1
|
Tong X, Wang F, Zhang H, Bai J, Dong Q, Yue P, Jiang X, Li X, Wang L, Guo J. iTRAQ-based comparative proteome analyses of different growth stages revealing the regulatory role of reactive oxygen species in the fruiting body development of Ophiocordyceps sinensis. PeerJ 2021; 9:e10940. [PMID: 33717691 PMCID: PMC7936569 DOI: 10.7717/peerj.10940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/22/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, using an isobaric tags for relative and absolute quantitation (iTRAQ ) approach coupled with LC-MS / MS and bioinformatics, the proteomes were analyzed for the crucial three stages covering the fruiting body development of Ophiocordyceps sinensis, including sclerotium (ST), primordium (PR) and mature fruiting body (MF), with a focus on fruiting body development-related proteins and the potential mechanisms of the development. A total of 1,875 proteins were identified. Principal Component Analysis (PCA) demonstrated that the protein patterns between PR and MF were more similar than ST. Differentially accumulated proteins (DAPs) analysis showed that there were 510, 173 and 514 DAPs in the comparisons of ST vs. PR, PR vs. MF and ST vs. MF, respectively. A total of 62 shared DAPs were identified and primarily enriched in proteins related to ‘carbon transport and mechanism’, ‘the response to oxidative stress’, ‘antioxidative activity’ and ‘translation’. KEGG and GO databases showed that the DAPs were enriched in terms of ‘primary metabolisms (amino acid/fatty acid/energy metabolism)’, ‘the response to oxidative stress’ and ‘peroxidase’. Furthermore, 34 DAPs involved in reactive oxygen species (ROS) metabolism were identified and clustered across the three stages using hierarchical clustering implemented in hCluster R package . It was suggested that their roles and the underlying mechanisms may be stage-specific. ROS may play a role in fungal pathogenicity in ST, the fruit-body initiation in PR, sexual reproduction and highland adaptation in MF. Crucial ROS-related proteins were identified, such as superoxide dismutase (SOD, T5A6F1), Nor-1 (T5AFX3), electron transport protein (T5AHD1), histidine phosphotransferase (HPt, T5A9Z5) and Glutathione peroxidase (T5A9V1). Besides, the accumulation of ROS at the three stages were assayed using 2,7-dichlorofuorescin diacetate (DCFH-DA) stanning. A much stronger ROS accumulation was detected at the stage MF, compared to the stages of PR and ST. Sections of ST and fruit-body part of MF were stained by DCFH-DA and observed under the fluorescencemicroscope, showing ROS was distributed within the conidiospore and ascus. Besides, SOD activity increased across the three stages, while CAT activity has a strong increasement in MF compared to the stages of ST and PR. It was suggested that ROS may act in gradient-dependent manner to regulate the fruiting body development. The coding region sequences of six DAPs were analyzed at mRNA level by quantitative real-time PCR (qRT-PCR). The results support the result of DAPs analysis and the proteome sequencing data. Our findings offer the perspective of proteome to understand the biology of fruiting body development and highland adaptation in O. sinensis, which would inform the big industry of this valuable fungus.
Collapse
Affiliation(s)
- Xinxin Tong
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Wang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Han Zhang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Bai
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiang Dong
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Pan Yue
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinyi Jiang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinrui Li
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Wang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jinlin Guo
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Feng K, Wang LY, Liao DJ, Lu XP, Hu DJ, Liang X, Zhao J, Mo ZY, Li SP. Potential molecular mechanisms for fruiting body formation of Cordyceps illustrated in the case of Cordyceps sinensis. Mycology 2017; 8:231-258. [PMID: 30123644 PMCID: PMC6059060 DOI: 10.1080/21501203.2017.1365314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/04/2017] [Indexed: 11/30/2022] Open
Abstract
The fruiting body formation mechanisms of Cordyceps sinensis are still unclear. To explore the mechanisms, proteins potentially related to the fruiting body formation, proteins from fruiting bodies, and mycelia of Cordyceps species were assessed by using two-dimensional fluorescence difference gel electrophoresis, and the differential expression proteins were identified by matrix-assisted laser desorption/ionisation tandem time of flight mass spectrometry. The results showed that 198 differential expression proteins (252 protein spots) were identified during the fruiting body formation of Cordyceps species, and 24 of them involved in fruiting body development in both C. sinensis and other microorganisms. Especially, enolase and malate dehydrogenase were first found to play an important role in fruiting body development in macro-fungus. The results implied that cAMP signal pathway involved in fruiting body development of C. sinensis, meanwhile glycometabolism, protein metabolism, energy metabolism, and cell reconstruction were more active during fruiting body development. It has become evident that fruiting body formation of C. sinensis is a highly complex differentiation process and requires precise integration of a number of fundamental biological processes. Although the fruiting body formation mechanisms for all these activities remain to be further elucidated, the possible mechanism provides insights into the culture of C. sinensis.
