1
|
Maksiutenko EM, Barbitoff YA, Danilov LG, Matveenko AG, Zemlyanko OM, Efremova EP, Moskalenko SE, Zhouravleva GA. Gene Expression Analysis of Yeast Strains with a Nonsense Mutation in the eRF3-Coding Gene Highlights Possible Mechanisms of Adaptation. Int J Mol Sci 2024; 25:6308. [PMID: 38928012 PMCID: PMC11203930 DOI: 10.3390/ijms25126308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
In yeast Saccharomyces cerevisiae, there are two translation termination factors, eRF1 (Sup45) and eRF3 (Sup35), which are essential for viability. Previous studies have revealed that presence of nonsense mutations in these genes leads to amplification of mutant alleles (sup35-n and sup45-n), which appears to be necessary for the viability of such cells. However, the mechanism of this phenomenon remained unclear. In this study, we used RNA-Seq and proteome analysis to reveal the complete set of gene expression changes that occur during cellular adaptation to the introduction of the sup35-218 nonsense allele. Our analysis demonstrated significant changes in the transcription of genes that control the cell cycle: decreases in the expression of genes of the anaphase promoting complex APC/C (APC9, CDC23) and their activator CDC20, and increases in the expression of the transcription factor FKH1, the main cell cycle kinase CDC28, and cyclins that induce DNA biosynthesis. We propose a model according to which yeast adaptation to nonsense mutations in the translation termination factor genes occurs as a result of a delayed cell cycle progression beyond the G2-M stage, which leads to an extension of the S and G2 phases and an increase in the number of copies of the mutant sup35-n allele.
Collapse
Affiliation(s)
- Evgeniia M. Maksiutenko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.B.); (L.G.D.); (A.G.M.); (O.M.Z.); (E.P.E.); (S.E.M.)
- St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Yury A. Barbitoff
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.B.); (L.G.D.); (A.G.M.); (O.M.Z.); (E.P.E.); (S.E.M.)
- Bioinformatics Institute, 197342 St. Petersburg, Russia
| | - Lavrentii G. Danilov
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.B.); (L.G.D.); (A.G.M.); (O.M.Z.); (E.P.E.); (S.E.M.)
| | - Andrew G. Matveenko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.B.); (L.G.D.); (A.G.M.); (O.M.Z.); (E.P.E.); (S.E.M.)
| | - Olga M. Zemlyanko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.B.); (L.G.D.); (A.G.M.); (O.M.Z.); (E.P.E.); (S.E.M.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena P. Efremova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.B.); (L.G.D.); (A.G.M.); (O.M.Z.); (E.P.E.); (S.E.M.)
| | - Svetlana E. Moskalenko
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.B.); (L.G.D.); (A.G.M.); (O.M.Z.); (E.P.E.); (S.E.M.)
- St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Galina A. Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.B.); (L.G.D.); (A.G.M.); (O.M.Z.); (E.P.E.); (S.E.M.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
2
|
Zajkowski T, Lee MD, Sharma S, Vallota-Eastman A, Kuska M, Malczewska M, Rothschild LJ. Conserved functions of prion candidates suggest a primeval role of protein self-templating. Proteins 2023; 91:1298-1315. [PMID: 37519023 DOI: 10.1002/prot.26558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
Amyloid-based prions have simple structures, a wide phylogenetic distribution, and a plethora of functions in contemporary organisms, suggesting they may be an ancient phenomenon. However, this hypothesis has yet to be addressed with a systematic, computational, and experimental approach. Here we present a framework to help guide future experimental verification of candidate prions with conserved functions to understand their role in the early stages of evolution and potentially in the origins of life. We identified candidate prions in all high-quality proteomes available in UniProt computationally, assessed their phylogenomic distributions, and analyzed candidate-prion functional annotations. Of the 27 980 560 proteins scanned, 228 561 were identified as candidate prions (~0.82%). Among these candidates, there were 84 Gene Ontology (GO) terms conserved across the three domains of life. We found that candidate prions with a possible role in adaptation were particularly well-represented within this group. We discuss unifying features of candidate prions to elucidate the primeval roles of prions and their associated functions. Candidate prions annotated as transcription factors, DNA binding, and kinases are particularly well suited to generating diverse responses to changes in their environment and could allow for adaptation and population expansion into more diverse environments. We hypothesized that a relationship between these functions and candidate prions could be evolutionarily ancient, even if individual prion domains themselves are not evolutionarily conserved. Candidate prions annotated with these universally occurring functions potentially represent the oldest extant prions on Earth and are therefore excellent experimental targets.
