1
|
Li LL, Xiao Y, Wang X, He ZH, Lv YW, Hu XS. The Ka /Ks and πa /πs Ratios under Different Models of Gametophytic and Sporophytic Selection. Genome Biol Evol 2023; 15:evad151. [PMID: 37561000 PMCID: PMC10443736 DOI: 10.1093/gbe/evad151] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
Alternation of generations in plant life cycle provides a biological basis for natural selection occurring in either the gametophyte or the sporophyte phase or in both. Divergent biphasic selection could yield distinct evolutionary rates for phase-specific or pleiotropic genes. Here, we analyze models that deal with antagonistic and synergistic selection between alternative generations in terms of the ratio of nonsynonymous to synonymous divergence (Ka/Ks). Effects of biphasic selection are opposite under antagonistic selection but cumulative under synergistic selection for pleiotropic genes. Under the additive and comparable strengths of biphasic allelic selection, the absolute Ka/Ks for the gametophyte gene is equal to in outcrossing but smaller than, in a mixed mating system, that for the sporophyte gene under antagonistic selection. The same pattern is predicted for Ka/Ks under synergistic selection. Selfing reduces efficacy of gametophytic selection. Other processes, including pollen and seed flow and genetic drift, reduce selection efficacy. The polymorphism (πa) at a nonsynonymous site is affected by the joint effects of selfing with gametophytic or sporophytic selection. Likewise, the ratio of nonsynonymous to synonymous polymorphism (πa/πs) is also affected by the same joint effects. Gene flow and genetic drift have opposite effects on πa or πa/πs in interacting with gametophytic and sporophytic selection. We discuss implications of this theory for detecting natural selection in terms of Ka/Ks and for interpreting the evolutionary divergence among gametophyte-specific, sporophyte-specific, and pleiotropic genes.
Collapse
Affiliation(s)
- Ling-Ling Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Yu Xiao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Xi Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Han He
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Yan-Wen Lv
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Sheng Hu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Trickovic B, Glémin S. Establishment of local adaptation in partly self-fertilizing populations. Genetics 2021; 220:6428547. [PMID: 34791199 PMCID: PMC9208650 DOI: 10.1093/genetics/iyab201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/21/2021] [Indexed: 11/12/2022] Open
Abstract
Populations often inhabit multiple ecological patches and thus experience divergent selection, which can lead to local adaptation if migration is not strong enough to swamp locally adapted alleles. Conditions for the establishment of a locally advantageous allele have been studied in randomly mating populations. However, many species reproduce, at least partially, through self-fertilization, and how selfing affects local adaptation remains unclear and debated. Using a two-patch branching process formalism, we obtained a closed-form approximation under weak selection for the probability of establishment of a locally advantageous allele (P) for arbitrary selfing rate and dominance level, where selection is allowed to act on viability or fecundity, and migration can occur via seed or pollen dispersal. This solution is compared to diffusion approximation and used to investigate the consequences of a shift in a mating system on P, and the establishment of protected polymorphism. We find that selfing can either increase or decrease P, depending on the patterns of dominance in the two patches, and has conflicting effects on local adaptation. Globally, selfing favors local adaptation when locally advantageous alleles are (partially) recessive, when selection between patches is asymmetrical and when migration occurs through pollen rather than seed dispersal. These results establish a rigorous theoretical background to study heterogeneous selection and local adaptation in partially selfing species.