Collapse
Affiliation(s)
- Kun Feng
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Lan-Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.,Department of Chemistry and Pharmacy, Zhuhai College of Jilin University, Zhuhai, China
| | - Dong-Jiang Liao
- The State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Xin-Peng Lu
- The State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - De-Jun Hu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | | | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zi-Yao Mo
- The State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
3
|
Rab-GDI complex dissociation factor expressed through translational frameshifting in filamentous ascomycetes. PLoS One 2013; 8:e73772. [PMID: 24069231 PMCID: PMC3777964 DOI: 10.1371/journal.pone.0073772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/27/2013] [Indexed: 01/20/2023] Open
Abstract
In the model fungus Podospora anserina, the PaYIP3 gene encoding the orthologue of the Saccharomyces cerevisiae YIP3 Rab-GDI complex dissociation factor expresses two polypeptides, one of which, the long form, is produced through a programmed translation frameshift. Inactivation of PaYIP3 results in slightly delayed growth associated with modification in repartition of fruiting body on the thallus, along with reduced ascospore production on wood. Long and short forms of PaYIP3 are expressed in the mycelium, while only the short form appears expressed in the maturing fruiting body (perithecium). The frameshift has been conserved over the evolution of the Pezizomycotina, lasting for over 400 million years, suggesting that it has an important role in the wild.
Collapse
|
4
|
Martins M, Rodrigues-Lima F, Dairou J, Lamouri A, Malagnac F, Silar P, Dupret JM. An acetyltransferase conferring tolerance to toxic aromatic amine chemicals: molecular and functional studies. J Biol Chem 2009; 284:18726-33. [PMID: 19416981 DOI: 10.1074/jbc.m109.015230] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aromatic amines (AA) are a major class of environmental pollutants that have been shown to have genotoxic and cytotoxic potentials toward most living organisms. Fungi are able to tolerate a diverse range of chemical compounds including certain AA and have long been used as models to understand general biological processes. Deciphering the mechanisms underlying this tolerance may improve our understanding of the adaptation of organisms to stressful environments and pave the way for novel pharmaceutical and/or biotechnological applications. We have identified and characterized two arylamine N-acetyltransferase (NAT) enzymes (PaNAT1 and PaNAT2) from the model fungus Podospora anserina that acetylate a wide range of AA. Targeted gene disruption experiments revealed that PaNAT2 was required for the growth and survival of the fungus in the presence of toxic AA. Functional studies using the knock-out strains and chemically acetylated AA indicated that tolerance of P. anserina to toxic AA was due to the N-acetylation of these chemicals by PaNAT2. Moreover, we provide proof-of-concept remediation experiments where P. anserina, through its PaNAT2 enzyme, is able to detoxify the highly toxic pesticide residue 3,4-dichloroaniline in experimentally contaminated soil samples. Overall, our data show that a single xenobiotic-metabolizing enzyme can mediate tolerance to a major class of pollutants in a eukaryotic species. These findings expand the understanding of the role of xenobiotic-metabolizing enzyme and in particular of NATs in the adaptation of organisms to their chemical environment and provide a basis for new systems for the bioremediation of contaminated soils.
Collapse
Affiliation(s)
- Marta Martins
- Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS Equipe d'Accueil Conventionée (EAC) 7059, Laboratoire des Réponses Moléculaires et Cellulaires aux Xénobiotiques, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
When individuals have higher evolutionary fitness because of being heterozygous at a given gene region, it is known as overdominance. Although overdominant selection could represent an important mechanism for maintaining genetic variation within species, the prevalence of this mode of selection appears to be relatively low. Identification of cases of true single-locus heterozygote advantage are thus useful reference points in our overall understanding of how various forms of balancing selection influence and maintain genetic variation in natural populations. Here we report the apparent long-term maintenance of diversity via overdominant selection with homozygous lethality at an elongation factor locus in the sea star Pisaster ochraceus. Observing this pattern in a gene with such major effects on protein assembly indicates that overdominant selection could be a more prevalent factor in maintaining allelic diversity in the wild than previously recognized.
