1
|
Kolařík M, Vohník M. When the ribosomal DNA does not tell the truth: The case of the taxonomic position of Kurtia argillacea, an ericoid mycorrhizal fungus residing among Hymenochaetales. Fungal Biol 2017; 122:1-18. [PMID: 29248111 DOI: 10.1016/j.funbio.2017.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/13/2017] [Accepted: 09/27/2017] [Indexed: 11/19/2022]
Abstract
The nuclear ribosomal DNA (nuc-rDNA) is widely used for the identification and phylogenetic reconstruction of Agaricomycetes. However, nuc-rDNA-based phylogenies may sometimes be in conflict with phylogenetic relationships derived from protein coding genes. In this study, the taxonomic position of the basidiomycetous mycobiont that forms the recently discovered sheathed ericoid mycorrhiza was investigated, because its nuc-rDNA is highly dissimilar to any other available fungal sequences in terms of nucleotide composition and length, and its nuc-rDNA-based phylogeny is inconclusive and significantly disagrees with protein coding sequences and morphological data. In the present work, this mycobiont was identified as Kurtia argillacea (= Hyphoderma argillaceum) residing in the order Hymenochaetales (Basidiomycota). Bioinformatic screening of the Kurtia ribosomal DNA sequence indicates that it represents a gene with a non-standard substitution rate or nucleotide composition heterogeneity rather than a deep paralogue or a pseudogene. Such a phenomenon probably also occurs in other lineages of the Fungi and should be taken into consideration when nuc-rDNA (especially that with unusual nucleotide composition) is used as a sole marker for phylogenetic reconstructions. Kurtia argillacea so far represents the only confirmed non-sebacinoid ericoid mycorrhizal fungus in the Basidiomycota and its intriguing placement among mostly saprobic and parasitic Hymenochaetales begs further investigation of its eco-physiology.
Collapse
Affiliation(s)
- Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Martin Vohník
- Department of Mycorrhizal Symbioses, Institute of Botany CAS, CZ-252 43 Průhonice, Czech Republic; Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ-128 44 Prague, Czech Republic
| |
Collapse
|
2
|
Ouangraoua A, Tannier E, Chauve C. Reconstructing the architecture of the ancestral amniote genome. Bioinformatics 2011; 27:2664-71. [DOI: 10.1093/bioinformatics/btr461] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
3
|
Abstract
Comparing chromosomal gene order in two or more related species is an important approach to studying the forces that guide genome organization and evolution. Linked clusters of similar genes found in related genomes are often used to support arguments of evolutionary relatedness or functional selection. However, as the gene order and the gene complement of sister genomes diverge progressively due to large scale rearrangements, horizontal gene transfer, gene duplication and gene loss, it becomes increasingly difficult to determine whether observed similarities in local genomic structure are indeed remnants of common ancestral gene order, or are merely coincidences. A rigorous comparative genomics requires principled methods for distinguishing chance commonalities, within or between genomes, from genuine historical or functional relationships. In this paper, we construct tests for significant groupings against null hypotheses of random gene order, taking incomplete clusters, multiple genomes, and gene families into account. We consider both the significance of individual clusters of prespecified genes and the overall degree of clustering in whole genomes.
