1
|
Majane AC, Cridland JM, Blair LK, Begun DJ. Evolution and genetics of accessory gland transcriptome divergence between Drosophila melanogaster and D. simulans. Genetics 2024; 227:iyae039. [PMID: 38518250 PMCID: PMC11151936 DOI: 10.1093/genetics/iyae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 08/27/2023] [Accepted: 02/15/2024] [Indexed: 03/24/2024] Open
Abstract
Studies of allele-specific expression in interspecific hybrids have provided important insights into gene-regulatory divergence and hybrid incompatibilities. Many such investigations in Drosophila have used transcriptome data from complex mixtures of many tissues or from gonads, however, regulatory divergence may vary widely among species, sexes, and tissues. Thus, we lack sufficiently broad sampling to be confident about the general biological principles of regulatory divergence. Here, we seek to fill some of these gaps in the literature by characterizing regulatory evolution and hybrid misexpression in a somatic male sex organ, the accessory gland, in F1 hybrids between Drosophila melanogaster and D. simulans. The accessory gland produces seminal fluid proteins, which play an important role in male and female fertility and may be subject to adaptive divergence due to male-male or male-female interactions. We find that trans differences are relatively more abundant than cis, in contrast to most of the interspecific hybrid literature, though large effect-size trans differences are rare. Seminal fluid protein genes have significantly elevated levels of expression divergence and tend to be regulated through both cis and trans divergence. We find limited misexpression (over- or underexpression relative to both parents) in this organ compared to most other Drosophila studies. As in previous studies, male-biased genes are overrepresented among misexpressed genes and are much more likely to be underexpressed. ATAC-Seq data show that chromatin accessibility is correlated with expression differences among species and hybrid allele-specific expression. This work identifies unique regulatory evolution and hybrid misexpression properties of the accessory gland and suggests the importance of tissue-specific allele-specific expression studies.
Collapse
Affiliation(s)
- Alex C Majane
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Julie M Cridland
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Logan K Blair
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| |
Collapse
|
2
|
Majane AC, Cridland JM, Begun DJ. Single-nucleus transcriptomes reveal evolutionary and functional properties of cell types in the Drosophila accessory gland. Genetics 2022; 220:iyab213. [PMID: 34849871 PMCID: PMC9097260 DOI: 10.1093/genetics/iyab213] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/10/2021] [Indexed: 11/14/2022] Open
Abstract
Many traits responsible for male reproduction evolve quickly, including gene expression phenotypes in germline and somatic male reproductive tissues. Rapid male evolution in polyandrous species is thought to be driven by competition among males for fertilizations and conflicts between male and female fitness interests that manifest in postcopulatory phenotypes. In Drosophila, seminal fluid proteins secreted by three major cell types of the male accessory gland and ejaculatory duct are required for female sperm storage and use, and influence female postcopulatory traits. Recent work has shown that these cell types have overlapping but distinct effects on female postcopulatory biology, yet relatively little is known about their evolutionary properties. Here, we use single-nucleus RNA-Seq of the accessory gland and ejaculatory duct from Drosophila melanogaster and two closely related species to comprehensively describe the cell diversity of these tissues and their transcriptome evolution for the first time. We find that seminal fluid transcripts are strongly partitioned across the major cell types, and expression of many other genes additionally defines each cell type. We also report previously undocumented diversity in main cells. Transcriptome divergence was found to be heterogeneous across cell types and lineages, revealing a complex evolutionary process. Furthermore, protein adaptation varied across cell types, with potential consequences for our understanding of selection on male postcopulatory traits.
Collapse
Affiliation(s)
- Alex C Majane
- Department of Evolution and Ecology, University of California – Davis, Davis, CA 95616, USA
| | - Julie M Cridland
- Department of Evolution and Ecology, University of California – Davis, Davis, CA 95616, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California – Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Keeble S, Firman RC, Sarver BAJ, Clark NL, Simmons LW, Dean MD. Evolutionary, proteomic, and experimental investigations suggest the extracellular matrix of cumulus cells mediates fertilization outcomes†. Biol Reprod 2021; 105:1043-1055. [PMID: 34007991 PMCID: PMC8511658 DOI: 10.1093/biolre/ioab082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Studies of fertilization biology often focus on sperm and egg interactions. However, before gametes interact, mammalian sperm must pass through the cumulus layer; in mice, this consists of several thousand cells tightly glued together with hyaluronic acid and other proteins. To better understand the role of cumulus cells and their extracellular matrix, we perform proteomic experiments on cumulus oophorus complexes (COCs) in house mice (Mus musculus), producing over 24,000 mass spectra to identify 711 proteins. Seven proteins known to stabilize hyaluronic acid and the extracellular matrix were especially abundant (using spectral counts as an indirect proxy for abundance). Through comparative evolutionary analyses, we show that three of these evolve rapidly, a classic signature of genes that influence fertilization rate. Some of the selected sites overlap regions of the protein known to impact function. In a follow-up experiment, we compared COCs from females raised in two different social environments. Female mice raised in the presence of multiple males produced COCs that were smaller and more resistant to dissociation by hyaluronidase compared to females raised in the presence of a single male, consistent with a previous study that demonstrated such females produced COCs that were more resistant to fertilization. Although cumulus cells are often thought of as enhancers of fertilization, our evolutionary, proteomic, and experimental investigations implicate their extracellular matrix as a potential mediator of fertilization outcomes.
Collapse
Affiliation(s)
- Sara Keeble
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences (M092), University of Western Australia, Australia
| | - Brice A J Sarver
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Nathan L Clark
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), University of Western Australia, Australia
| | - Matthew D Dean
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Patlar B, Jayaswal V, Ranz JM, Civetta A. Nonadaptive molecular evolution of seminal fluid proteins in Drosophila. Evolution 2021; 75:2102-2113. [PMID: 34184267 PMCID: PMC8457112 DOI: 10.1111/evo.14297] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022]
Abstract
Seminal fluid proteins (SFPs) are a group of reproductive proteins that are among the most evolutionarily divergent known. As SFPs can impact male and female fitness, these proteins have been proposed to evolve under postcopulatory sexual selection (PCSS). However, the fast change of the SFPs can also result from nonadaptive evolution, and the extent to which selective constraints prevent SFPs rapid evolution remains unknown. Using intra‐ and interspecific sequence information, along with genomics and functional data, we examine the molecular evolution of approximately 300 SFPs in Drosophila. We found that 50–57% of the SFP genes, depending on the population examined, are evolving under relaxed selection. Only 7–12% showed evidence of positive selection, with no evidence supporting other forms of PCSS, and 35–37% of the SFP genes were selectively constrained. Further, despite associations of positive selection with gene location on the X chromosome and protease activity, the analysis of additional genomic and functional features revealed their lack of influence on SFPs evolving under positive selection. Our results highlight a lack of sufficient evidence to claim that most SFPs are driven to evolve rapidly by PCSS while identifying genomic and functional attributes that influence different modes of SFPs evolution.
Collapse
Affiliation(s)
- Bahar Patlar
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Vivek Jayaswal
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, 92697
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| |
Collapse
|
5
|
Wigby S, Brown NC, Allen SE, Misra S, Sitnik JL, Sepil I, Clark AG, Wolfner MF. The Drosophila seminal proteome and its role in postcopulatory sexual selection. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200072. [PMID: 33070726 DOI: 10.1098/rstb.2020.0072] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Postcopulatory sexual selection (PCSS), comprised of sperm competition and cryptic female choice, has emerged as a widespread evolutionary force among polyandrous animals. There is abundant evidence that PCSS can shape the evolution of sperm. However, sperm are not the whole story: they are accompanied by seminal fluid substances that play many roles, including influencing PCSS. Foremost among seminal fluid models is Drosophila melanogaster, which displays ubiquitous polyandry, and exhibits intraspecific variation in a number of seminal fluid proteins (Sfps) that appear to modulate paternity share. Here, we first consolidate current information on the identities of D. melanogaster Sfps. Comparing between D. melanogaster and human seminal proteomes, we find evidence of similarities between many protein classes and individual proteins, including some D. melanogaster Sfp genes linked to PCSS, suggesting evolutionary conservation of broad-scale functions. We then review experimental evidence for the functions of D. melanogaster Sfps in PCSS and sexual conflict. We identify gaps in our current knowledge and areas for future research, including an enhanced identification of PCSS-related Sfps, their interactions with rival sperm and with females, the role of qualitative changes in Sfps and mechanisms of ejaculate tailoring. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Stuart Wigby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK.,Faculty Biology, Applied Zoology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Nora C Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Sarah E Allen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jessica L Sitnik
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Irem Sepil
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
6
|
Nakadera Y, Thornton Smith A, Daupagne L, Coutellec MA, Koene JM, Ramm SA. Divergence of seminal fluid gene expression and function among natural snail populations. J Evol Biol 2020; 33:1440-1451. [PMID: 32697880 DOI: 10.1111/jeb.13683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022]
Abstract
Seminal fluid proteins (SFPs) can trigger drastic changes in mating partners, mediating post-mating sexual selection and associated sexual conflict. Also, cross-species comparisons have demonstrated that SFPs evolve rapidly and hint that post-mating sexual selection drives their rapid evolution. In principle, this pattern should be detectable within species as rapid among-population divergence in SFP expression and function. However, given the multiple other factors that could vary among populations, isolating divergence in SFP-mediated effects is not straightforward. Here, we attempted to address this gap by combining the power of a common garden design with functional assays involving artificial injection of SFPs in the simultaneously hermaphroditic freshwater snail, Lymnaea stagnalis. We detected among-population divergence in SFP gene expression, suggesting that seminal fluid composition differs among four populations collected in Western Europe. Furthermore, by artificially injecting seminal fluid extracted from these field-derived snails into standardized mating partners, we also detected among-population divergence in the strength of post-mating effects induced by seminal fluid. Both egg production and subsequent sperm transfer of partners differed depending on the population origin of seminal fluid, with the response in egg production seemingly closely corresponding to among-population divergence in SFP gene expression. Our results thus lend strong intraspecific support to the notion that SFP expression and function evolve rapidly, and confirm L. stagnalis as an amenable system for studying processes driving SFP evolution.
