1
|
Buffered EGFR signaling regulated by spitz-to-argos expression ratio is a critical factor for patterning the Drosophila eye. PLoS Genet 2023; 19:e1010622. [PMID: 36730442 PMCID: PMC9928117 DOI: 10.1371/journal.pgen.1010622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/14/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
The Epidermal Growth Factor Receptor (EGFR) signaling pathway plays a critical role in regulating tissue patterning. Drosophila EGFR signaling achieves specificity through multiple ligands and feedback loops to finetune signaling outcomes spatiotemporally. The principal Drosophila EGF ligand, cleaved Spitz, and the negative feedback regulator, Argos are diffusible and can act both in a cell autonomous and non-autonomous manner. The expression dose of Spitz and Argos early in photoreceptor cell fate determination has been shown to be critical in patterning the Drosophila eye, but the exact identity of the cells expressing these genes in the larval eye disc has been elusive. Using single molecule RNA Fluorescence in situ Hybridization (smFISH), we reveal an intriguing differential expression of spitz and argos mRNA in the Drosophila third instar eye imaginal disc indicative of directional non-autonomous EGFR signaling. By genetically tuning EGFR signaling, we show that rather than absolute levels of expression, the ratio of expression of spitz-to-argos to be a critical determinant of the final adult eye phenotype. Proximate effects on EGFR signaling in terms of cell cycle and differentiation markers are affected differently in the different perturbations. Proper ommatidial patterning is robust to thresholds around a tightly maintained wildtype spitz-to-argos ratio, and breaks down beyond. This provides a powerful instance of developmental buffering against gene expression fluctuations.
Collapse
|
2
|
Alvarado D, Evans TA, Sharma R, Lemmon MA, Duffy JB. Argos Mutants Define an Affinity Threshold for Spitz Inhibition in Vivo. J Biol Chem 2006; 281:28993-9001. [PMID: 16870613 DOI: 10.1074/jbc.m603782200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Argos, a secreted antagonist of Drosophila epidermal growth factor receptor (dEGFR) signaling, acts by sequestering the activating ligand Spitz. To understand how different domains in Argos contribute to efficient Spitz sequestration, we performed a genetic screen aimed at uncovering modifiers of an Argos misexpression phenotype in the developing eye. We identified a series of suppressors mapping to the Argos transgene that affect its activity in multiple developmental contexts. These point mutations map to both the N- and C-terminal cysteine-rich regions, implicating both domains in Argos function. We show by surface plasmon resonance that these Argos mutants are deficient in their ability to bind Spitz in vitro. Our data indicate that a mere approximately 2-fold decrease in K(D) is sufficient to compromise Argos activity in vivo. This effect could be recapitulated in a cell-based assay, where a higher molar concentration of mutant Argos was needed to inhibit Spitz-dependent dEGFR phosphorylation. In contrast, a approximately 37-fold decrease in the binding constant nearly abolishes Argos activity in vivo and in cellular assays. In agreement with previously reported computational studies, our results define an affinity threshold for optimal Argos inhibition of dEGFR signaling during development.
Collapse
Affiliation(s)
- Diego Alvarado
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6059, USA.
| | | | | | | | | |
Collapse
|
3
|
King J, Straffon A, D'Abaco G, Poon C, I S, Smith C, Buchert M, Corcoran N, Hall N, Callus B, Sarcevic B, Martin D, Lock P, Hovens C. Distinct requirements for the Sprouty domain for functional activity of Spred proteins. Biochem J 2005; 388:445-54. [PMID: 15683364 PMCID: PMC1138951 DOI: 10.1042/bj20041284] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sprouty and Spred {Sprouty-related EVH1 [Ena/VASP (vasodilator-stimulated phosphoprotein) homology 1] domain} proteins have been identified as antagonists of growth factor signalling pathways. We show here that Spred-1 and Spred-2 appear to have distinct mechanisms whereby they induce their effects, as the Sprouty domain of Spred-1 is not required to block MAPK (mitogen-activated protein kinase) activation, while that of Spred-2 is required. Similarly, deletion of the C-terminal Sprouty domain of Spred-1 does not affect cell-cycle progression of G(0)-synchronized cells through to S-phase following growth factor stimulation, while the Sprouty domain is required for Spred-2 function. We also demonstrate that the inhibitory function of Spred proteins is restricted to the Ras/MAPK pathway, that tyrosine phosphorylation is not required for this function, and that the Sprouty domain mediates heterodimer formation of Spred proteins. Growth-factor-mediated activation of the small GTPases, Ras and Rap1, was able to be regulated by Spred-1 and Spred-2, without affecting receptor activation. Taken together, these results highlight the potential for different functional roles of the Sprouty domain within the Spred family of proteins, suggesting that Spred proteins may use different mechanisms to induce inhibition of the MAPK pathway.