Collapse
Affiliation(s)
- Dannie Durand
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
4
|
Kendal WS. A scale invariant clustering of genes on human chromosome 7. BMC Evol Biol 2004; 4:3. [PMID: 15040817 PMCID: PMC373443 DOI: 10.1186/1471-2148-4-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 01/30/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vertebrate genes often appear to cluster within the background of nontranscribed genomic DNA. Here an analysis of the physical distribution of gene structures on human chromosome 7 was performed to confirm the presence of clustering, and to elucidate possible underlying statistical and biological mechanisms. RESULTS Clustering of genes was confirmed by virtue of a variance of the number of genes per unit physical length that exceeded the respective mean. Further evidence for clustering came from a power function relationship between the variance and mean that possessed an exponent of 1.51. This power function implied that the spatial distribution of genes on chromosome 7 was scale invariant, and that the underlying statistical distribution had a Poisson-gamma (PG) form. A PG distribution for the spatial scattering of genes was validated by stringent comparisons of both the predicted variance to mean power function and its cumulative distribution function to data derived from chromosome 7. CONCLUSION The PG distribution was consistent with at least two different biological models: In the microrearrangement model, the number of genes per unit length of chromosome represented the contribution of a random number of smaller chromosomal segments that had originated by random breakage and reconstruction of more primitive chromosomes. Each of these smaller segments would have necessarily contained (on average) a gamma distributed number of genes. In the gene cluster model, genes would be scattered randomly to begin with. Over evolutionary timescales, tandem duplication, mutation, insertion, deletion and rearrangement could act at these gene sites through a stochastic birth death and immigration process to yield a PG distribution. On the basis of the gene position data alone it was not possible to identify the biological model which best explained the observed clustering. However, the underlying PG statistical model implicated neutral evolutionary mechanisms as the basis for this clustering.
Collapse
Affiliation(s)
- Wayne S Kendal
- Department of Radiation Oncology, Ottawa Regional Cancer Centre, 503 Smyth, Ottawa, Ontario K1H 1C4, Canada.
| |
Collapse
|
5
|
Murphy WJ, Bourque G, Tesler G, Pevzner P, O'Brien SJ. Reconstructing the genomic architecture of mammalian ancestors using multispecies comparative maps. Hum Genomics 2003; 1:30-40. [PMID: 15601531 PMCID: PMC3525001 DOI: 10.1186/1479-7364-1-1-30] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Accepted: 08/19/2003] [Indexed: 11/10/2022] Open
Abstract
Rapidly developing comparative gene maps in selected mammal species are providing an opportunity to reconstruct the genomic architecture of mammalian ancestors and study rearrangements that transformed this ancestral genome into existing mammalian genomes. Here, the recently developed Multiple Genome Rearrangement (MGR) algorithm is applied to human, mouse, cat and cattle comparative maps (with 311-470 shared markers) to impute the ancestral mammalian genome. Reconstructed ancestors consist of 70-100 conserved segments shared across the genomes that have been exchanged by rearrangement events along the ordinal lineages leading to modern species genomes. Genomic distances between species, dominated by inversions (reversals) and translocations, are presented in a first multispecies attempt using ordered mapping data to reconstruct the evolutionary exchanges that preceded modern placental mammal genomes.
Collapse
Affiliation(s)
- William J Murphy
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
6
|
Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A 2003; 100:11484-9. [PMID: 14500911 PMCID: PMC208784 DOI: 10.1073/pnas.1932072100] [Citation(s) in RCA: 616] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Indexed: 11/18/2022] Open
Abstract
This study examines genomic duplications, deletions, and rearrangements that have happened at scales ranging from a single base to complete chromosomes by comparing the mouse and human genomes. From whole-genome sequence alignments, 344 large (>100-kb) blocks of conserved synteny are evident, but these are further fragmented by smaller-scale evolutionary events. Excluding transposon insertions, on average in each megabase of genomic alignment we observe two inversions, 17 duplications (five tandem or nearly tandem), seven transpositions, and 200 deletions of 100 bases or more. This includes 160 inversions and 75 duplications or transpositions of length >100 kb. The frequencies of these smaller events are not substantially higher in finished portions in the assembly. Many of the smaller transpositions are processed pseudogenes; we define a "syntenic" subset of the alignments that excludes these and other small-scale transpositions. These alignments provide evidence that approximately 2% of the genes in the human/mouse common ancestor have been deleted or partially deleted in the mouse. There also appears to be slightly less nontransposon-induced genome duplication in the mouse than in the human lineage. Although some of the events we detect are possibly due to misassemblies or missing data in the current genome sequence or to the limitations of our methods, most are likely to represent genuine evolutionary events. To make these observations, we developed new alignment techniques that can handle large gaps in a robust fashion and discriminate between orthologous and paralogous alignments.