Collapse
Affiliation(s)
- Yumi Nakadera
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany.,Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Léa Daupagne
- Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Joris M Koene
- Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
7
|
Abry MF, Kimenyi KM, Masiga D, Kulohoma BW. Comparative genomics identifies male accessory gland proteins in five Glossina species. Wellcome Open Res 2017; 2:73. [PMID: 29260004 PMCID: PMC5721568 DOI: 10.12688/wellcomeopenres.12445.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 01/07/2023] Open
Abstract
Accessory gland proteins (ACPs) are important reproductive proteins produced by the male accessory glands (MAGs) of most insect species. These proteins are essential for male insect fertility, and are transferred alongside semen to females during copulation. ACPs are poorly characterized in
Glossina species (tsetse fly), the principal vector of the parasite that causes life-threatening Human African Trypanosomiasis and Animal trypanosomiasis in endemic regions in Africa. The tsetse fly has a peculiar reproductive cycle because of the absence of oviposition. Females mate once and store sperm in a spermathecal, and produce a single fully developed larva at a time that pupates within minutes of exiting their uterus. This slow reproductive cycle, compared to other insects, significantly restricts reproduction to only 3 to 6 larvae per female lifespan. This unique reproductive cycle is an attractive vector control strategy entry point. We exploit comparative genomics approaches to explore the diversity of ACPs in the recently available whole genome sequence data from five tsetse fly species (
Glossina morsitans, G. austeni, G. brevipalpis, G. pallidipes and
G. fuscipes). We used previously described ACPs in
Drosophila melanogaster and
Anopheles gambiae as reference sequences. We identified 36, 27, 31, 29 and 33 diverse ACP orthologous genes in
G. austeni, G. brevipalpis, G. fuscipes, G. pallidipes and
G. morsitans genomes respectively, which we classified into 21 functional classes. Our findings provide genetic evidence of MAG proteins in five recently sequenced
Glossina genomes. It highlights new avenues for molecular studies that evaluate potential field control strategies of these important vectors of human and animal disease.
Collapse
Affiliation(s)
- Muna F Abry
- Center for Biotechnology and Bioinformatics, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya.,International Centre for Insect Physiology and Ecology, P.O. Box 30772, Nairobi, 00100, Kenya
| | - Kelvin M Kimenyi
- Center for Biotechnology and Bioinformatics, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya.,International Centre for Insect Physiology and Ecology, P.O. Box 30772, Nairobi, 00100, Kenya
| | - Daniel Masiga
- International Centre for Insect Physiology and Ecology, P.O. Box 30772, Nairobi, 00100, Kenya
| | - Benard W Kulohoma
- Center for Biotechnology and Bioinformatics, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya.,International Centre for Insect Physiology and Ecology, P.O. Box 30772, Nairobi, 00100, Kenya
| |
Collapse
|
8
|
Evolutionary Dynamics of Male Reproductive Genes in the Drosophila virilis Subgroup. G3-GENES GENOMES GENETICS 2017; 7:3145-3155. [PMID: 28739599 PMCID: PMC5592939 DOI: 10.1534/g3.117.1136] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Postcopulatory sexual selection (PCSS) is a potent evolutionary force that can drive rapid changes of reproductive genes within species, and thus has the potential to generate reproductive incompatibilities between species. Male seminal fluid proteins (SFPs) are major players in postmating interactions, and are important targets of PCSS in males. The virilis subgroup of Drosophila exhibits strong interspecific gametic incompatibilities, and can serve as a model to study the genetic basis of PCSS and gametic isolation. However, reproductive genes in this group have not been characterized. Here we utilize short-read RNA sequencing of male reproductive organs to examine the evolutionary dynamics of reproductive genes in members of the virilis subgroup: D. americana, D. lummei, D. novamexicana, and D. virilis. We find that the majority of male reproductive transcripts are testes-biased, accounting for ∼15% of all annotated genes. Ejaculatory bulb (EB)-biased transcripts largely code for lipid metabolic enzymes, and contain orthologs of the D. melanogaster EB protein, Peb-me, which is involved in mating-plug formation. In addition, we identify 71 candidate SFPs, and show that this gene set has the highest rate of nonsynonymous codon substitution relative to testes- and EB-biased genes. Furthermore, we identify orthologs of 35 D. melanogaster SFPs that have conserved accessory gland expression in the virilis group. Finally, we show that several of the SFPs that have the highest rate of nonsynonymous codon substitution reside on chromosomal regions, which contributes to paternal gametic incompatibility between species. Our results show that SFPs rapidly diversify in the virilis group, and suggest that they likely play a role in PCSS and/or gametic isolation.
Collapse
|
9
|
Abry MF, Kimenyi KM, Masiga DK, Kulohoma BW. Comparative genomics identifies male accessory gland proteins in five Glossina species. Wellcome Open Res 2017; 2:73. [DOI: 10.12688/wellcomeopenres.12445.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2017] [Indexed: 11/20/2022] Open
Abstract
Accessory gland proteins (ACPs) are important reproductive proteins produced by the male accessory glands (MAGs) of most insect species. These proteins are essential for male insect fertility, and are transferred alongside semen to females during copulation. ACPs are poorly characterized in Glossina species (tsetse fly), the principal vector of the parasite that causes life-threatening Human African Trypanosomiasis and Animal trypanosomiasis in endemic regions in Africa. The tsetse fly has a peculiar reproductive cycle because of the absence of oviposition. Females mate once and store sperm in a spermathecal, and produce a single fully developed larva at a time that pupates within minutes of exiting their uterus. This slow reproductive cycle, compared to other insects, significantly restricts reproduction to only 3 to 6 larvae per female lifespan. This unique reproductive cycle is an attractive vector control strategy entry point. We exploit comparative genomics approaches to explore the diversity of ACPs in the recently available whole genome sequence data from five tsetse fly species (Glossina morsitans, G. austeni, G. brevipalpis, G. pallidipes and G. fuscipes). We used previously described ACPs in Drosophila melanogaster and Anopheles gambiae as reference sequences. We identified 36, 27, 31, 29 and 33 diverse ACP orthologous genes in G. austeni, G. brevipalpis, G. fuscipes, G. pallidipes and G. morsitans genomes respectively, which we classified into 21 functional classes. Our findings provide genetic evidence of MAG proteins in five recently sequenced Glossina genomes. It provides new avenues for molecular studies that evaluate potential field control strategies of these important vectors of human and animal disease.
Collapse
|
10
|
Almeida FC, DeSalle R. Genetic differentiation and adaptive evolution at reproductive loci in incipient
Drosophila
species. J Evol Biol 2016; 30:524-537. [DOI: 10.1111/jeb.13021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
- F. C. Almeida
- Sackler Institute for Comparative Genomics American Museum of Natural History New York NY USA
- Department of Biology New York University New York NY USA
| | - R. DeSalle
- Division of Invertebrate Zoology American Museum of Natural History New York NY USA
| |
Collapse
|
11
|
Accelerated pseudogenization on the neo-X chromosome in Drosophila miranda. Nat Commun 2016; 7:13659. [PMID: 27897175 PMCID: PMC5141340 DOI: 10.1038/ncomms13659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/20/2016] [Indexed: 12/22/2022] Open
Abstract
Y chromosomes often degenerate via the accumulation of pseudogenes and transposable elements. By contrast, little is known about X-chromosome degeneration. Here we compare the pseudogenization process between genes on the neo-sex chromosomes in Drosophila miranda and their autosomal orthologues in closely related species. The pseudogenization rate on the neo-X is much lower than the rate on the neo-Y, but appears to be higher than the rate on the orthologous autosome in D. pseudoobscura. Genes under less functional constraint and/or genes with male-biased expression tend to become pseudogenes on the neo-X, indicating the accumulation of slightly deleterious mutations and the feminization of the neo-X. We also find a weak trend that the genes with female-benefit/male-detriment effects identified in D. melanogaster are pseudogenized on the neo-X, implying the masculinization of the neo-X. These observations suggest that both X and Y chromosomes can degenerate due to a complex suite of evolutionary forces.
Collapse
|
12
|
Wilkinson GS, Breden F, Mank JE, Ritchie MG, Higginson AD, Radwan J, Jaquiery J, Salzburger W, Arriero E, Barribeau SM, Phillips PC, Renn SCP, Rowe L. The locus of sexual selection: moving sexual selection studies into the post-genomics era. J Evol Biol 2015; 28:739-55. [PMID: 25789690 DOI: 10.1111/jeb.12621] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 02/07/2023]
Abstract
Sexual selection drives fundamental evolutionary processes such as trait elaboration and speciation. Despite this importance, there are surprisingly few examples of genes unequivocally responsible for variation in sexually selected phenotypes. This lack of information inhibits our ability to predict phenotypic change due to universal behaviours, such as fighting over mates and mate choice. Here, we discuss reasons for this apparent gap and provide recommendations for how it can be overcome by adopting contemporary genomic methods, exploiting underutilized taxa that may be ideal for detecting the effects of sexual selection and adopting appropriate experimental paradigms. Identifying genes that determine variation in sexually selected traits has the potential to improve theoretical models and reveal whether the genetic changes underlying phenotypic novelty utilize common or unique molecular mechanisms. Such a genomic approach to sexual selection will help answer questions in the evolution of sexually selected phenotypes that were first asked by Darwin and can furthermore serve as a model for the application of genomics in all areas of evolutionary biology.
