1
|
Vijayraghavan S, Kozmin SG, Strope PK, Skelly DA, Magwene PM, Dietrich FS, McCusker JH. RNA viruses, M satellites, chromosomal killer genes, and killer/nonkiller phenotypes in the 100-genomes S. cerevisiae strains. G3 (BETHESDA, MD.) 2023; 13:jkad167. [PMID: 37497616 PMCID: PMC10542562 DOI: 10.1093/g3journal/jkad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
We characterized previously identified RNA viruses (L-A, L-BC, 20S, and 23S), L-A-dependent M satellites (M1, M2, M28, and Mlus), and M satellite-dependent killer phenotypes in the Saccharomyces cerevisiae 100-genomes genetic resource population. L-BC was present in all strains, albeit in 2 distinct levels, L-BChi and L-BClo; the L-BC level is associated with the L-BC genotype. L-BChi, L-A, 20S, 23S, M1, M2, and Mlus (M28 was absent) were in fewer strains than the similarly inherited 2µ plasmid. Novel L-A-dependent phenotypes were identified. Ten M+ strains exhibited M satellite-dependent killing (K+) of at least 1 of the naturally M0 and cured M0 derivatives of the 100-genomes strains; in these M0 strains, sensitivities to K1+, K2+, and K28+ strains varied. Finally, to complement our M satellite-encoded killer toxin analysis, we assembled the chromosomal KHS1 and KHR1 killer genes and used naturally M0 and cured M0 derivatives of the 100-genomes strains to assess and characterize the chromosomal killer phenotypes.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stanislav G Kozmin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Pooja K Strope
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Daniel A Skelly
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Paul M Magwene
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Fred S Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - John H McCusker
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
2
|
Abstract
Fungi are prone to phenotypic instability, that is, the vegetative phase of these organisms, be they yeasts or molds, undergoes frequent switching between two or more behaviors, often with different morphologies, but also sometime having different physiologies without any obvious morphological outcome. In the context of industrial utilization of fungi, this can have a negative impact on the maintenance of strains and/or on their productivity. Instabilities have been shown to result from various mechanisms, either genetic or epigenetic. This chapter will review different types of instabilities and discuss some lesser-known ones, mostly in filamentous fungi, while it will direct readers to additional literature in the case of well-known phenomena such as the amyloid prions or fungal senescence. It will present in depth the "white/opaque" switch of Candida albicans and the "crippled growth" degeneration of the model fungus Podospora anserina. These are two of the most thoroughly studied epigenetic phenotypic switches. I will also discuss the "sectors" presented by many filamentous ascomycetes, for which a prion-based model exists but is not demonstrated. Finally, I will also describe intriguing examples of phenotypic instability for which an explanation has yet to be provided.
Collapse
|
3
|
[KIL-d] Protein Element Confers Antiviral Activity via Catastrophic Viral Mutagenesis. Mol Cell 2015; 60:651-60. [PMID: 26590718 DOI: 10.1016/j.molcel.2015.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/24/2015] [Accepted: 10/12/2015] [Indexed: 02/05/2023]
Abstract
Eukaryotic cells are targeted by pathogenic viruses and have developed cell defense mechanisms against viral infection. In yeast, the cellular extrachromosomal genetic element [KIL-d] alters killer activity of M double-stranded RNA killer virus and confers cell resistance against the killer virus. However, its underlying mechanism and the molecular nature of [KIL-d] are unknown. Here, we demonstrate that [KIL-d] is a proteinaceous prion-like aggregate with non-Mendelian cytoplasmic transmission. Deep sequencing analyses revealed that [KIL-d] selectively increases the rate of de novo mutation in the killer toxin gene of the viral genome, producing yeast harboring a defective mutant killer virus with a selective growth advantage over those with WT killer virus. These results suggest that a prion-like [KIL-d] element reprograms the viral replication machinery to induce mutagenesis and genomic inactivation via the long-hypothesized mechanism of "error catastrophe." The findings also support a role for prion-like protein aggregates in cellular defense and adaptation.
Collapse
|
4
|
Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]. Nat Struct Mol Biol 2009; 16:598-605. [PMID: 19491937 DOI: 10.1038/nsmb.1617] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 05/11/2009] [Indexed: 11/08/2022]
Abstract
Prions are proteins that can access multiple conformations, at least one of which is beta-sheet rich, infectious and self-perpetuating in nature. These infectious proteins show several remarkable biological activities, including the ability to form multiple infectious prion conformations, also known as strains or variants, encoding unique biological phenotypes, and to establish and overcome prion species (transmission) barriers. In this Perspective, we highlight recent studies of the yeast prion [PSI(+)], using various biochemical and structural methods, that have begun to illuminate the molecular mechanisms by which self-perpetuating prions encipher such biological activities. We also discuss several aspects of prion conformational change and structure that remain either unknown or controversial, and we propose approaches to accelerate the understanding of these enigmatic, infectious conformers.
Collapse
|
5
|
Abstract
Changes in protein conformation drive most biological processes, but none have seized the imagination of scientists and the public alike as have the self-replicating conformations of prions. Prions transmit lethal neurodegenerative diseases by means of the food chain. However, self-replicating protein conformations can also constitute molecular memories that transmit genetic information. Here, we showcase definitive evidence for the prion hypothesis and discuss examples in which prion-encoded heritable information has been harnessed during evolution to confer selective advantages. We then describe situations in which prion-enciphered events might have essential roles in long-term memory formation, transcriptional memory and genome-wide expression patterns.