Collapse
Affiliation(s)
- W James Kent
- Center for Biomolecular Science and Engineering and Howard Hughes Medical Institute, Department of Computer Science, University of California, Santa Cruz, CA 95064, USA.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Large-scale genome sequencing is providing a comprehensive view of the complex evolutionary forces that have shaped the structure of eukaryotic chromosomes. Comparative sequence analyses reveal patterns of apparently random rearrangement interspersed with regions of extraordinarily rapid, localized genome evolution. Numerous subtle rearrangements near centromeres, telomeres, duplications, and interspersed repeats suggest hotspots for eukaryotic chromosome evolution. This localized chromosomal instability may play a role in rapidly evolving lineage-specific gene families and in fostering large-scale changes in gene order. Computational algorithms that take into account these dynamic forces along with traditional models of chromosomal rearrangement show promise for reconstructing the natural history of eukaryotic chromosomes.
Collapse
Affiliation(s)
- Evan E Eichler
- Department of Genetics, Center for Human Genetics and Center for Computational Genomics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA.
| | | |
Collapse
|
8
|
Hampson S, McLysaght A, Gaut B, Baldi P. LineUp: statistical detection of chromosomal homology with application to plant comparative genomics. Genome Res 2003; 13:999-1010. [PMID: 12695327 PMCID: PMC430881 DOI: 10.1101/gr.814403] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The identification of homologous regions between chromosomes forms the basis for studies of genome organization, comparative genomics, and evolutionary genomics. Identification of these regions can be based on either synteny or colinearity, but there are few methods to test statistically for significant evidence of homology. In the present study, we improve a preexisting method that used colinearity as the basis for statistical tests. Improvements include computational efficiency and a relaxation of the colinearity assumption. Two algorithms perform the method: FullPermutation, which searches exhaustively for runs of markers, and FastRuns, which trades faster run times for exhaustive searches. The algorithms described here are available in the LineUp package (http://www.igb.uci.edu/ approximately baldig/lineup). We explore the performance of both algorithms on simulated data and also on genetic map data from maize (Zea mays ssp. mays). The method has reasonable power to detect a homologous region; for example, in >90% of simulations, both algorithms detect a homologous region of 10 markers buried in a random background, even when the homologous regions have diverged by numerous inversion events. The methods were applied to four maize molecular maps. All maps indicate that the maize genome contains extensive regions of genomic duplication and multiplication. Nonetheless, maps differ substantially in the location of homologous regions, probably reflecting the incomplete nature of genetic map data. The variation among maps has important implications for evolutionary inference from genetic map data.
Collapse
Affiliation(s)
- Steve Hampson
- Institute for Genomics and Bioinformatics, Department of Information and Computer Science and Department of Ecology and Evolutionary Biology, and Department of Biological Chemistry, University of California at Irvine, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
9
|
Pevzner P, Tesler G. Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Res 2003; 13:37-45. [PMID: 12529304 PMCID: PMC430962 DOI: 10.1101/gr.757503] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although analysis of genome rearrangements was pioneered by Dobzhansky and Sturtevant 65 years ago, we still know very little about the rearrangement events that produced the existing varieties of genomic architectures. The genomic sequences of human and mouse provide evidence for a larger number of rearrangements than previously thought and shed some light on previously unknown features of mammalian evolution. In particular, they reveal that a large number of microrearrangements is required to explain the differences in draft human and mouse sequences. Here we describe a new algorithm for constructing synteny blocks, study arrangements of synteny blocks in human and mouse, derive a most parsimonious human-mouse rearrangement scenario, and provide evidence that intrachromosomal rearrangements are more frequent than interchromosomal rearrangements. Our analysis is based on the human-mouse breakpoint graph, which reveals related breakpoints and allows one to find a most parsimonious scenario. Because these graphs provide important insights into rearrangement scenarios, we introduce a new visualization tool that allows one to view breakpoint graphs superimposed with genomic dot-plots.