Collapse
Affiliation(s)
- G S Wilkinson
- Department of Biology, University of Maryland, College Park, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Reinhart M, Carney T, Clark AG, Fiumera AC. Characterizing male-female interactions using natural genetic variation in Drosophila melanogaster. J Hered 2014; 106:67-79. [PMID: 25425680 DOI: 10.1093/jhered/esu076] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Drosophila melanogaster females commonly mate with multiple males establishing the opportunity for pre- and postcopulatory sexual selection. Traits impacting sexual selection can be affected by a complex interplay of the genotypes of the competing males, the genotype of the female, and compatibilities between the males and females. We scored males from 96 2nd and 94 3rd chromosome substitution lines for traits affecting reproductive success when mated with females from 3 different genetic backgrounds. The traits included male-induced female refractoriness, male remating ability, the proportion of offspring sired under competitive conditions and male-induced female fecundity. We observed significant effects of male line, female genetic background, and strong male by female interactions. Some males appeared to be "generalists" and performed consistently across the different females; other males appeared to be "specialists" and performed very well with a particular female and poorly with others. "Specialist" males did not, however, prefer to court those females with whom they had the highest reproductive fitness. Using 143 polymorphisms in male reproductive genes, we mapped several genes that had consistent effects across the different females including a derived, high fitness allele in Acp26Aa that may be the target of adaptive evolution. We also identified a polymorphism upstream of PebII that may interact with the female genetic background to affect male-induced refractoriness to remating. These results suggest that natural variation in PebII might contribute to the observed male-female interactions.
Collapse
Affiliation(s)
- Michael Reinhart
- From the Department of Biological Sciences, Binghamton University, Binghamton, NY (Reinhart, Carney, and Fiumera); and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY(Clark)
| | - Tara Carney
- From the Department of Biological Sciences, Binghamton University, Binghamton, NY (Reinhart, Carney, and Fiumera); and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY(Clark)
| | - Andrew G Clark
- From the Department of Biological Sciences, Binghamton University, Binghamton, NY (Reinhart, Carney, and Fiumera); and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY(Clark)
| | - Anthony C Fiumera
- From the Department of Biological Sciences, Binghamton University, Binghamton, NY (Reinhart, Carney, and Fiumera); and the Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY(Clark).
| |
Collapse
|
14
|
Singh A, Singh BN. Role of sexual selection in speciation in Drosophila. Genetica 2013; 142:23-41. [PMID: 24362558 DOI: 10.1007/s10709-013-9751-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/14/2013] [Indexed: 10/25/2022]
Abstract
The power of sexual selection to drive changes in the mate recognition system through divergence in sexually selected traits gives it the potential to be a potent force in speciation. To know how sexual selection can bring such type of divergence in the genus Drosophila, comparative studies based on intra- and inter-sexual selection are documented in this review. The studies provide evidence that both mate choice and male-male competition can cause selection of trait and preference which thereby leads to divergence among species. In the case of intrasexual selection, various kinds of signals play significant role in affecting the species mate recognition system and hence causing divergence between the species. However, intrasexual selection can bring the intraspecific divergence at the level of pre- and post-copulatory stage. This has been better explained through Hawaiian Drosophila which has been suggested a wonderful model system in explaining the events of speciation via sexual selection. This is due to their elaborate mating displays and some kind of ethological isolation persisting among them. Similarly, the genetic basis of sexually selected variations can provide yet another path in understanding the speciation genetics via sexual selection more closely.
Collapse
Affiliation(s)
- Akanksha Singh
- Genetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India,
| | | |
Collapse
|
15
|
Tuni C, Albo MJ, Bilde T. Polyandrous females acquire indirect benefits in a nuptial feeding species. J Evol Biol 2013; 26:1307-16. [PMID: 23639113 DOI: 10.1111/jeb.12137] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/16/2013] [Indexed: 12/01/2022]
Abstract
The relative force of direct and indirect selection underlying the evolution of polyandry is contentious. When females acquire direct benefits during mating, indirect benefits are often considered negligible. Although direct benefits are likely to play a prominent role in the evolution of polyandry, post-mating selection for indirect benefits may subsequently evolve. We examined whether polyandrous females acquire indirect benefits and quantified direct and indirect effects of multiple mating on female fitness in a nuptial gift-giving spider (Pisaura mirabilis). In this system, the food item donated by males during mating predicts direct benefits of polyandry. We compared fecundity, fertility and survival of singly mated females to that of females mated three times with the same (monogamy) or different (polyandry) males in a two-factorial design where females were kept under high and low feeding conditions. Greater access to nutrients and sperm had surprisingly little positive effect on fitness, apart from shortening the time until oviposition. In contrast, polyandry increased female reproductive success by increasing the probability of oviposition, and egg hatching success indicating that indirect benefits arise from mating with several different mating partners rather than resources transferred by males. The evolution of polyandry in a male-resource-based mating system may result from exploitation of the female foraging motivation and that indirect genetic benefits are subsequently derived resulting from co-evolutionary post-mating processes to gain a reproductive advantage or to counter costs of mating. Importantly, indirect benefits may represent an additional explanation for the maintenance of polyandry.
Collapse
Affiliation(s)
- C Tuni
- Department of Bioscience, Aarhus University, Aarhus C, Denmark.
| | | | | |
Collapse
|
16
|
Good JM, Wiebe V, Albert FW, Burbano HA, Kircher M, Green RE, Halbwax M, André C, Atencia R, Fischer A, Pääbo S. Comparative population genomics of the ejaculate in humans and the great apes. Mol Biol Evol 2013; 30:964-76. [PMID: 23329688 DOI: 10.1093/molbev/mst005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The rapid molecular evolution of reproductive genes is nearly ubiquitous across animals, yet the selective forces and functional targets underlying this divergence remain poorly understood. Humans and closely related species of great apes show strongly divergent mating systems, providing a powerful system to investigate the influence of sperm competition on the evolution of reproductive genes. This is complemented by detailed information on male reproductive biology and unparalleled genomic resources in humans. Here, we have used custom microarrays to capture and sequence 285 genes encoding proteins present in the ejaculate as well as 101 randomly selected control genes in 21 gorillas, 20 chimpanzees, 20 bonobos, and 20 humans. In total, we have generated >25× average genomic coverage per individual for over 1 million target base pairs. Our analyses indicate high levels of evolutionary constraint across much of the ejaculate combined with more rapid evolution of genes involved in immune defense and proteolysis. We do not find evidence for appreciably more positive selection along the lineage leading to bonobos and chimpanzees, although this would be predicted given more intense sperm competition in these species. Rather, the extent of positive and negative selection depended more on the effective population sizes of the species. Thus, general patterns of male reproductive protein evolution among apes and humans depend strongly on gene function but not on inferred differences in the intensity of sperm competition among extant species.
Collapse
Affiliation(s)
- Jeffrey M Good
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hellberg ME, Dennis AB, Arbour-Reily P, Aagaard JE, Swanson WJ. The Tegula tango: a coevolutionary dance of interacting, positively selected sperm and egg proteins. Evolution 2012; 66:1681-94. [PMID: 22671539 DOI: 10.1111/j.1558-5646.2011.01530.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reproductive proteins commonly show signs of rapid divergence driven by positive selection. The mechanisms driving these changes have remained ambiguous in part because interacting male and female proteins have rarely been examined. We isolate an egg protein the vitelline envelope receptor for lysin (VERL) from Tegula, a genus of free-spawning marine snails. Like VERL from abalone, Tegula VERL is a major component of the VE surrounding the egg, includes a conserved zona pellucida (ZP) domain at its C-terminus, and possesses a unique, negatively charged domain of about 150 amino acids implicated in interactions with the positively charged lysin. Unlike for abalone VERL, where this unique VERL domain occurs in a tandem array of 22 repeats, Tegula VERL has just one such domain. Interspecific comparisons show that both lysin and the VERL domain diverge via positive selection, whereas the ZP domain evolves neutrally. Rates of nonsynonymous substitution are correlated between lysin and the VERL domain, consistent with sexual antagonism, although lineage-specific effects, perhaps owing to different ecologies, may alter the relative evolutionary rates of sperm- and egg-borne proteins.
Collapse
Affiliation(s)
- Michael E Hellberg
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | | | | | |
Collapse
|
18
|
Pujolar JM, Pogson GH. Positive Darwinian selection in gamete recognition proteins of Strongylocentrotus sea urchins. Mol Ecol 2011; 20:4968-82. [PMID: 22060977 DOI: 10.1111/j.1365-294x.2011.05336.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Gamete recognition proteins commonly experience positive Darwinian selection and evolve more rapidly than nonreproductive proteins, but the selective forces responsible for their adaptive diversification remain unclear. We examined the patterns of positive selection in the cognate interacting pair of proteins formed by sperm bindin and its egg receptor (EBR1) and in two regions of the sea urchin sperm receptor for egg jelly suREJ3 gene (exons 22 and 26) among four species of Strongylocentrotus sea urchins (S. purpuratus, S. droebachiensis, S. pallidus and S. franciscanus). The signatures of selection differed at each reproductive protein. A strong signal of positive selection was detected at bindin in all lineages even though the species compared had highly variable gamete traits and experience different intensities and forms of sexual selection and sexual conflict in nature. Weaker selection was observed at EBR1 but the small region studied precluded a clear understanding of the extent of sexual conflict between bindin and the EBR1 protein. At the suREJ3 locus, diversifying selection was observed in exon 22 but not exon 26, suggesting that these regions experience different selective pressures and evolutionary constraints. Positive selection was also detected within S. pallidus at suREJ-22 because of the presence of 12 amino acid replacement mutations segregating at frequencies >0.10. Our results suggest that sexual conflict may be the predominant evolutionary mechanism driving the rapid diversification of reproductive proteins between, and polymorphism within, strongylocentrotid sea urchins.