Collapse
Affiliation(s)
- Tomasz Zajkowski
- Universities Space Research Association at NASA Ames Research Center, Mountain View, California, USA
- Polish Astrobiology Society, Warsaw, Poland
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Michael D Lee
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- KBR, NASA Ames Research Center, Mountain View, California, USA
| | - Siddhant Sharma
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Alec Vallota-Eastman
- Department of Earth Science, University of California, Santa Barbara, California, USA
| | - Mikołaj Kuska
- Polish Astrobiology Society, Warsaw, Poland
- Department of Biophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Małgorzata Malczewska
- Polish Astrobiology Society, Warsaw, Poland
- Department of Biophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Lynn J Rothschild
- Space Science and Astrobiology Division, NASA Ames Research Center, Mountain View, California, USA
| |
Collapse
|
3
|
Zhouravleva GA, Bondarev SA, Trubitsina NP. How Big Is the Yeast Prion Universe? Int J Mol Sci 2023; 24:11651. [PMID: 37511408 PMCID: PMC10380529 DOI: 10.3390/ijms241411651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The number of yeast prions and prion-like proteins described since 1994 has grown from two to nearly twenty. If in the early years most scientists working with the classic mammalian prion, PrPSc, were skeptical about the possibility of using the term prion to refer to yeast cytoplasmic elements with unusual properties, it is now clear that prion-like phenomena are widespread and that yeast can serve as a convenient model for studying them. Here we give a brief overview of the yeast prions discovered so far and focus our attention to the various approaches used to identify them. The prospects for the discovery of new yeast prions are also discussed.
Collapse
Affiliation(s)
- Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Nina P Trubitsina
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Processing of Fluorescent Proteins May Prevent Detection of Prion Particles in [ PSI+] Cells. BIOLOGY 2022; 11:biology11121688. [PMID: 36552198 PMCID: PMC9774836 DOI: 10.3390/biology11121688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Yeast is a convenient model for studying protein aggregation as it is known to propagate amyloid prions. [PSI+] is the prion form of the release factor eRF3 (Sup35). Aggregated Sup35 causes defects in termination of translation, which results in nonsense suppression in strains carrying premature stop codons. N-terminal and middle (M) domains of Sup35 are necessary and sufficient for maintaining [PSI+] in cells while preserving the prion strain's properties. For this reason, Sup35NM fused to fluorescent proteins is often used for [PSI+] detection and investigation. However, we found that in such chimeric constructs, not all fluorescent proteins allow the reliable detection of Sup35 aggregates. Particularly, transient overproduction of Sup35NM-mCherry resulted in a diffuse fluorescent pattern in the [PSI+] cells, while no loss of prions and no effect on the Sup35NM prion properties could be observed. This effect was reproduced in various unrelated strain backgrounds and prion variants. In contrast, Sup35NM fused to another red fluorescent protein, TagRFP-T, allowed the detection of [PSI+] aggregates. Analysis of protein lysates showed that Sup35NM-mCherry is actively degraded in the cell. This degradation was not caused by vacuolar proteases and the ubiquitin-proteasomal system implicated in the Sup35 processing. Even though the intensity of this proteolysis was higher than that of Sup35NM-GFP, it was roughly the same as in the case of Sup35NM-TagRFP-T. Thus, it is possible that, in contrast to TagRFP-T, degradation products of Sup35NM-mCherry still preserve their fluorescent properties while losing the ability to decorate pre-existing Sup35 aggregates. This results in diffuse fluorescence despite the presence of the prion aggregates in the cell. Thus, tagging with fluorescent proteins should be used with caution, as such proteolysis may increase the rate of false-negative results when detecting prion-bearing cells.
Collapse
|
5
|
Dennis EM, Garcia DM. Biochemical Principles in Prion-Based Inheritance. EPIGENOMES 2022; 6:4. [PMID: 35225957 PMCID: PMC8883993 DOI: 10.3390/epigenomes6010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/14/2022] Open
Abstract
Prions are proteins that can stably fold into alternative structures that frequently alter their activities. They can self-template their alternate structures and are inherited across cell divisions and generations. While they have been studied for more than four decades, their enigmatic nature has limited their discovery. In the last decade, we have learned just how widespread they are in nature, the many beneficial phenotypes that they confer, while also learning more about their structures and modes of inheritance. Here, we provide a brief review of the biochemical principles of prion proteins, including their sequences, characteristics and structures, and what is known about how they self-template, citing examples from multiple organisms. Prion-based inheritance is the most understudied segment of epigenetics. Here, we lay a biochemical foundation and share a framework for how to define these molecules, as new examples are unearthed throughout nature.