Collapse
Affiliation(s)
- Pavel Pevzner
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093-0114, USA.
| | | |
Collapse
|
10
|
Abstract
AbstractMeasures of conserved synteny are important for estimating the relative rates of chromosomal evolution in various lineages. We present a natural way to view the synteny conservation between two species from an Oxford grid—an r × c table summarizing the number of orthologous genes on each of the chromosomes 1 through r of the first species that are on each of the chromosomes 1 through c of the second species. This viewpoint suggests a natural statistic, which we denote by ρ and call syntenic correlation, designed to measure the amount of synteny conservation between two species. This measure allows syntenic conservation to be compared across many pairs of species. We improve the previous methods for estimating the true number of conserved syntenies given the observed number of conserved syntenies by taking into account the dependency of the numbers of orthologues observed in the chromosome pairings between the two species and by determining both point and interval estimators. We also discuss the application of our methods to genomes that contain chromosomes of highly variable lengths and to estimators of the true number of conserved segments between species pairs.
Collapse
|
11
|
Jiang Z, Melville JS, Cao H, Kumar S, Filipski A, Gibbins AMV. Measuring conservation of contiguous sets of autosomal markers on bovine and porcine genomes in relation to the map of the human genome. Genome 2002; 45:769-76. [PMID: 12175081 DOI: 10.1139/g02-038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Based on published information, we have identified 991 genes and gene-family clusters for cattle and 764 for pigs that have orthologues in the human genome. The relative linear locations of these genes on human sequence maps were used as "rulers" to annotate bovine and porcine genomes based on a CSAM (contiguous sets of autosomal markers) approach. A CSAM is an uninterrupted set of markers in one genome (primary genome; the human genome in this study) that is syntenic in the other genome (secondary genome; the bovine and porcine genomes in this study). The analysis revealed 81 conserved syntenies and 161 CSAMs between human and bovine autosomes and 50 conserved syntenies and 95 CSAMs between human and porcine autosomes. Using the human sequence map as a reference, these 991 and 764 markers could correlate 72 and 74% of the human genome with the bovine and porcine genomes, respectively. Based on the number of contiguous markers in each CSAM, we classified these CSAMs into five size groups as follows: singletons (one marker only), small (2-4 markers), medium (5-10 markers), large (11-20 markers), and very large (> 20 markers). Several bovine and porcine chromosomes appear to be represented as di-CSAM repeats in a tandem or dispersed way on human chromosomes. The number of potential CSAMs for which no markers are currently available were estimated to be 63 between human and bovine genomes and 18 between human and porcine genomes. These results provide basic guidelines for further gene and QTL mapping of the bovine and porcine genomes, as well as insight into the evolution of mammalian genomes.
Collapse
Affiliation(s)
- Zhihua Jiang
- Department of Animal and Poultry Science, University of Guelph, ON, Canada.
| | | | | | | | | | | |
Collapse
|
12
|
Kumar S, Subramanian S. Mutation rates in mammalian genomes. Proc Natl Acad Sci U S A 2002; 99:803-8. [PMID: 11792858 PMCID: PMC117386 DOI: 10.1073/pnas.022629899] [Citation(s) in RCA: 373] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2001] [Accepted: 11/27/2001] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the rate of point mutation is of fundamental importance, because mutations are a vital source of genetic novelty and a significant cause of human diseases. Currently, mutation rate is thought to vary many fold among genes within a genome and among lineages in mammals. We have conducted a computational analysis of 5,669 genes (17,208 sequences) from species representing major groups of placental mammals to characterize the extent of mutation rate differences among genes in a genome and among diverse mammalian lineages. We find that mutation rate is approximately constant per year and largely similar among genes. Similarity of mutation rates among lineages with vastly different generation lengths and physiological attributes points to a much greater contribution of replication-independent mutational processes to the overall mutation rate. Our results suggest that the average mammalian genome mutation rate is 2.2 x 10(-9) per base pair per year, which provides further opportunities for estimating species and population divergence times by using molecular clocks.