Collapse
Affiliation(s)
- James A. J. King
- *Department of Surgery, 5th Floor Clinical Sciences Building, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Andrew F. L. Straffon
- *Department of Surgery, 5th Floor Clinical Sciences Building, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Giovanna M. D'Abaco
- *Department of Surgery, 5th Floor Clinical Sciences Building, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Carole L. C. Poon
- *Department of Surgery, 5th Floor Clinical Sciences Building, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Stacey T. T. I
- *Department of Surgery, 5th Floor Clinical Sciences Building, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Craig M. Smith
- *Department of Surgery, 5th Floor Clinical Sciences Building, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Michael Buchert
- *Department of Surgery, 5th Floor Clinical Sciences Building, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Niall M. Corcoran
- *Department of Surgery, 5th Floor Clinical Sciences Building, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Nathan E. Hall
- †Ludwig Institute for Cancer Research, Parkville, VIC 3050, Australia
| | - Bernard A. Callus
- ‡Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3050, Australia
| | - Boris Sarcevic
- §Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Daniel Martin
- *Department of Surgery, 5th Floor Clinical Sciences Building, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Peter Lock
- *Department of Surgery, 5th Floor Clinical Sciences Building, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Christopher M. Hovens
- *Department of Surgery, 5th Floor Clinical Sciences Building, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
4
|
Lee JH, Cho KS, Lee J, Kim D, Lee SB, Yoo J, Cha GH, Chung J. Drosophila PDZ-GEF, a guanine nucleotide exchange factor for Rap1 GTPase, reveals a novel upstream regulatory mechanism in the mitogen-activated protein kinase signaling pathway. Mol Cell Biol 2002; 22:7658-66. [PMID: 12370312 PMCID: PMC135652 DOI: 10.1128/mcb.22.21.7658-7666.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PDZ-GEF is a novel guanine nucleotide exchange factor for Rap1 GTPase. Here we isolated Drosophila melanogaster PDZ-GEF (dPDZ-GEF), which contains the all-conserved domains of mammalian and nematode PDZ-GEF including cyclic nucleotide monophosphate-binding, Ras exchange motif, PDZ, RA, and GEF domains. dPDZ-GEF loss-of-function mutants were defective in the development of various organs including eye, wing, and ovary. Many of these phenotypes are strikingly similar to the phenotype of the rolled mutant, implying that dPDZ-GEF functions upstream of the mitogen-activated protein (MAP) kinase pathway. Indeed, we found that dPDZ-GEF is specifically involved in photoreceptor cell differentiation, facilitating its neuronal fate via activation of the MAP kinase pathway. Rap1 was found to link dPDZ-GEF to the MAP kinase pathway; however, Ras was not involved in the regulation of the MAP kinase pathway by dPDZ-GEF and actually had an inhibitory function. The analyses of ovary development in dPDZ-GEF-deficient mutants also demonstrated another role of dPDZ-GEF independent of the MAP kinase signaling pathway. Collectively, our findings identify dPDZ-GEF as a novel upstream regulator of various morphogenetic pathways and demonstrate the presence of a novel, Ras-independent mechanism for activating the MAP kinase signaling pathway.
Collapse
Affiliation(s)
- Jun Hee Lee
- National Creative Research Initiatives Center for Cell Growth Regulation and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Gross I, Bassit B, Benezra M, Licht JD. Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J Biol Chem 2001; 276:46460-8. [PMID: 11585837 DOI: 10.1074/jbc.m108234200] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sprouty was genetically identified as an antagonist of fibroblast growth factor signaling during tracheal branching in Drosophila. In this study, we provide a functional characterization of mammalian Sprouty1 and Sprouty2. Sprouty1 and Sprouty2 inhibited events downstream of multiple receptor tyrosine kinases and regulated both cell proliferation and differentiation. Using NIH3T3 cell lines conditionally expressing Sprouty1 or Sprouty2, we found that these proteins specifically inhibit the Ras/Raf/MAP kinase pathway by preventing Ras activation. In contrast, activation of the phosphatidylinositol 3-kinase pathway was not affected by Sprouty1 or Sprouty2. We further showed that Sprouty1 and Sprouty2 do no prevent the formation of a SNT.Grb2.Sos complex upon fibroblast growth factor stimulation, yet block Ras activation. Taken together, these results establish mammalian Sprouty proteins as important negative regulators of growth factor signaling and suggest that Sprouty proteins act downstream of the Grb2.Sos complex to selectively uncouple growth factor signals from Ras activation and the MAP Kinase pathway.
Collapse
Affiliation(s)
- I Gross
- Derald H. Ruttenberg Cancer Center and Department of Medicine, Box 1130, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
6
|
Jin MH, Sawamoto K, Ito M, Okano H. The interaction between the Drosophila secreted protein argos and the epidermal growth factor receptor inhibits dimerization of the receptor and binding of secreted spitz to the receptor. Mol Cell Biol 2000; 20:2098-107. [PMID: 10688656 PMCID: PMC110826 DOI: 10.1128/mcb.20.6.2098-2107.2000] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drosophila Argos (Aos), a secreted protein with an epidermal growth factor (EGF)-like domain, has been shown to inhibit the activation of the Drosophila EGF receptor (DER). However, it has not been determined whether Aos binds directly to DER or whether regulation of the DER activation occurs through some other mechanism. Using DER-expressing cells (DER/S2) and a recombinant DER extracellular domain-Fc fusion protein (DER-Fc), we have shown that Aos binds directly to the extracellular domain of DER with its carboxyl-terminal region, including the EGF-like domain. Furthermore, Aos can block the binding of secreted Spitz (sSpi), a transforming growth factor alpha-like ligand of DER, to the extracellular domain of DER. We observed that sSpi stimulates the dimerization of both the soluble DER extracellular domain (sDER) and the intact DER in the DER/S2 cells and that Aos can block the sSpi-induced dimerization of both sDER and intact DER. Moreover, we have shown that, by directly interacting with DER, Aos and SpiAos (a chimeric protein that is composed of the N-terminal region of Spi and the C-terminal region of Aos) inhibit the dimerization and phosphorylation of DER that are induced by DER's overexpression in the absence of sSpi. These results indicate that Aos exerts its inhibitory function through dual molecular mechanisms: by blocking both the receptor dimerization and the binding of activating ligand to the receptor. This is the first description of this novel inhibitory mechanism for receptor tyrosine kinases.
Collapse
Affiliation(s)
- M H Jin
- Division of Neuroanatomy, Department of Neuroscience, Biomedical Research Center, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | |
Collapse
|