.
| | | |
Collapse
|
10
|
Casa AM, Brouwer C, Nagel A, Wang L, Zhang Q, Kresovich S, Wessler SR. The MITE family heartbreaker (Hbr): molecular markers in maize. Proc Natl Acad Sci U S A 2000; 97:10083-9. [PMID: 10963671 PMCID: PMC27704 DOI: 10.1073/pnas.97.18.10083] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2000] [Indexed: 11/18/2022] Open
Abstract
Transposable elements are ubiquitous in plant genomes, where they frequently comprise the majority of genomic DNA. The maize genome, which is believed to be structurally representative of large plant genomes, contains single genes or small gene islands interspersed with much longer blocks of retrotransposons. Given this organization, it would be desirable to identify molecular markers preferentially located in genic regions. In this report, the features of a newly described family of miniature inverted repeat transposable elements (MITEs) (called Heartbreaker), including high copy number and polymorphism, stability, and preference for genic regions, have been exploited in the development of a class of molecular markers for maize. To this end, a modification of the AFLP procedure called transposon display was used to generate and display hundreds of genomic fragments anchored in Hbr elements. An average of 52 markers were amplified for each primer combination tested. In all, 213 polymorphic fragments were reliably scored and mapped in 100 recombinant inbred lines derived from a cross between the maize inbreds B73 x Mo17. In this mapping population, Hbr markers are distributed evenly across the 10 maize chromosomes. This procedure should be of general use in the development of markers for other MITE families in maize and in other plant and animal species where MITEs have been identified.
Collapse
Affiliation(s)
- A M Casa
- Departments of Botany and Genetics, The University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Transposon mutagenesis facilitates gene discovery by tagging genes for cloning. New genomics projects are now cataloging transposon insertion sites to define all maize genes. Once identified, transposon insertions are 'hot spots' for generating new alleles that are useful in functional studies.
Collapse
Affiliation(s)
- V Walbot
- Department of Biological Sciences, 385 Serra Mall, Stanford University, Stanford, 94305-5020, USA.
| |
Collapse
|