Collapse
Affiliation(s)
- M S Pankey
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
6
|
Espagne E, Lespinet O, Malagnac F, Da Silva C, Jaillon O, Porcel BM, Couloux A, Aury JM, Ségurens B, Poulain J, Anthouard V, Grossetete S, Khalili H, Coppin E, Déquard-Chablat M, Picard M, Contamine V, Arnaise S, Bourdais A, Berteaux-Lecellier V, Gautheret D, de Vries RP, Battaglia E, Coutinho PM, Danchin EG, Henrissat B, Khoury RE, Sainsard-Chanet A, Boivin A, Pinan-Lucarré B, Sellem CH, Debuchy R, Wincker P, Weissenbach J, Silar P. The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol 2008; 9:R77. [PMID: 18460219 PMCID: PMC2441463 DOI: 10.1186/gb-2008-9-5-r77] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 02/12/2008] [Accepted: 05/06/2008] [Indexed: 12/13/2022] Open
Abstract
A 10X draft sequence of Podospora anserina genome shows highly dynamic evolution since its divergence from Neurospora crassa. Background The dung-inhabiting ascomycete fungus Podospora anserina is a model used to study various aspects of eukaryotic and fungal biology, such as ageing, prions and sexual development. Results We present a 10X draft sequence of P. anserina genome, linked to the sequences of a large expressed sequence tag collection. Similar to higher eukaryotes, the P. anserina transcription/splicing machinery generates numerous non-conventional transcripts. Comparison of the P. anserina genome and orthologous gene set with the one of its close relatives, Neurospora crassa, shows that synteny is poorly conserved, the main result of evolution being gene shuffling in the same chromosome. The P. anserina genome contains fewer repeated sequences and has evolved new genes by duplication since its separation from N. crassa, despite the presence of the repeat induced point mutation mechanism that mutates duplicated sequences. We also provide evidence that frequent gene loss took place in the lineages leading to P. anserina and N. crassa. P. anserina contains a large and highly specialized set of genes involved in utilization of natural carbon sources commonly found in its natural biotope. It includes genes potentially involved in lignin degradation and efficient cellulose breakdown. Conclusion The features of the P. anserina genome indicate a highly dynamic evolution since the divergence of P. anserina and N. crassa, leading to the ability of the former to use specific complex carbon sources that match its needs in its natural biotope.
Collapse
Affiliation(s)
- Eric Espagne
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR8621, 91405 Orsay cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lee SH, Lee S, Choi D, Lee YW, Yun SH. Identification of the down-regulated genes in a mat1-2-deleted strain of Gibberella zeae, using cDNA subtraction and microarray analysis. Fungal Genet Biol 2006; 43:295-310. [PMID: 16504554 DOI: 10.1016/j.fgb.2005.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 12/08/2005] [Accepted: 12/27/2005] [Indexed: 10/25/2022]
Abstract
Gibberella zeae (anamorph: Fusarium graminearum), a self-fertile ascomycete, is an important pathogen of cereal crops. Here, we have focused on the genes specifically controlled by the mating type (MAT) locus, a master regulator of sexual developmental process in G. zeae. To identify these genes, we employed suppression subtractive hybridization between a G. zeae wild-type strain Z03643 and the isogenic self-sterile mat1-2 strain T43deltaM2-2. Both reverse Northern and cDNA microarray analyses using 291 subtractive unigenes confirmed that 58.8% (171 genes) were significantly down-regulated in T43deltaM2-2. Among these, 98 could be either manually or automatically annotated based on known functions of their possible homologs. Northern blot analysis revealed that all of the genes examined were differentially regulated by MAT1-2 during sexual development. This study is the first report on the set of genes that are transcriptionally altered by the deletion of MAT1-2 during sexual reproduction in G. zeae.
Collapse
Affiliation(s)
- Seung-Ho Lee
- School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | |
Collapse
|
8
|
Haedens V, Malagnac F, Silar P. Genetic control of an epigenetic cell degeneration syndrome in Podospora anserina. Fungal Genet Biol 2005; 42:564-77. [PMID: 15869888 DOI: 10.1016/j.fgb.2005.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 03/04/2005] [Accepted: 03/29/2005] [Indexed: 11/26/2022]
Abstract
Filamentous fungi frequently present degenerative processes, whose molecular basis is very often unknown. Here, we present three mutant screens that result in the identification of 29 genes that directly or indirectly control Crippled Growth (CG), an epigenetic cell degeneration of the filamentous ascomycete Podospora anserina. Two of these genes were previously shown to encode a MAP kinase kinase kinase and an NADPH oxidase involved in a signal transduction cascade that participates in stationary phase differentiations, fruiting body development and defence against fungal competitors. The numerous genes identified can be incorporated in a model in which CG results from the sustained activation of the MAP kinase cascade. Our data also emphasize the complex regulatory network underlying three interconnected processes in P. anserina: sexual reproduction, defence against competitors, and cell degeneration.
Collapse
Affiliation(s)
- Vicki Haedens
- Institut de Génétique et Microbiologie, UMR 8621 CNRS UPS, 91405 Orsay cedex, France
| | | | | |
Collapse
|