Collapse
Affiliation(s)
- Bogi Trickovic
- Center for Mechanisms of Evolution, Arizona State University, AZ 85281, Tempe, United States of America
| | - Sylvain Glémin
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversityé, évolution)] - UMR 6553, Rennes, France.,Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Glémin S. Balancing selection in self-fertilizing populations. Evolution 2021; 75:1011-1029. [PMID: 33675041 DOI: 10.1111/evo.14194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/17/2021] [Indexed: 11/30/2022]
Abstract
Self-fertilization commonly occurs in hermaphroditic species, either occasionally or as the main reproductive mode. It strongly affects the genetic functioning of a population by increasing homozygosity and genetic drift and reducing the effectiveness of recombination. Balancing selection is a form of selection that maintains polymorphism, which has been extensively studied in outcrossing species. Yet, despite recent developments, the analysis of balancing selection in partially selfing species is limited to specific cases and a general treatment is still lacking. In particular, it is unclear whether selfing globally reduced the efficacy of balancing selection as in the well-known case of overdominance. I provide a unifying framework, quantify how selfing affects the maintenance of polymorphism and the efficacy of the different form of balancing selection, and show that they can be classified into two main categories: overdominance-like selection (including true overdominance, selection variable in space and time, and antagonistic selection), which is strongly affected by selfing, and negative frequency dependent selection, which is barely affected by selfing, even at multiple loci. I also provide simple analytical results for all cases under the assumption of weak selection. This framework provides theoretical background to analyze the genomic signature of balancing selection in partially selfing species. It also sheds new light on the evolution of selfing species, including the evolution of selfing syndrome, the interaction with pathogens, and the evolutionary fate of selfing lineages.
Collapse
Affiliation(s)
- Sylvain Glémin
- CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution), University of Rennes 1, UMR 6553, Rennes, France.,Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, 752 36, Sweden
| |
Collapse
|
4
|
Newberry MG, McCandlish DM, Plotkin JB. Assortative mating can impede or facilitate fixation of underdominant alleles. Theor Popul Biol 2016; 112:14-21. [PMID: 27497738 DOI: 10.1016/j.tpb.2016.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/08/2016] [Accepted: 07/21/2016] [Indexed: 11/19/2022]
Abstract
Underdominant mutations have fixed between divergent species, yet classical models suggest that rare underdominant alleles are purged quickly except in small or subdivided populations. We predict that underdominant alleles that also influence mate choice, such as those affecting coloration patterns visible to mates and predators alike, can fix more readily. We analyze a mechanistic model of positive assortative mating in which individuals have n chances to sample compatible mates. This one-parameter model naturally spans random mating (n=1) and complete assortment (n→∞), yet it produces sexual selection whose strength depends non-monotonically on n. This sexual selection interacts with viability selection to either inhibit or facilitate fixation. As mating opportunities increase, underdominant alleles fix as frequently as neutral mutations, even though sexual selection and underdominance independently each suppress rare alleles. This mechanism allows underdominant alleles to fix in large populations and illustrates how life history can affect evolutionary change.
Collapse
Affiliation(s)
| | | | - Joshua B Plotkin
- University of Pennsylvania, Biology Department, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Glémin S. Extinction and fixation times with dominance and inbreeding. Theor Popul Biol 2012; 81:310-6. [DOI: 10.1016/j.tpb.2012.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/22/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
|
6
|
Glémin S, Bataillon T. A comparative view of the evolution of grasses under domestication. THE NEW PHYTOLOGIST 2009; 183:273-290. [PMID: 19515223 DOI: 10.1111/j.1469-8137.2009.02884.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Crop grasses were among the first plants to be domesticated c. 12,000 yr ago, and they still represent the main staple crops for humans. During domestication, as did many other crops, grasses went through dramatic genetic and phenotypic changes. The recent massive increase in genomic data has provided new tools to investigate the genetic basis and consequences of domestication. Beyond the genetics of domestication, many aspects of grass biology, including their phylogeny and developmental biology, are also increasingly well studied, offering a unique opportunity to analyse the domestication process in a comparative way. Taking such a comparative point of view, we review the history of domesticated grasses and how domestication affected their phenotypic and genomic diversity. Considering recent theoretical developments and the accumulation of genetic data, we revisit more specifically the role of mating systems in the domestication process. We close by suggesting future directions for the study of domestication in grasses.