Collapse
Affiliation(s)
- J M Pujolar
- Department of Biology, University of Padova, Padova 35131, Italy.
| | | |
Collapse
|
19
|
Grassa CJ, Kulathinal RJ. Elevated Evolutionary Rates among Functionally Diverged Reproductive Genes across Deep Vertebrate Lineages. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2011:274975. [PMID: 21811675 PMCID: PMC3147129 DOI: 10.4061/2011/274975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/17/2011] [Accepted: 05/23/2011] [Indexed: 11/24/2022]
Abstract
Among closely related taxa, proteins involved in reproduction generally evolve more rapidly than other proteins. Here, we apply a functional and comparative genomics approach to compare functional divergence across a deep phylogenetic array of egg-laying and live-bearing vertebrate taxa. We aligned and annotated a set of 4,986 1 : 1 : 1 : 1 : 1 orthologs in Anolis carolinensis (green lizard), Danio rerio (zebrafish), Xenopus tropicalis (frog), Gallus gallus (chicken), and Mus musculus (mouse) according to function using ESTs from available reproductive (including testis and ovary) and non-reproductive tissues as well as Gene Ontology. For each species lineage, genes were further classified as tissue-specific (found in a single tissue) or tissue-expressed (found in multiple tissues). Within independent vertebrate lineages, we generally find that gonadal-specific genes evolve at a faster rate than gonadal-expressed genes and significantly faster than non-reproductive genes. Among the gonadal set, testis genes are generally more diverged than ovary genes. Surprisingly, an opposite but nonsignificant pattern is found among the subset of orthologs that remained functionally conserved across all five lineages. These contrasting evolutionary patterns found between functionally diverged and functionally conserved reproductive orthologs provide evidence for pervasive and potentially cryptic lineage-specific selective processes on ancestral reproductive systems in vertebrates.
Collapse
Affiliation(s)
- Christopher J Grassa
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | | |
Collapse
|
20
|
Balakirev ES, Anisimova M, Ayala FJ. Complex interplay of evolutionary forces in the ladybird homeobox genes of Drosophila melanogaster. PLoS One 2011; 6:e22613. [PMID: 21799919 PMCID: PMC3142176 DOI: 10.1371/journal.pone.0022613] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 06/29/2011] [Indexed: 11/19/2022] Open
Abstract
Tandemly arranged paralogous genes lbe and lbl are members of the Drosophila NK homeobox family. We analyzed population samples of Drosophila melanogaster from Africa, Europe, North and South America, and single strains of D. sechellia, D. simulans, and D. yakuba within two linked regions encompassing partial sequences of lbe and lbl. The evolution of lbe and lbl is highly constrained due to their important regulatory functions. Despite this, a variety of forces have shaped the patterns of variation in lb genes: recombination, intragenic gene conversion and natural selection strongly influence background variation created by linkage disequilibrium and dimorphic haplotype structure. The two genes exhibited similar levels of nucleotide diversity and positive selection was detected in the noncoding regions of both genes. However, synonymous variability was significantly higher for lbe: no nonsynonymous changes were observed in this gene. We argue that balancing selection impacts some synonymous sites of the lbe gene. Stability of mRNA secondary structure was significantly different between the lbe (but not lbl) haplotype groups and may represent a driving force of balancing selection in epistatically interacting synonymous sites. Balancing selection on synonymous sites may be the first, or one of a few such observations, in Drosophila. In contrast, recurrent positive selection on lbl at the protein level influenced evolution at three codon sites. Transcription factor binding-site profiles were different for lbe and lbl, suggesting that their developmental functions are not redundant. Combined with our previous results on nucleotide variation in esterase and other homeobox genes, these results suggest that interplay of balancing and directional selection may be a general feature of molecular evolution in Drosophila and other eukaryote genomes.
Collapse
Affiliation(s)
- Evgeniy S Balakirev
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America.
| | | | | |
Collapse
|
21
|
Diversity-enhancing selection acts on a female reproductive protease family in four subspecies of Drosophila mojavensis. Genetics 2011; 187:865-76. [PMID: 21212232 DOI: 10.1534/genetics.110.124743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein components of the Drosophila male ejaculate are critical modulators of reproductive success, several of which are known to evolve rapidly. Recent evidence of adaptive evolution in female reproductive tract proteins suggests this pattern may reflect sexual selection at the molecular level. Here we explore the evolutionary dynamics of a five-paralog gene family of female reproductive proteases within geographically isolated subspecies of Drosophila mojavensis. Remarkably, four of five paralogs show exceptionally low differentiation between subspecies and unusually structured haplotypes that suggest the retention of old polymorphisms. These gene genealogies are accompanied by deviations from neutrality consistent with diversifying selection. While diversifying selection has been observed among the reproductive molecules of mammals and marine invertebrates, our study provides the first evidence of this selective regime in any Drosophila reproductive protein, male or female.
Collapse
|
22
|
Poels J, Van Loy T, Vandersmissen HP, Van Hiel B, Van Soest S, Nachman RJ, Vanden Broeck J. Myoinhibiting peptides are the ancestral ligands of the promiscuous Drosophila sex peptide receptor. Cell Mol Life Sci 2010; 67:3511-22. [PMID: 20458515 PMCID: PMC11115884 DOI: 10.1007/s00018-010-0393-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/07/2010] [Accepted: 04/27/2010] [Indexed: 01/04/2023]
Abstract
Male insects change behaviors of female partners by co-transferring accessory gland proteins (Acps) like sex peptide (SP), with their sperm. The Drosophila sex peptide receptor (SPR) is a G protein-coupled receptor expressed in the female's nervous system and genital tract. While most Acps show a fast rate of evolution, SPRs are highly conserved in insects. We report activation of SPRs by evolutionary conserved myoinhibiting peptides (MIPs). Structural determinants in SP and MIPs responsible for this dual receptor activation are characterized. Drosophila SPR is also expressed in embryonic and larval stages and in the adult male nervous system, whereas SP expression is restricted to the male reproductive system. MIP transcripts occur in male and female central nervous system, possibly acting as endogenous SPR ligands. Evolutionary consequences of the promiscuous nature of SPRs are discussed. MIPs likely function as ancestral ligands of SPRs and could place evolutionary constraints on the MIP/SPR class.
Collapse
Affiliation(s)
- Jeroen Poels
- Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Naamsestraat 59, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
23
|
The genetic basis for male x female interactions underlying variation in reproductive phenotypes of Drosophila. Genetics 2010; 186:1355-65. [PMID: 20876561 DOI: 10.1534/genetics.110.123174] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Drosophila, where females mate multiply, sperm competition contributes strongly to fitness variability among males. Males transfer "Acp" seminal proteins to females during mating, and these proteins influence the outcome of sperm competition. Because Acps function within the female, male proteins can directly interact with female molecules in a manner that affects reproductive fitness. Here we begin to dissect the genetic architecture of male×female interactions underlying reproductive phenotypes important to sperm competition. By utilizing chromosome extraction lines, we demonstrate that the third and X chromosomes each have large effects on fertility phenotypes, female remating rate, and the sperm competition parameter, P1. Strikingly, the third and X chromosomes harbor genetic variation that gives rise to strong male×female interactions that modulate female remating rate and P1. Encoded on these chromosomes are, respectively, sex peptide (SP) and sex peptide receptor (SPR), the only pair of physically interacting male Acp and female receptor known. We identified several intriguing allelic interactions between SP and SPR. The results of this study begin to elucidate the complex genetic architecture of reproductive and sperm competition phenotypes and have significant implications for the evolution of male and female characters.
Collapse
|
24
|
The evolution of heterochiasmy: the role of sexual selection and sperm competition in determining sex-specific recombination rates in eutherian mammals. Genet Res (Camb) 2010; 91:355-63. [PMID: 19922699 DOI: 10.1017/s0016672309990255] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Early karyotypic work revealed that female and male recombination rates in many species show pronounced differences, and this pattern of heterochiasmy has also been observed in modern linkage mapping studies. Several hypotheses to explain this phenomenon have been offered, ranging from strictly biological mechanisms related to the gametic differences between the sexes, to more evolutionary models based on sexually antagonistic selection. However, despite the long history of interest in heterochiasmy, empirical data has failed to support any theory or pattern consistently. Here I test two alternative evolutionary hypotheses regarding heterochiasmy across the eutherian mammals, and show that sexual dimorphism, but not sperm competition, is strongly correlated with recombination rate, suggesting that sexual antagonism is an important influence. However, the observed relationship between heterochiasmy and sexual dimorphism runs counter to theoretical predictions, with male recombination higher in species with high levels of sexual dimorphism. This may be the response to male-biased dispersal, which, rather than the static male fitness landscape envisioned in the models tested here, could radically shift optimal male fitness parameters among generations.