Collapse
Affiliation(s)
- Sudhir Kumar
- Department of Biology, Arizona State University, Tempe, AZ 85287-1501, USA.
| | | |
Collapse
|
13
|
Grandemange S, Schaller S, Yamano S, Du Manoir S, Shpakovski GV, Mattei MG, Kedinger C, Vigneron M. A human RNA polymerase II subunit is encoded by a recently generated multigene family. BMC Mol Biol 2001; 2:14. [PMID: 11747469 PMCID: PMC61041 DOI: 10.1186/1471-2199-2-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2001] [Accepted: 11/30/2001] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The sequences encoding the yeast RNA polymerase II (RPB) subunits are single copy genes. RESULTS While those characterized so far for the human (h) RPB are also unique, we show that hRPB subunit 11 (hRPB11) is encoded by a multigene family, mapping on chromosome 7 at loci p12, q11.23 and q22. We focused on two members of this family, hRPB11a and hRPB11b: the first encodes subunit hRPB11a, which represents the major RPB11 component of the mammalian RPB complex; the second generates polypeptides hRPB11balpha and hRPB11bbeta through differential splicing of its transcript and shares homologies with components of the hPMS2L multigene family related to genes involved in mismatch-repair functions (MMR). Both hRPB11a and b genes are transcribed in all human tissues tested. Using an inter-species complementation assay, we show that only hRPB11balpha is functional in yeast. In marked contrast, we found that the unique murine homolog of RPB11 gene maps on chromosome 5 (band G), and encodes a single polypeptide which is identical to subunit hRPB11a. CONCLUSIONS The type hRPB11b gene appears to result from recent genomic recombination events in the evolution of primates, involving sequence elements related to the MMR apparatus.
Collapse
Affiliation(s)
- Sylvie Grandemange
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS / INSERM / ULP) BP 163, F-67404 ILLKIRCH Cedex, France
| | - Sophie Schaller
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS / INSERM / ULP) BP 163, F-67404 ILLKIRCH Cedex, France
| | - Shigeru Yamano
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS / INSERM / ULP) BP 163, F-67404 ILLKIRCH Cedex, France
| | - Stanislas Du Manoir
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS / INSERM / ULP) BP 163, F-67404 ILLKIRCH Cedex, France
| | - George V Shpakovski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, GSP-7, 117997 Moscow, Russia
| | - Marie-Geneviève Mattei
- U.491/INSERM, Faculté de médecine Timone, 27 bd Jean Moulin, F-13385 Marseille Cedex 5, France
| | - Claude Kedinger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS / INSERM / ULP) BP 163, F-67404 ILLKIRCH Cedex, France
| | - Marc Vigneron
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS / INSERM / ULP) BP 163, F-67404 ILLKIRCH Cedex, France
| |
Collapse
|
14
|
Kumar S, Gadagkar SR. Disparity index: a simple statistic to measure and test the homogeneity of substitution patterns between molecular sequences. Genetics 2001; 158:1321-7. [PMID: 11454778 PMCID: PMC1461708 DOI: 10.1093/genetics/158.3.1321] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A common assumption in comparative sequence analysis is that the sequences have evolved with the same pattern of nucleotide substitution (homogeneity of the evolutionary process). Violation of this assumption is known to adversely impact the accuracy of phylogenetic inference and tests of evolutionary hypotheses. Here we propose a disparity index, ID, which measures the observed difference in evolutionary patterns for a pair of sequences. On the basis of this index, we have developed a Monte Carlo procedure to test the homogeneity of the observed patterns. This test does not require a priori knowledge of the pattern of substitutions, extent of rate heterogeneity among sites, or the evolutionary relationship among sequences. Computer simulations show that the ID-test is more powerful than the commonly used chi2-test under a variety of biologically realistic models of sequence evolution. An application of this test in an analysis of 3789 pairs of orthologous human and mouse protein-coding genes reveals that the observed evolutionary patterns in neutral sites are not homogeneous in 41% of the genes, apparently due to shifts in G + C content. Thus, the proposed test can be used as a diagnostic tool to identify genes and lineages that have evolved with substantially different evolutionary processes as reflected in the observed patterns of change. Identification of such genes and lineages is an important early step in comparative genomics and molecular phylogenetic studies to discover evolutionary processes that have shaped organismal genomes.
Collapse
Affiliation(s)
- S Kumar
- Department of Biology, Arizona State University, Tempe, Arizona 85287-1501, USA.
| | | |
Collapse
|