1
|
Female Meiosis: Synapsis, Recombination, and Segregation in Drosophila melanogaster. Genetics 2018; 208:875-908. [PMID: 29487146 PMCID: PMC5844340 DOI: 10.1534/genetics.117.300081] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
A century of genetic studies of the meiotic process in Drosophila melanogaster females has been greatly augmented by both modern molecular biology and major advances in cytology. These approaches, and the findings they have allowed, are the subject of this review. Specifically, these efforts have revealed that meiotic pairing in Drosophila females is not an extension of somatic pairing, but rather occurs by a poorly understood process during premeiotic mitoses. This process of meiotic pairing requires the function of several components of the synaptonemal complex (SC). When fully assembled, the SC also plays a critical role in maintaining homolog synapsis and in facilitating the maturation of double-strand breaks (DSBs) into mature crossover (CO) events. Considerable progress has been made in elucidating not only the structure, function, and assembly of the SC, but also the proteins that facilitate the formation and repair of DSBs into both COs and noncrossovers (NCOs). The events that control the decision to mature a DSB as either a CO or an NCO, as well as determining which of the two CO pathways (class I or class II) might be employed, are also being characterized by genetic and genomic approaches. These advances allow a reconsideration of meiotic phenomena such as interference and the centromere effect, which were previously described only by genetic studies. In delineating the mechanisms by which the oocyte controls the number and position of COs, it becomes possible to understand the role of CO position in ensuring the proper orientation of homologs on the first meiotic spindle. Studies of bivalent orientation have occurred in the context of numerous investigations into the assembly, structure, and function of the first meiotic spindle. Additionally, studies have examined the mechanisms ensuring the segregation of chromosomes that have failed to undergo crossing over.
Collapse
|
2
|
Telomere length is associated with types of chromosome 21 nondisjunction: a new insight into the maternal age effect on Down syndrome birth. Hum Genet 2011; 127:403-9. [PMID: 20063167 DOI: 10.1007/s00439-009-0785-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 12/30/2009] [Indexed: 12/11/2022]
Abstract
Advanced maternal age is a well-documented risk factor of chromosome 21 nondisjunction in humans, but understanding of this association at the genetic level is still limited. In particular, the state of maternal genetic age is unclear. In the present study, we estimated maternal genetic age by measuring telomere length of peripheral blood lymphocytes among age-matched mothers of children with Down syndrome (cases: N = 75) and mothers of euploid children (controls: N = 75) in an age range of 18-42 years. All blood samples were taken within 1 week of the birth of the child in both cases and controls. The telomere length estimation was performed by restriction digestion--Southern blot hybridization method. We stratified the cases on the basis of centromeric STR genotyping into maternal meiosis I (N = 48) and maternal meiosis II (N = 27) nondisjunction groups and used linear regression to compare telomere length as a function of age in the euploid, meiosis I and meiosis II groups. Our results show that all three groups have similar telomere length on average for younger mothers. As age increases, all groups show telomere loss, but that loss is largest in the meiosis II mother group and smallest in the euploid mother group with the meiosis I mother group in the middle. The regression lines for all three were statistically significantly different from each other (p < 0.001). Our results do not support the theory that younger women who have babies with Down syndrome do so because are 'genetically older' than their chronological age, but we provide the first evidence that older mothers who have babies with Down syndrome are 'genetically older' than controls, who have euploid babies at the same age. We also show for the first time that telomere length attrition may be associated in some way with meiosis I and meiosis II nondisjunction of chromosome 21 and subsequent Down syndrome births at advanced maternal age.
Collapse
|
3
|
Chromosome 21 non-disjunction and Down syndrome birth in an Indian cohort: analysis of incidence and aetiology from family linkage data. Genet Res (Camb) 2010; 92:189-97. [DOI: 10.1017/s0016672310000224] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
SummaryWe analysed the family linkage data obtained from short tandem repeat (STR) genotyping of 212 unrelated Indian families having a single Down syndrome (DS) baby each, in order to explore the incidence and aetiology of this human aneuploidy in our cohort. The estimated values of maternal meiotic I and meiotic II non-disjunction (NDJ) errors of chromosome 21 (Ch 21) were ~78 and ~22%, respectively. Within the paternal outcome group, about 47 and 53% were accounted for NDJ at meiosis I and meiosis II, respectively. We estimated only ~2% post-zygotic mitotic errors. The comparison of average age of conception between controls and DS-bearing mothers revealed a significant difference (P<0·001) with DS-bearing women were on an average older than controls and meiotic II non-disjoined mothers were oldest among meiotic outcome groups. Our linkage analysis suggested an overall reduction in recombination by more than 50% on meiotic I non-disjoined maternal Ch 21 with error prone to susceptible chiasma formation within the ~5·1 kbp segment near the telomeric end. We stratified meiotic I non-disjoined women in three age groups, viz. young (⩽28 years), middle (29–34 years) and old (⩾35 years) and found linear decrease in the frequency of achiasmate meiosis from the young to the old group. In contrary, a linear increase in the multiple chiasma frequency from the young to the old group was observed. Considering these results together, we propose that the risk factors for Ch 21 NDJ are of two types, one being ‘maternal age-independent’ and the other being ‘maternal age-dependent’. Moreover, a comparison of our present Indian dataset with that of other published data of ethnically different populations suggested that the genetics that underlies the NDJ of Ch 21 is probably universal irrespective of racial difference across human populations. The present study is the first population-based report on any DS cohort from the Indian subcontinent and our work will help future workers in understanding better the aetiology of this birth defect.