Collapse
|
25
|
Maroja LS, Andrés JA, Harrison RG. Genealogical discordance and patterns of introgression and selection across a cricket hybrid zone. Evolution 2009; 63:2999-3015. [PMID: 19619226 DOI: 10.1111/j.1558-5646.2009.00767.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In recently diverged species, ancestral polymorphism and introgression can cause incongruence between gene and species trees. In the face of hybridization, few genomic regions may exhibit reciprocal monophyly, and these regions, usually evolving rapidly under selection, may be important for the maintenance of species boundaries. In animals with internal fertilization, genes encoding seminal protein are candidate barrier genes. Recently diverged hybridizing species such as the field crickets Gryllus firmus and G. pennsylvanicus, offer excellent opportunities to investigate the origins of barriers to gene exchange. These recently diverged species form a well-characterized hybrid zone, and share ancestral polymorphisms across the genome. We analyzed DNA sequence divergence for seminal protein loci, housekeeping loci, and mtDNA, using a combination of analytical approaches and extensive sampling across both species and the hybrid zone. We report discordant genealogical patterns and differential introgression rates across the genome. The most dramatic outliers, showing near-zero introgression and more structured species trees, are also the only two seminal protein loci under selection. These are candidate barrier genes with possible reproductive functions. We also use genealogical data to examine the demographic history of the field crickets and the current structure of the hybrid zone.
Collapse
Affiliation(s)
- Luana S Maroja
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
26
|
Aguadé M. Nucleotide and copy-number polymorphism at the odorant receptor genes Or22a and Or22b in Drosophila melanogaster. Mol Biol Evol 2008; 26:61-70. [PMID: 18922763 DOI: 10.1093/molbev/msn227] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Drosophila, odorant receptors are encoded by an old and moderately sized multigene family. Or22a and Or22b are two tandemly arranged genes of this family that have proved to be the result of a rather young duplication. Nucleotide variation in the region spanning both duplicates was surveyed in four natural populations (two African and two non-African) of Drosophila melanogaster and also analyzed in species of the melanogaster subgroup. The intraspecific survey revealed a particular copy-number polymorphism in some of the studied populations, with the two genes (Or22a and Or22b) present in the long variant and a single chimeric gene (Or22ab) present in the short variant. Estimated nucleotide diversity was higher in the short than in the long variant, despite the ancestral character of the latter variant in D. melanogaster. The general skew toward low-frequency variants detected in the non-African long variant and its reduced level of silent polymorphism relative to divergence is consistent with the recent fixation of an advantageous mutation at, or nearby, the Or22 long variant region. The nonnegligible frequency of the short variant and the presence of a highly divergent haplotype in the East African sample would point to direct or indirect selection for its maintenance in the species. There was evidence for a generally more rapid evolution of the Or22b copy at both synonymous and nonsynonymous sites. However, an excess of nonsynonymous substitutions was only detected in the early history of this copy.
Collapse
Affiliation(s)
- Montserrat Aguadé
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
27
|
A role for Acp29AB, a predicted seminal fluid lectin, in female sperm storage in Drosophila melanogaster. Genetics 2008; 180:921-31. [PMID: 18757944 DOI: 10.1534/genetics.108.092106] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Females of many animal species store sperm for taxon-specific periods of time, ranging from a few hours to years. Female sperm storage has important reproductive and evolutionary consequences, yet relatively little is known of its molecular basis. Here, we report the isolation of a loss-of-function mutation of the Drosophila melanogaster Acp29AB gene, which encodes a seminal fluid protein that is transferred from males to females during mating. Using this mutant, we show that Acp29AB is required for the normal maintenance of sperm in storage. Consistent with this role, Acp29AB localizes to female sperm storage organs following mating, although it does not appear to associate tightly with sperm. Acp29AB is a predicted lectin, suggesting that sugar-protein interactions may be important for D. melanogaster sperm storage, much as they are in many mammals. Previous association studies have found an effect of Acp29AB genotype on a male's sperm competitive ability; our findings suggest that effects on sperm storage may underlie these differences in sperm competition. Moreover, Acp29AB's effects on sperm storage and sperm competition may explain previously documented evidence for positive selection on the Acp29AB locus.
Collapse
|
28
|
Almeida FC, Desalle R. Evidence of adaptive evolution of accessory gland proteins in closely related species of the Drosophila repleta group. Mol Biol Evol 2008; 25:2043-53. [PMID: 18635677 DOI: 10.1093/molbev/msn155] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accessory gland proteins (Acps) are part of the seminal fluid of Drosophila species. These proteins have important reproductive functions, being responsible for the proper functioning of several steps of the fertilization process. Acps also contribute indirectly for the reproductive success of males by modulating female behavior. Evidence that Acps participate in sperm competition and sexual conflict includes findings that, on average, Acps have fast evolutionary rates, suggestive of adaptive evolution. This is especially true in species of the Drosophila repleta group. Nevertheless, only in a few occasions have robust statistical tests been used to determine whether observed evolutionary rates are in fact due to positive selection on amino acid substitutions between related species. Here we apply maximum likelihood tests for positive selection on 14 Acps of the D. repleta group. To increase statistical robustness, we use at least 8 sequences, all belonging to species of the Drosophila mulleri complex, for each gene analyzed. We found significant evidence of adaptive evolution for 10 of the tested genes. Among these, the ones with a conserved protein domain had positively selected sites within the functional region of the sequence. We also detected one instance of lineage-specific adaptive evolution in a clade formed by 2 sister species.
Collapse
Affiliation(s)
- Francisca C Almeida
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA.
| | | |
Collapse
|
29
|
Post-mating gene expression profiles of female Drosophila melanogaster in response to time and to four male accessory gland proteins. Genetics 2008; 179:1395-408. [PMID: 18562649 DOI: 10.1534/genetics.108.086934] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Drosophila melanogaster, the genetic and molecular bases of post-mating changes in the female's behavior and physiology are poorly understood. However, DNA microarray studies have demonstrated that, shortly after mating, transcript abundance of >1700 genes is altered in the female's reproductive tract as well as in other tissues. Many of these changes are elicited by sperm and seminal fluid proteins (Acps) that males transfer to females. To further dissect the transcript-level changes that occur following mating, we examined gene expression profiles of whole female flies at four time points following copulation. We found that, soon after copulation ends, a large number of small-magnitude transcriptional changes occurred in the mated female. At later time points, larger magnitude changes were seen, although these occurred in a smaller number of genes. We then explored how four individual Acps (ovulin, Acp36DE, Acp29AB, and Acp62F) with unique functions independently affected gene expression in females shortly after mating. Consistent with their early and possibly local action within the female, ovulin and Acp36DE caused relatively few gene expression changes in whole bodies of mated females. In contrast, Acp29AB and Acp62F modulated a large number of transcriptional changes shortly after mating.
Collapse
|
30
|
Zhou Q, Zhang G, Zhang Y, Xu S, Zhao R, Zhan Z, Li X, Ding Y, Yang S, Wang W. On the origin of new genes in Drosophila. Genome Res 2008; 18:1446-55. [PMID: 18550802 DOI: 10.1101/gr.076588.108] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several mechanisms have been proposed to account for the origination of new genes. Despite extensive case studies, the general principles governing this fundamental process are still unclear at the whole-genome level. Here, we unveil genome-wide patterns for the mutational mechanisms leading to new genes and their subsequent lineage-specific evolution at different time nodes in the Drosophila melanogaster species subgroup. We find that (1) tandem gene duplication has generated approximately 80% of the nascent duplicates that are limited to single species (D. melanogaster or Drosophila yakuba); (2) the most abundant new genes shared by multiple species (44.1%) are dispersed duplicates, and are more likely to be retained and be functional; (3) de novo gene origination from noncoding sequences plays an unexpectedly important role during the origin of new genes, and is responsible for 11.9% of the new genes; (4) retroposition is also an important mechanism, and had generated approximately 10% of the new genes; (5) approximately 30% of the new genes in the D. melanogaster species complex recruited various genomic sequences and formed chimeric gene structures, suggesting structure innovation as an important way to help fixation of new genes; and (6) the rate of the origin of new functional genes is estimated to be five to 11 genes per million years in the D. melanogaster subgroup. Finally, we survey gene frequencies among 19 globally derived strains for D. melanogaster-specific new genes and reveal that 44.4% of them show copy number polymorphisms within a population. In conclusion, we provide a panoramic picture for the origin of new genes in Drosophila species.
Collapse
Affiliation(s)
- Qi Zhou
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Llopart A, Comeron JM. Recurrent events of positive selection in independent Drosophila lineages at the spermatogenesis gene roughex. Genetics 2008; 179:1009-20. [PMID: 18505872 PMCID: PMC2429854 DOI: 10.1534/genetics.107.086231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 04/08/2008] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the role of positive selection in the evolution of genes with male-biased expression can be hindered by two observations. First, male-biased genes tend to be overrepresented among lineage-specific genes. Second, novel genes are prone to experience bursts of adaptive evolution shortly after their formation. A thorough study of the forces acting on male-biased genes therefore would benefit from phylogenywide analyses that could distinguish evolutionary trends associated with gene formation and later events, while at the same time tackling the interesting question of whether adaptive evolution is indeed idiosyncratic. Here we investigate the roughex (rux) gene, a dose-dependent regulator of Drosophila spermatogenesis with a C-terminal domain responsible for nuclear localization that shows a distinct amino acid sequence in the melanogaster subgroup. We collected polymorphism and divergence data in eight populations of six Drosophila species, for a total of 99 rux sequences, to study rates and patterns of evolution at this male-biased gene. Our results from two phylogeny-based methods (PAML and HyPhy) as well as from population genetics analyses (McDonald-Kreitman-based tests) indicate that amino acid replacements have contributed disproportionately to divergence, consistent with adaptive evolution at the Rux protein. Analyses based on extant variation show also the signature of recent selective sweeps in several of the populations surveyed. Most important, we detect the significant and consistent signature of positive selection in several independent Drosophila lineages, which evidences recurrent and concurrent events of adaptive evolution after rux formation.