Collapse
Affiliation(s)
- James Shorter
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
6
|
Abstract
Fungal prions are fascinating protein-based genetic elements. They alter cellular phenotypes through self-perpetuating changes in protein conformation and are cytoplasmically partitioned from mother cell to daughter. The four prions of Saccharomyces cerevisiae and Podospora anserina affect diverse biological processes: translational termination, nitrogen regulation, inducibility of other prions, and heterokaryon incompatibility. They share many attributes, including unusual genetic behaviors, that establish criteria to identify new prions. Indeed, other fungal traits that baffled microbiologists meet some of these criteria and might be caused by prions. Recent research has provided notable insight about how prions are induced and propagated and their many biological roles. The ability to become a prion appears to be evolutionarily conserved in two cases. [PSI(+)] provides a mechanism for genetic variation and phenotypic diversity in response to changing environments. All available evidence suggests that prions epigenetically modulate a wide variety of fundamental biological processes, and many await discovery.
Collapse
Affiliation(s)
- Susan M Uptain
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA.
| | | |
Collapse
|
7
|
Volkov KV, Aksenova AY, Soom MJ, Osipov KV, Svitin AV, Kurischko C, Shkundina IS, Ter-Avanesyan MD, Inge-Vechtomov SG, Mironova LN. Novel non-Mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae. Genetics 2002; 160:25-36. [PMID: 11805042 PMCID: PMC1461950 DOI: 10.1093/genetics/160.1.25] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two cytoplasmically inherited determinants related by their manifestation to the control of translation accuracy were previously described in yeast. Cells carrying one of them, [PSI(+)], display a nonsense suppressor phenotype and contain a prion form of the Sup35 protein. Another element, [PIN(+)], determines the probability of de novo generation of [PSI(+)] and results from a prion form of several proteins, which can be functionally unrelated to Sup35p. Here we describe a novel nonchromosomal determinant related to the SUP35 gene. This determinant, designated [ISP(+)], was identified as an antisuppressor of certain sup35 mutations. We observed its loss upon growth on guanidine hydrochloride and subsequent spontaneous reappearance with high frequency. The reversible curability of [ISP(+)] resembles the behavior of yeast prions. However, in contrast to known prions, [ISP(+)] does not depend on the chaperone protein Hsp104. Though manifestation of both [ISP(+)] and [PSI(+)] is related to the SUP35 gene, the maintenance of [ISP(+)] does not depend on the prionogenic N-terminal domain of Sup35p and Sup35p is not aggregated in [ISP(+)] cells, thus ruling out the possibility that [ISP(+)] is a specific form of [PSI(+)]. We hypothesize that [ISP(+)] is a novel prion involved in the control of translation accuracy in yeast.
Collapse
Affiliation(s)
- Kirill V Volkov
- Department of Genetics, St. Petersburg State University, St. Petersburg 199034, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tallóczy Z, Mazar R, Georgopoulos DE, Ramos F, Leibowitz MJ. The [KIL-d] element specifically regulates viral gene expression in yeast. Genetics 2000; 155:601-9. [PMID: 10835384 PMCID: PMC1461128 DOI: 10.1093/genetics/155.2.601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The cytoplasmically inherited [KIL-d] element epigenetically regulates killer virus gene expression in Saccharomyces cerevisiae. [KIL-d] results in variegated defects in expression of the M double-stranded RNA viral segment in haploid cells that are "healed" in diploids. We report that the [KIL-d] element is spontaneously lost with a frequency of 10(-4)-10(-5) and reappears with variegated phenotypic expression with a frequency of > or =10(-3). This high rate of loss and higher rate of reappearance is unlike any known nucleic acid replicon but resembles the behavior of yeast prions. However, [KIL-d] is distinct from the known yeast prions in its relative guanidinium hydrochloride incurability and independence of Hsp104 protein for its maintenance. Despite its transmissibility by successive cytoplasmic transfers, multiple cytoplasmic nucleic acids have been proven not to carry the [KIL-d] trait. [KIL-d] epigenetically regulates the expression of the M double-stranded RNA satellite virus genome, but fails to alter the expression of M cDNA. This specificity remained even after a cycle of mating and meiosis. Due to its unique genetic properties and viral RNA specificity, [KIL-d] represents a new type of genetic element that interacts with a viral RNA genome.
Collapse
Affiliation(s)
- Z Tallóczy
- UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Self-propagating abnormal proteins, prions, have been identified in yeast; asparagine/glutamine-rich 'prion domains' within these proteins can inactivate the linked functional domains; new prion domains and reporters have been used to make 'synthetic prions', leading to discoveries of new natural prions.
Collapse
Affiliation(s)
- R B Wickner
- Laboratory of Biochemistry and Genetics, NIDDK, NIH, Bethesda, 20892-0830, USA.
| | | | | | | |
Collapse
|
10
|
Abstract
The [PSI+] factor of the yeast Saccharomyces cerevisiae is an epigenetic regulator of translation termination. More than three decades ago, genetic analysis of the transmission of [PSI+] revealed a complex and often contradictory series of observations. However, many of these discrepancies may now be reconciled by a revolutionary hypothesis: protein conformation-based inheritance (the prion hypothesis). This model predicts that a single protein can stably exist in at least two distinct physical states, each associated with a different phenotype. Propagation of one of these traits is achieved by a self-perpetuating change in the protein from one form to the other. Mounting genetic and biochemical evidence suggests that the determinant of [PSI+] is the nuclear encoded Sup35p, a component of the translation termination complex. Here we review the series of experiments supporting the yeast prion hypothesis and provide another look at the 30 years of work preceding this theory in light of our current state of knowledge.
Collapse
Affiliation(s)
- T R Serio
- University of Chicago, Department of Molecular Genetics and Cell Biology, Illinois 60637, USA.
| | | |
Collapse
|