Collapse
|
4
|
Subramanian VV, Bickel SE. Heterochromatin-mediated association of achiasmate homologs declines with age when cohesion is compromised. Genetics 2009; 181:1207-18. [PMID: 19204374 PMCID: PMC2666492 DOI: 10.1534/genetics.108.099846] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 01/29/2009] [Indexed: 11/18/2022] Open
Abstract
Normally, meiotic crossovers in conjunction with sister-chromatid cohesion establish a physical connection between homologs that is required for their accurate segregation during the first meiotic division. However, in some organisms an alternative mechanism ensures the proper segregation of bivalents that fail to recombine. In Drosophila oocytes, accurate segregation of achiasmate homologs depends on pairing that is mediated by their centromere-proximal heterochromatin. Our previous work uncovered an unexpected link between sister-chromatid cohesion and the fidelity of achiasmate segregation when Drosophila oocytes are experimentally aged. Here we show that a weak mutation in the meiotic cohesion protein ORD coupled with a reduction in centromere-proximal heterochromatin causes achiasmate chromosomes to missegregate with increased frequency when oocytes undergo aging. If ORD activity is more severely disrupted, achiasmate chromosomes with the normal amount of pericentric heterochromatin exhibit increased nondisjunction when oocytes age. Significantly, even in the absence of aging, a weak ord allele reduces heterochromatin-mediated pairing of achiasmate chromosomes. Our data suggest that sister-chromatid cohesion proteins not only maintain the association of chiasmate homologs but also play a role in promoting the physical association of achiasmate homologs in Drosophila oocytes. In addition, our data support the model that deterioration of meiotic cohesion during the aging process compromises the segregation of achiasmate as well as chiasmate bivalents.
Collapse
|
5
|
|
6
|
Abstract
Recombination has essential functions in mammalian meiosis, which impose several constraints on the recombination process. However, recent studies have shown that, in spite of these roles, recombination rates vary tremendously among humans, and show marked differences between humans and closely related species. These findings provide important insights into the determinants of recombination rates and raise new questions about the selective pressures that affect recombination over different genomic scales, with implications for human genetics and evolutionary biology.
Collapse
Affiliation(s)
- Graham Coop
- Department of Human Genetics, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | | |
Collapse
|
7
|
Abstract
By comparison with other species, the meiotic process in the human female is extraordinarily error-prone. In addition to the well-known effect of advancing maternal age, recent studies have demonstrated that the number and location of meiotic recombination events influences the likelihood of meiotic non-disjunction in our species. Although this association extends to many other organisms, the factors that influence the number and placement of exchanges within a cell remain poorly understood. Like other aspects of meiosis, the control of recombination is likely to be subject to variation among species. In this review we summarize data from recent studies in mammals; the combined data suggest that both genetic and environmental factors influence recombination in mammals and, importantly, that control mechanisms probably differ between males and females.
Collapse
Affiliation(s)
- P A Hunt
- School of Molecular Biosciences and Center for Reproduction, Fulmer Hall 539, Washington State University, P.O. Box 644660, Pullman, WA 99164-4660, USA.
| |
Collapse
|
8
|
Sun F, Trpkov K, Rademaker A, Ko E, Martin RH. Variation in meiotic recombination frequencies among human males. Hum Genet 2004; 116:172-8. [PMID: 15578224 DOI: 10.1007/s00439-004-1215-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 10/13/2004] [Indexed: 01/20/2023]
Abstract
Meiotic recombination is essential for the segregation of homologous chromosomes and the formation of normal haploid gametes. Little is known about patterns of meiotic recombination in human germ cells or the mechanisms that control these patterns. Here, newly developed immunofluorescence techniques, based on the detection of MLH1 (a DNA mismatch repair protein) foci on synaptonemal complexes (SCs) at prophase I of meiosis, were used to examine recombination in human spermatocytes. The mean number of MLH1 foci per cell in all donors was 48.0 with range from 21 to 65. Remarkable variation in the recombination frequency was noted among 11 normal individuals: the mean frequencies of chromosomal recombination foci ranged from a low of 42.5 to a high of 55.0 exchanges. Donor age did not contribute to this variation. There was no correlation between this variation and the frequency of gaps (discontinuities) or splits (unpaired chromosome regions) in the SCs. The mean percentage of cells with gaps was 35% (range: 20% to 58%) and with splits was 7% (range: 0% to 37%). Bivalents without a recombination focus were rare, with a frequency of only 0.3%. Thus, achiasmate chromosomes appear to be rare in human male meiosis.