Collapse
Affiliation(s)
- Ana Llopart
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
32
|
Male accessory gland secretory protein polymorphism in natural populations of Drosophila nasuta nasuta and Drosophila sulfurigaster neonasuta. J Genet 2008; 86:217-24. [PMID: 18305341 DOI: 10.1007/s12041-007-0029-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Male accessory gland secretory protein polymorphism was analysed in natural populations of Drosophila nasuta nasuta and D. sulfurigaster neonasuta for the first time, using SDS-PAGE to score polymorphism of these proteins in 2788 individuals of D. n. nasuta and 2232 individuals of D. s. neonasuta from 12 different populations from southern India. A total of 25 and 18 variant protein phenotypes were identified in D. n. nasuta and D. s. neonasuta, respectively. Protein fractions of group III were more polymorphic than those from groups I and II. The results show that accessory gland secretory proteins show high levels of polymorphism, irrespective of species or habitat. Moreover, we have used the variation in the accessory gland proteins to assess the extent of divergence between the species and to infer their population structure. The study suggests that though both D. n. nasuta and D. s. neonasuta belong to the same subgroup, they differ in population structure, as far as accessory gland protein polymorphism is concerned.
Collapse
|
33
|
Bjork A, Starmer WT, Higginson DM, Rhodes CJ, Pitnick S. Complex interactions with females and rival males limit the evolution of sperm offence and defence. Proc Biol Sci 2008; 274:1779-88. [PMID: 17507332 PMCID: PMC2493577 DOI: 10.1098/rspb.2007.0293] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Postcopulatory sexual selection favours males which are strong offensive and defensive sperm competitors. As a means of identifying component traits comprising each strategy, we used an experimental evolution approach. Separate populations of Drosophila melanogaster were selected for enhanced sperm offence and defence. Despite using a large outbred population and evidence of substantive genetic variation for each strategy, neither trait responded to selection in the two replicates of this experiment. Recent work with fixed chromosome lines of D. melanogaster suggests that complex genotypic interactions between females and competing males contribute to the maintenance of this variation. To determine whether such interactions could explain our lack of response to selection on sperm offence and defence, we quantified sperm precedence across multiple sperm competition bouts using an outbred D. melanogaster population exhibiting continuous genetic variation. Both offensive and defensive sperm competitive abilities were found to be significantly repeatable only across matings involving ejaculates of the same pair of males competing within the same female. These repeatabilities decreased when the rival male stayed the same but the female changed, and they disappeared when both the rival male and the female changed. Our results are discussed with a focus on the complex nature of sperm precedence and the maintenance of genetic variation in ejaculate characteristics.
Collapse
Affiliation(s)
- Adam Bjork
- Department of Biology, Syracuse University, 108 College Place, Syracuse, NY 13244-1270, USA.
| | | | | | | | | |
Collapse
|
34
|
Abstract
A large portion of the annotated genes in Drosophila melanogaster show sex-biased expression, indicating that sex and reproduction-related genes (SRR genes) represent an appreciable component of the genome. Previous studies, in which subsets of genes were compared among few Drosophila species, have found that SRR genes exhibit unusual evolutionary patterns. Here, we have used the newly released genome sequences from 12 Drosophila species, coupled to a larger set of SRR genes, to comprehensively test the generality of these patterns. Among 2505 SRR genes examined, including ESTs with biased expression in reproductive tissues and genes characterized as involved in gametogenesis, we find that a relatively high proportion of SRR genes have experienced accelerated divergence throughout the genus Drosophila. Several testis-specific genes, male seminal fluid proteins (SFPs), and spermatogenesis genes show lineage-specific bursts of accelerated evolution and positive selection. SFP genes also show evidence of lineage-specific gene loss and/or gain. These results bring us closer to understanding the details of the evolutionary dynamics of SRR genes with respect to species divergence.
Collapse
|
35
|
Dean MD, Good JM, Nachman MW. Adaptive evolution of proteins secreted during sperm maturation: an analysis of the mouse epididymal transcriptome. Mol Biol Evol 2007; 25:383-92. [PMID: 18056076 DOI: 10.1093/molbev/msm265] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A common pattern observed in molecular evolution is that reproductive genes tend to evolve rapidly. However, most previous studies documenting this rapid evolution are based on genes expressed in just a few male reproductive organs. In mammals, sperm become motile and capable of fertilization only after leaving the testis, during their transit through the epididymis. Thus, genes expressed in the epididymis are expected to play important roles in male fertility. Here, we performed evolutionary genetic analyses on the epididymal transcriptome of mice. Overall, epididymis-expressed genes showed evidence of strong evolutionary constraint, a finding that contrasts with most previous analyses of genes expressed in other male reproductive organs. However, a subset of epididymis-specialized, secreted genes showed several signatures of adaptive evolution, including an increased rate of nonsynonymous evolution. Furthermore, this subset of genes was overrepresented on the X chromosome. Immunity and protein modification functions were significantly overrepresented among epididymis-specialized, secreted genes. These analyses identified a group of genes likely to be important in male reproductive success.
Collapse
Affiliation(s)
- Matthew D Dean
- Department of Ecology and Evolutionary Biology, University of Arizona, USA.
| | | | | |
Collapse
|
36
|
Singh ND, Macpherson JM, Jensen JD, Petrov DA. Similar levels of X-linked and autosomal nucleotide variation in African and non-African populations of Drosophila melanogaster. BMC Evol Biol 2007; 7:202. [PMID: 17961244 PMCID: PMC2164965 DOI: 10.1186/1471-2148-7-202] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 10/25/2007] [Indexed: 11/26/2022] Open
Abstract
Background Levels of molecular diversity in Drosophila have repeatedly been shown to be higher in ancestral, African populations than in derived, non-African populations. This pattern holds for both coding and noncoding regions for a variety of molecular markers including single nucleotide polymorphisms and microsatellites. Comparisons of X-linked and autosomal diversity have yielded results largely dependent on population of origin. Results In an attempt to further elucidate patterns of sequence diversity in Drosophila melanogaster, we studied nucleotide variation at putatively nonfunctional X-linked and autosomal loci in sub-Saharan African and North American strains of D. melanogaster. We combine our experimental results with data from previous studies of molecular polymorphism in this species. We confirm that levels of diversity are consistently higher in African versus North American strains. The relative reduction of diversity for X-linked and autosomal loci in the derived, North American strains depends heavily on the studied loci. While the compiled dataset, comprised primarily of regions within or in close proximity to genes, shows a much more severe reduction of diversity on the X chromosome compared to autosomes in derived strains, the dataset consisting of intergenic loci located far from genes shows very similar reductions of diversities for X-linked and autosomal loci in derived strains. In addition, levels of diversity at X-linked and autosomal loci in the presumably ancestral African population are more similar than expected under an assumption of neutrality and equal numbers of breeding males and females. Conclusion We show that simple demographic scenarios under assumptions of neutral theory cannot explain all of the observed patterns of molecular diversity. We suggest that the simplest model is a population bottleneck that retains an ancestral female-biased sex ratio, coupled with higher rates of positive selection at X-linked loci in close proximity to genes specifically in derived, non-African populations.
Collapse
Affiliation(s)
- Nadia D Singh
- Department of Biological Sciences, Stanford University, Stanford, CA 94305 USA.
| | | | | | | |
Collapse
|
37
|
Panhuis TM, Nunney L. Insight into post-mating interactions between the sexes: relatedness suppresses productivity of singly mated female Drosophila melanogaster. J Evol Biol 2007; 20:1988-97. [PMID: 17714315 DOI: 10.1111/j.1420-9101.2007.01363.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Post-mating, prefertilization inbreeding avoidance (PPIA) is well established in plants but not in animals. Support for animal PPIA comes from sperm competition studies showing success of a male's gametes declining with his relatedness to the multiply mated female; however, such studies confound female-male and male-male interaction. To avoid this problem, we investigated offspring productivity of singly mated Drosophila melanogaster females using flies from four different genetic backgrounds. Our experiments established that intrapopulation crosses using highly related parents (within-strain) were significantly less productive than intrapopulation crosses using unrelated individuals from the same population (between-strain). Furthermore, we showed that these effects were not due to inbreeding depression. The average decrease in offspring productivity of within-strain crosses relative to between-strain crosses was 18.3% [nonlaboratory populations: Zimbabwe 20.3%, Riverside 11.4%, neither of which showed inbreeding depression; and temperature-adapted laboratory populations, uncorrected (corrected) for nonsignificant inbreeding depression: 18 degrees C, 26.5% (24.2%) and 29 degrees C, 20.1% (9.5%)]. The significant reduction of within-cross productivity demonstrates PPIA in the absence of multiple mating.