Collapse
Affiliation(s)
- Sylvain Glémin
- Institut des Sciences de l'Evolution (UM2-CNRS), Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Thomas Bataillon
- Institute of Biology, Section of Genetics and Ecology and Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
- INRA, UMR 1097 Diversité et Adaptation des Plantes Cultivées, Montpellier, France
| |
Collapse
|
7
|
Damgaard C. Evolution of advantageous alleles affecting population ecological characteristics in partially inbreeding populations. Hereditas 2004; 138:122-8. [PMID: 12921163 DOI: 10.1034/j.1601-5223.2003.01642.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The fate of advantageous alleles affecting intrinsic growth rate, carrying capacity or intra-specific competitive ability was examined in a partially inbreeding population. Generally, inbreeding had an effect on the evolution of advantageous alleles affecting population ecological characteristics. For example, in a specific underdominant case the number of stable internal equilibria decreased from two to one with only a slight degree of inbreeding. Equilibrium frequencies of stable internal equilibria and stability of fixation equilibria were also affected by the degree of inbreeding. For strictly advantageous alleles, inbreeding had the same qualitative effect on the fixation probability and mean fixation time as predicted in simpler selection models.
Collapse
|
8
|
Good-Avila SV, Nagel T, Vogler DW, Stephenson AG. Effects of inbreeding on male function and self-fertility in the partially self-incompatible herb Campanula rapunculoides (Campanulaceae). AMERICAN JOURNAL OF BOTANY 2003; 90:1736-45. [PMID: 21653350 DOI: 10.3732/ajb.90.12.1736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We examined the effect of inbreeding on fitness (through both male and female functions) and changes in self-fertility in the partially self-incompatible species Campanula rapunculoides. Individuals in natural populations of C. rapunculoides varied extensively in their strength of self-incompatibility (SI). We crossed 11 individuals that differed in their strength of SI to generate families with four levels of inbreeding (f = 0.0, 0.25, 0.5, and 0.75). Progeny were scored for three traits related to male fitness and for outcrossed and selfed seed production. Analyses of variance revealed significant inbreeding depression for the three male traits and seed set. Families with strong or weak SI differed in their response to inbreeding. Families with weak SI had lower levels of inbreeding depression for most traits than families with strong SI, but strong SI families had a greater increase in selfed seed set, but not self-fertility, with inbreeding. Finally, we found evidence of a significant linear response to inbreeding for all three male reproductive traits and outcrossed seed, indicating that inbreeding depression was primarily caused by partially or fully recessive deleterious alleles. Variation in genetic load was associated with variation in self-fertility, a finding that suggests an evolutionary role for partial self-fertility in natural populations of C. rapunculoides.
Collapse
Affiliation(s)
- Sara V Good-Avila
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | | | | | | |
Collapse
|
9
|
Good-Avila SV, Stephenson AG. Parental effects in a partially self-incompatible herb Campanula rapunculoides L. (Campanulaceae): influence of variation in the strength of self-incompatibility on seed set and progeny performance. Am Nat 2003; 161:615-30. [PMID: 12776888 DOI: 10.1086/368290] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2002] [Accepted: 09/17/2002] [Indexed: 11/03/2022]
Abstract
We employ a full reciprocal diallel design between 10 parental plants that differed in their strength of self-incompatibility (SI; strong, intermediate, and weak) to examine parental effects on seed set and 10 components of fitness of progeny performance in Campanula rapunculoides. We perform ANOVAs to separate the influence of the strength of SI and the identity of the maternal and paternal parent on family performance. We calculate the phenotypic and genetic correlations between traits to determine potentially evolutionary constraints. Finally, we employ maximum likelihood methods to estimate the components of quantitative genetic variance, as defined by Cockerham and Weir in their BioModel c. Our most significant finding is that weak SI plants have high outcrossed seed set as maternal parents. We argue that direct or pleiotropic effects of modifiers of SI probably cause this. Second, we find that extranuclear interactions, as defined by the BioModel, have strong effects on seed set and several vegetative and flowering traits. These findings indicate that some maternal plants selectively provision seeds sired by specific paternal donors and that some of this variation appears to be associated with modifiers of the strength of SI. We find other sources of significant quantitative genetic variation for all of the traits we examine and discuss the possible role these play in the evolution of the reproductive system. Taken together, our findings show that variation in the strength of SI may influence levels of quantitative genetic variation that, in turn, can influence the reproductive success of individuals in C. rapunculoides
Collapse
Affiliation(s)
- Sara V Good-Avila
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|