Collapse
Affiliation(s)
- Fei Sun
- Department of Medical Genetics, University of Calgary, Calgary, T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Koehler KE, Cherry JP, Lynn A, Hunt PA, Hassold TJ. Genetic Control of Mammalian Meiotic Recombination. I. Variation in Exchange Frequencies Among Males From Inbred Mouse Strains. Genetics 2002; 162:297-306. [PMID: 12242241 PMCID: PMC1462263 DOI: 10.1093/genetics/162.1.297] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractGenetic background effects on the frequency of meiotic recombination have long been suspected in mice but never demonstrated in a systematic manner, especially in inbred strains. We used a recently described immunostaining technique to assess meiotic exchange patterns in male mice. We found that among four different inbred strains—CAST/Ei, A/J, C57BL/6, and SPRET/Ei—the mean number of meiotic exchanges per cell and, thus, the recombination rates in these genetic backgrounds were significantly different. These frequencies ranged from a low of 21.5 exchanges in CAST/Ei to a high of 24.9 in SPRET/Ei. We also found that, as expected, these crossover events were nonrandomly distributed and displayed positive interference. However, we found no evidence for significant differences in the patterns of crossover positioning between strains with different exchange frequencies. From our observations of >10,000 autosomal synaptonemal complexes, we conclude that achiasmate bivalents arise in the male mouse at a frequency of 0.1%. Thus, special mechanisms that segregate achiasmate chromosomes are unlikely to be an important component of mammalian male meiosis.
Collapse
Affiliation(s)
- Kara E Koehler
- Department of Genetics and Center for Human Genetics, Case Western Reserve University School of Medicine and the University Hospitals of Cleveland, Cleveland, Ohio 44106-4955, USA
| | | | | | | | | |
Collapse
|
11
|
Yu K, Feingold E. Methods for analyzing the spatial distribution of chiasmata during meiosis based on recombination data. Biometrics 2002; 58:369-77. [PMID: 12071410 DOI: 10.1111/j.0006-341x.2002.00369.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Using genetic recombination data to make inferences about chiasmata on the tetrad during meiosis is a classic problem dating back to Weinstein's paper in 1936 (Genetics 21, 155-199). In the last few years, Weinstein's methods have been revived and applied to new problems, but a number of important statistical issues remain unresolved. Recently, we developed improved statistical methods for studying the frequency distribution of the number of chiasmata (Yu and Feingold, 2001, Biometrics 57, 427-434). In the current article, we develop methods for the complementary issue of studying the spatial distribution of chiasmata. Somewhat different statistical approaches are needed for the spatial problem than for the frequency problem because different scientific questions are of interest. We explore the properties of the maximum likelihood estimate (MLE) for chiasma spatial distributions and propose improvements to the estimation procedures. We develop a class of statistical tests for comparing chiasma patterns in tetrads that have undergone normal meiosis and tetrads that have had a nondisjunction event. Finally, we propose an EM algorithm to find the MLE when the observed data is ambiguous, as is often the case in human datasets. We apply our improved methods to reanalyze a dataset from the literature studying the association between crossover location and meiotic nondisjunction of chromosome 21.
Collapse
Affiliation(s)
- Kai Yu
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
12
|
Abstract
Estimation of tetrad crossover frequency distributions from genetic recombination data is a classic problem dating back to Weinstein (1936, Genetics 21, 155-199). But a number of important issues, such as how to specify the maximum number of crossovers, how to construct confidence intervals for crossover probabilities, and how to obtain correct p-values for hypothesis tests, have never been adequately addressed. In this article, we obtain some properties of the maximum likelihood estimate (MLE) for crossover probabilities that imply guidelines for choosing the maximum number of crossovers. We give these results for both normal meiosis and meiosis with nondisjunction. We also develop an accelerated EM algorithm to find the MLE more efficiently. We propose bootstrap-based methods to find confidence intervals and p-values and conduct simulation studies to check the validity of the bootstrap approach.
Collapse
Affiliation(s)
- K Yu
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
13
|
Zwick ME, Salstrom JL, Langley CH. Genetic variation in rates of nondisjunction: association of two naturally occurring polymorphisms in the chromokinesin nod with increased rates of nondisjunction in Drosophila melanogaster. Genetics 1999; 152:1605-14. [PMID: 10430586 PMCID: PMC1460721 DOI: 10.1093/genetics/152.4.1605] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genetic variation in nondisjunction frequency among X chromosomes from two Drosophila melanogaster natural populations is examined in a sensitized assay. A high level of genetic variation is observed (a range of 0.006-0.241). Two naturally occurring variants at the nod locus, a chromokinesin required for proper achiasmate chromosome segregation, are significantly associated with an increased frequency of nondisjunction. Both of these polymorphisms are found at intermediate frequency in widely distributed natural populations. To account for these observations, we propose a general model incorporating unique opportunities for meiotic drive during female meiosis. The oötid competition model can account for both high mean rates of female-specific nondisjunction in Drosophila and humans as well as the standing genetic variation in this critical fitness character in natural populations.
Collapse
Affiliation(s)
- M E Zwick
- Center for Population Biology, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|