Collapse
Affiliation(s)
- T M Panhuis
- Department of Biology, University of California, Riverside, CA, USA.
| | | |
Collapse
|
38
|
Wagstaff BJ, Begun DJ. Adaptive evolution of recently duplicated accessory gland protein genes in desert Drosophila. Genetics 2007; 177:1023-30. [PMID: 17720912 PMCID: PMC2034610 DOI: 10.1534/genetics.107.077503] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The relationship between animal mating system variation and patterns of protein polymorphism and divergence is poorly understood. Drosophila provides an excellent system for addressing this issue, as there is abundant interspecific mating system variation. For example, compared to D. melanogaster subgroup species, repleta group species have higher remating rates, delayed sexual maturity, and several other interesting differences. We previously showed that accessory gland protein genes (Acp's) of Drosophila mojavensis and D. arizonae evolve more rapidly than Acp's in the D. melanogaster subgroup and that adaptive Acp protein evolution is likely more common in D. mojavensis/D. arizonae than in D. melanogaster/D. simulans. These findings are consistent with the idea that greater postcopulatory selection results in more adaptive evolution of seminal fluid proteins in the repleta group flies. Here we report another interesting evolutionary difference between the repleta group and the D. melanogaster subgroup Acp's. Acp gene duplications are present in D. melanogaster, but their high sequence divergence indicates that the fixation rate of duplicated Acp's has been low in this lineage. Here we report that D. mojavensis and D. arizonae genomes contain several very young duplicated Acp's and that these Acp's have experienced very rapid, adaptive protein divergence. We propose that rapid remating of female desert Drosophila generates selection for continuous diversification of the male Acp complement to improve male fertilization potential. Thus, mating system variation may be associated with adaptive protein divergence as well as with duplication of Acp's in Drosophila.
Collapse
Affiliation(s)
- Bradley J Wagstaff
- Section of Integrative Biology, University of Texas, Austin, Texas 78712, USA.
| | | |
Collapse
|
39
|
Lawniczak MKN, Begun DJ. Molecular population genetics of female-expressed mating-induced serine proteases in Drosophila melanogaster. Mol Biol Evol 2007; 24:1944-51. [PMID: 17573377 DOI: 10.1093/molbev/msm122] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Population genetic analyses have shown that directional selection causes amino acid substitution in several seminal fluid proteins (Acps) and that in general, Acps tend to diverge rapidly. If rapid, adaptive divergence of such male reproduction-related genes is driven by sexual conflict, we might also expect to observe rapid, adaptive evolution in female reproduction-related genes, especially those mediating conflicts between the sexes. Female expressed genes differentially expressed shortly after mating were recently identified using whole genome expression micro-arrays. Such genes may play roles in storing sperm and mediating effects of seminal fluid proteins. Here, we report the results of a molecular population genetic survey from five female reproductive tract expressed serine proteases that show increased transcription shortly after mating. These genes are evolving rapidly, in some cases under directional selection, consistent with models of conflict.
Collapse
Affiliation(s)
- Mara K N Lawniczak
- Center for Population Biology, Section of Evolution and Ecology, University of California, Davis, USA.
| | | |
Collapse
|
40
|
Fiumera AC, Dumont BL, Clark AG. Associations between sperm competition and natural variation in male reproductive genes on the third chromosome of Drosophila melanogaster. Genetics 2007; 176:1245-60. [PMID: 17435238 PMCID: PMC1894588 DOI: 10.1534/genetics.106.064915] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 04/07/2007] [Indexed: 01/10/2023] Open
Abstract
We applied association analysis to elucidate the genetic basis for variation in phenotypes affecting postcopulatory sexual selection in a natural population of Drosophila melanogaster. We scored 96 third chromosome substitution lines for nine phenotypes affecting sperm competitive ability and genotyped them at 72 polymorphisms in 13 male reproductive genes. Significant heterogeneity among lines (P < 0.01) was detected for all phenotypes except male-induced refractoriness (P = 0.053). We identified 24 associations (8 single-marker associations, 12 three-marker haplotype associations, and 4 cases of epistasis revealed by single-marker interactions). Fewer than 9 of these associations are likely to be false positives. Several associations were consistent with previous findings [Acp70A with the male's influence on the female's refractoriness to remating (refractory), Esterase-6 with a male's remating probability (remating) and a measure of female offspring production (fecundity)], but many are novel associations with uncharacterized seminal fluid proteins. Four genes showed evidence for pleiotropic effects [CG6168 with a measure of sperm competition (P2') and refractory, CG14560 with a defensive measure of sperm competition (P1') and a measure of female fecundity, Acp62F with P2' and a measure of female fecundity, and Esterase-6 with remating and a measure of female fecundity]. Our findings provide evidence that pleiotropy and epistasis are important factors in the genetic architecture of male reproductive success and show that haplotype analyses can identify associations missed in the single-marker approach.
Collapse
Affiliation(s)
- Anthony C Fiumera
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
41
|
Sánchez-Gracia A, Rozas J. Unusual pattern of nucleotide sequence variation at the OS-E and OS-F genomic regions of Drosophila simulans. Genetics 2007; 175:1923-35. [PMID: 17277360 PMCID: PMC1855126 DOI: 10.1534/genetics.106.068015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleotide variation at the genomic region encompassing the odorant-binding protein genes OS-E and OS-F (OS region) was surveyed in two populations of Drosophila simulans, one from Europe and the other from Africa. We found that the European population shows an atypical and large haplotype structure, which extends throughout the approximately 5-kb surveyed genomic region. This structure is depicted by two major haplotype groups segregating at intermediate frequency in the sample, one haplogroup with nearly no variation, and the other at levels more typical for this species. This pattern of variation was incompatible with neutral predictions for a population at a stationary equilibrium. Nevertheless, neutrality tests contrasting polymorphism and divergence data fail to detect any departure from the standard neutral model in this species, whereas they confirm the non-neutral behavior previously observed at the OS-E gene in D. melanogaster. Although positive Darwinian selection may have been responsible for the observed unusual nucleotide variation structure, coalescent simulation results do not allow rejecting the hypothesis that the pattern was generated by a recent bottleneck in the history of European populations of D. simulans.
Collapse
|
42
|
Pröschel M, Zhang Z, Parsch J. Widespread adaptive evolution of Drosophila genes with sex-biased expression. Genetics 2006; 174:893-900. [PMID: 16951084 PMCID: PMC1602082 DOI: 10.1534/genetics.106.058008] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 08/09/2006] [Indexed: 01/22/2023] Open
Abstract
Many genes in higher eukaryotes show sexually dimorphic expression, and these genes tend to be among the most divergent between species. In most cases, however, it is not known whether this rapid divergence is caused by positive selection or if it is due to a relaxation of selective constraint. To distinguish between these two possibilities, we surveyed DNA sequence polymorphism in 91 Drosophila melanogaster genes with male-, female-, or nonsex-biased expression and determined their divergence from the sister species D. simulans. Using several single- and multilocus statistical tests, we estimated the type and strength of selection influencing the evolution of the proteins encoded by genes of each expression class. Adaptive evolution, as indicated by a relative excess of nonsynonymous divergence between species, was common among the sex-biased genes (both male and female). Male-biased genes, in particular, showed a strong and consistent signal of positive selection, while female-biased genes showed more variation in the type of selection they experience. Genes expressed equally in the two sexes, in contrast, showed no evidence for adaptive evolution between D. melanogaster and D. simulans. This suggests that sexual selection and intersexual coevolution are the major forces driving genetic differentiation between species.
Collapse
Affiliation(s)
- Matthias Pröschel
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), 82152 Munich, Germany
| | | | | |
Collapse
|
43
|
Zurovcová M, Tatarenkov A, Berec L. Differences in the pattern of evolution in six physically linked genes of Drosophila melanogaster. Gene 2006; 381:24-33. [PMID: 16914271 DOI: 10.1016/j.gene.2006.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 05/02/2006] [Accepted: 06/01/2006] [Indexed: 11/21/2022]
Abstract
We describe DNA sequence polymorphisms at six loci (Acp26Aa, Acp26Ab, Acp29AB, Idgf1, Idgf3 and Ddc), all on the second chromosome of Drosophila melanogaster in one natural European population. Previous studies considering these loci separately showed that some of them were affected by natural selection. However, demographic processes or population admixture can produce footprints similar to natural selection. Simultaneous consideration of several genes may help to discern between selective and demography/admixture scenarios because the latter are expected to affect a majority of loci in a similar manner. Such an effect is not necessarily uniform among genes, but can be modified by rates of recombination and substitution. Since different evolutionary forces shaped the variation of the studied genes, our aim is to examine if their physical linkage could have affected the observed pattern. Fisher's conservative test of linkage disequilibrium is not significant. Lewontin's sign test pointed to linkage disequilibrium both within and between loci levels, though, none of the loci exhibits haplotype structure. Coupled with other results, the possibility of demography being the exclusive explanation for the observed variability is ruled out.
Collapse
Affiliation(s)
- Martina Zurovcová
- Institute of Entomology, Czech Academy of Sciences and Faculty of Biological Sciences, University of South Bohemia, Branisovská 31, 370 05 Ceské Budejovice, Czech Republic.
| | | | | |
Collapse
|
44
|
Turner LM, Hoekstra HE. Adaptive evolution of fertilization proteins within a genus: variation in ZP2 and ZP3 in deer mice (Peromyscus). Mol Biol Evol 2006; 23:1656-69. [PMID: 16774977 DOI: 10.1093/molbev/msl035] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rapid evolution of reproductive proteins has been documented in a wide variety of taxa. In internally fertilized species, knowledge about the evolutionary dynamics of these proteins between closely related taxa is primarily limited to accessory gland proteins in the semen of Drosophila. Investigation of additional taxa and functional classes of proteins is necessary in order to determine if there is a general pattern of adaptive evolution of reproductive proteins between recently diverged species. We performed an evolutionary analysis of 2 egg coat proteins, ZP2 and ZP3, in 15 species of deer mice (genus Peromyscus). Both of these proteins are involved in egg-sperm binding, a critical step in maintaining species-specific fertilization. Here, we show that Zp2 and Zp3 gene trees are not consistent with trees based on nonreproductive genes, Mc1r and Lcat, where species formed monophyletic clades. In fact, for both of the reproductive genes, intraspecific amino acid variation was extensive and alleles were sometimes shared across species. We document positive selection acting on ZP2 and ZP3 and identify specific amino acid sites that are likely targets of selection using both maximum likelihood approaches and patterns of parallel amino acid change. In ZP3, positively selected sites are clustered in and around the region implicated in sperm binding in Mus, suggesting changes may impact egg-sperm binding and fertilization potential. Finally, we identify lineages with significantly elevated rates of amino acid substitution using a Bayesian mapping approach. These findings demonstrate that the pattern of adaptive reproductive protein evolution found at higher taxonomic levels can be documented between closely related mammalian species, where reproductive isolation has evolved recently.
Collapse
Affiliation(s)
- Leslie M Turner
- Division of Biological Sciences, University of California, San Diego, USA.
| | | |
Collapse
|
45
|
Andrés JA, Maroja LS, Bogdanowicz SM, Swanson WJ, Harrison RG. Molecular evolution of seminal proteins in field crickets. Mol Biol Evol 2006; 23:1574-84. [PMID: 16731569 DOI: 10.1093/molbev/msl020] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In sexually reproducing organisms, male ejaculates are complex traits that are potentially subject to many different selection pressures. Recent experimental evidence supports the hypothesis that postmating sexual selection, and particularly sexual conflict, may play a key role in the evolution of the proteinaceous components of ejaculates. However, this evidence is based almost entirely on the study of Drosophila, a species with a mating system characterized by a high cost of mating for females. In this paper, we broaden our understanding of the role of selection on the evolution of seminal proteins by characterizing these proteins in field crickets, a group of insects in which females appear to benefit from mating multiply. We have used an experimental protocol that can be applied to other organisms for which complete genome sequences are not yet available. By combining an evolutionary expressed sequence tag screen of the male accessory gland in 2 focal species (Gryllus firmus and Gryllus pennsylvanicus) with a bioinformatics approach, we have been able to identify as many as 30 seminal proteins. Evolutionary analyses among 5 species of the genus Gryllus suggest that seminal protein genes evolve more rapidly than genes encoding proteins that are not involved with reproduction. The rates of synonymous substitution (dS) are similar in genes encoding seminal proteins and genes encoding "housekeeping" proteins. For the same comparison, the rate of fixation of nonsynonymous substitutions (dN) is 3 times higher in genes encoding seminal proteins, suggesting that the divergence of seminal proteins in field crickets has been accelerated by positive Darwinian selection. In spite of the contrasting characteristics of the Drosophila and Gryllus mating systems, the mean selection parameter omega and the proportion of loci estimated to be affected by positive selection are very similar.
Collapse
Affiliation(s)
- José A Andrés
- Department of Ecology and Evolutionary Biology, Cornell University, USA.
| | | | | | | | | |
Collapse
|
46
|
FRICKE C, ARNQVIST G, AMARO N. Female modulation of reproductive rate and its role in postmating prezygotic isolation in Callosobruchus maculatus. Funct Ecol 2006. [DOI: 10.1111/j.1365-2435.2006.01102.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Begun DJ, Lindfors HA, Thompson ME, Holloway AK. Recently evolved genes identified from Drosophila yakuba and D. erecta accessory gland expressed sequence tags. Genetics 2006; 172:1675-81. [PMID: 16361246 PMCID: PMC1456303 DOI: 10.1534/genetics.105.050336] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 11/22/2005] [Indexed: 01/15/2023] Open
Abstract
The fraction of the genome associated with male reproduction in Drosophila may be unusually dynamic. For example, male reproduction-related genes show higher-than-average rates of protein divergence and gene expression evolution compared to most Drosophila genes. Drosophila male reproduction may also be enriched for novel genetic functions. Our earlier work, based on accessory gland protein genes (Acp's) in D. simulans and D. melanogaster, suggested that the melanogaster subgroup Acp's may be lost and/or gained on a relatively rapid timescale. Here we investigate this possibility more thoroughly through description of the accessory gland transcriptome in two melanogaster subgroup species, D. yakuba and D. erecta. A genomic analysis of previously unknown genes isolated from cDNA libraries of these species revealed several cases of genes present in one or both species, yet absent from ingroup and outgroup species. We found no evidence that these novel genes are attributable primarily to duplication and divergence, which suggests the possibility that Acp's or other genes coding for small proteins may originate from ancestrally noncoding DNA.
Collapse
Affiliation(s)
- David J Begun
- Section of Evolution and Ecology, University of California, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
48
|
Panhuis TM, Clark NL, Swanson WJ. Rapid evolution of reproductive proteins in abalone and Drosophila. Philos Trans R Soc Lond B Biol Sci 2006; 361:261-8. [PMID: 16612885 PMCID: PMC1569613 DOI: 10.1098/rstb.2005.1793] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Observations from different taxa, including plants, protozoa, insects and mammals, indicate that proteins involved in reproduction evolve rapidly. Several models of adaptive evolution have been proposed to explain this phenomenon, such as sexual conflict, sexual selection, self versus non-self recognition and pathogen resistance. Here we discuss the potential role of sexual conflict in the rapid evolution of reproductive genes in two different animal systems, abalone (Haliotis) and Drosophila. In abalone, we reveal how specific interacting sperm-egg proteins were identified and discuss this identification in the light of models for rapid protein evolution and speciation. For Drosophila, we describe the genomic approaches taken to identify male accessory gland proteins and female reproductive tract proteins. Patterns of protein evolution from both abalone and Drosophila support the predicted patterns of rapid protein evolution driven by sexual conflict. We stress however that other selective pressures may contribute to the rapid evolution that is observed. We conclude that the key to distinguishing between sexual conflict and other mechanisms of protein evolution will be an integration of genetic, experimental and theoretical data.
Collapse
Affiliation(s)
| | | | - Willie J Swanson
- Department of Genome Sciences, University of WashingtonPO Box 357730, Seattle, WA 98195-7730, USA
| |
Collapse
|
49
|
Mueller JL, Ravi Ram K, McGraw LA, Bloch Qazi MC, Siggia ED, Clark AG, Aquadro CF, Wolfner MF. Cross-species comparison of Drosophila male accessory gland protein genes. Genetics 2005; 171:131-43. [PMID: 15944345 PMCID: PMC1456506 DOI: 10.1534/genetics.105.043844] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 05/19/2005] [Indexed: 12/23/2022] Open
Abstract
Drosophila melanogaster males transfer seminal fluid proteins along with sperm during mating. Among these proteins, ACPs (Accessory gland proteins) from the male's accessory gland induce behavioral, physiological, and life span reduction in mated females and mediate sperm storage and utilization. A previous evolutionary EST screen in D. simulans identified partial cDNAs for 57 new candidate ACPs. Here we report the annotation and confirmation of the corresponding Acp genes in D. melanogaster. Of 57 new candidate Acp genes previously reported in D. melanogaster, 34 conform to our more stringent criteria for encoding putative male accessory gland extracellular proteins, thus bringing the total number of ACPs identified to 52 (34 plus 18 previously identified). This comprehensive set of Acp genes allows us to dissect the patterns of evolutionary change in a suite of proteins from a single male-specific reproductive tissue. We used sequence-based analysis to examine codon bias, gene duplications, and levels of divergence (via dN/dS values and ortholog detection) of the 52 D. melanogaster ACPs in D. simulans, D. yakuba, and D. pseudoobscura. We show that 58% of the 52 D. melanogaster Acp genes are detectable in D. pseudoobscura. Sequence comparisons of ACPs shared and not shared between D. melanogaster and D. pseudoobscura show that there are separate classes undergoing distinctly dissimilar evolutionary dynamics.
Collapse
Affiliation(s)
- J L Mueller
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wagstaff BJ, Begun DJ. Molecular population genetics of accessory gland protein genes and testis-expressed genes in Drosophila mojavensis and D. arizonae. Genetics 2005; 171:1083-101. [PMID: 16085702 PMCID: PMC1456813 DOI: 10.1534/genetics.105.043372] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Molecular population genetic investigation of Drosophila male reproductive genes has focused primarily on melanogaster subgroup accessory gland protein genes (Acp's). Consistent with observations from male reproductive genes of numerous taxa, Acp's evolve more rapidly than nonreproductive genes. However, within the Drosophila genus, large data sets from additional types of male reproductive genes and from different species groups are lacking. Here we report findings from a molecular population genetics analysis of male reproductive genes of the repleta group species, Drosophila arizonae and D. mojavensis. We find that Acp's have dramatically higher average pairwise Ka/Ks (0.93) than testis-enriched genes (0.19) and previously reported melanogaster subgroup Acp's (0.42). Overall, 10 of 19 Acp's have Ka/Ks > 1 either in nonpolarized analyses or in at least one lineage of polarized analyses. Of the nine Acp's for which outgroup data were available, average Ka/Ks was considerably higher in D. mojavensis (2.08) than in D. arizonae (0.87). Contrasts of polymorphism and divergence suggest that adaptive protein evolution at Acp's is more common in D. mojavensis than in D. arizonae.
Collapse
Affiliation(s)
- Bradley J Wagstaff
- Section of Integrative Biology, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|