Collapse
Affiliation(s)
- Emily M. Dennis
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA;
| | - David M. Garcia
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
6
|
Gene Amplification as a Mechanism of Yeast Adaptation to Nonsense Mutations in Release Factor Genes. Genes (Basel) 2021; 12:genes12122019. [PMID: 34946968 PMCID: PMC8701342 DOI: 10.3390/genes12122019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Protein synthesis (translation) is one of the fundamental processes occurring in the cells of living organisms. Translation can be divided into three key steps: initiation, elongation, and termination. In the yeast Saccharomyces cerevisiae, there are two translation termination factors, eRF1 and eRF3. These factors are encoded by the SUP45 and SUP35 genes, which are essential; deletion of any of them leads to the death of yeast cells. However, viable strains with nonsense mutations in both the SUP35 and SUP45 genes were previously obtained in several groups. The survival of such mutants clearly involves feedback control of premature stop codon readthrough; however, the exact molecular basis of such feedback control remain unclear. To investigate the genetic factors supporting the viability of these SUP35 and SUP45 nonsense mutants, we performed whole-genome sequencing of strains carrying mutant sup35-n and sup45-n alleles; while no common SNPs or indels were found in these genomes, we discovered a systematic increase in the copy number of the plasmids carrying mutant sup35-n and sup45-n alleles. We used the qPCR method which confirmed the differences in the relative number of SUP35 and SUP45 gene copies between strains carrying wild-type or mutant alleles of SUP35 and SUP45 genes. Moreover, we compare the number of copies of the SUP35 and SUP45 genes in strains carrying different nonsense mutant variants of these genes as a single chromosomal copy. qPCR results indicate that the number of mutant gene copies is increased compared to the wild-type control. In case of several sup45-n alleles, this was due to a disomy of the entire chromosome II, while for the sup35-218 mutation we observed a local duplication of a segment of chromosome IV containing the SUP35 gene. Taken together, our results indicate that gene amplification is a common mechanism of adaptation to nonsense mutations in release factor genes in yeast.
Collapse
|
7
|
Hassell DS, Steingesser MG, Denney AS, Johnson CR, McMurray MA. Chemical rescue of mutant proteins in living Saccharomyces cerevisiae cells by naturally occurring small molecules. G3-GENES GENOMES GENETICS 2021; 11:6323229. [PMID: 34544143 PMCID: PMC8496222 DOI: 10.1093/g3journal/jkab252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/29/2021] [Indexed: 11/14/2022]
Abstract
Intracellular proteins function in a complex milieu wherein small molecules influence protein folding and act as essential cofactors for enzymatic reactions. Thus protein function depends not only on amino acid sequence but also on the concentrations of such molecules, which are subject to wide variation between organisms, metabolic states, and environmental conditions. We previously found evidence that exogenous guanidine reverses the phenotypes of specific budding yeast septin mutants by binding to a WT septin at the former site of an Arg side chain that was lost during fungal evolution. Here, we used a combination of targeted and unbiased approaches to look for other cases of "chemical rescue" by naturally occurring small molecules. We report in vivo rescue of hundreds of Saccharomyces cerevisiae mutants representing a variety of genes, including likely examples of Arg or Lys side chain replacement by the guanidinium ion. Failed rescue of targeted mutants highlight features required for rescue, as well as key differences between the in vitro and in vivo environments. Some non-Arg mutants rescued by guanidine likely result from "off-target" effects on specific cellular processes in WT cells. Molecules isosteric to guanidine and known to influence protein folding had a range of effects, from essentially none for urea, to rescue of a few mutants by DMSO. Strikingly, the osmolyte trimethylamine-N-oxide rescued ∼20% of the mutants we tested, likely reflecting combinations of direct and indirect effects on mutant protein function. Our findings illustrate the potential of natural small molecules as therapeutic interventions and drivers of evolution.
Collapse
Affiliation(s)
- Daniel S Hassell
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Marc G Steingesser
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ashley S Denney
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Courtney R Johnson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Hervás R, Del Carmen Fernández-Ramírez M, Galera-Prat A, Suzuki M, Nagai Y, Bruix M, Menéndez M, Laurents DV, Carrión-Vázquez M. Divergent CPEB prion-like domains reveal different assembly mechanisms for a generic amyloid-like fold. BMC Biol 2021; 19:43. [PMID: 33706787 PMCID: PMC7953810 DOI: 10.1186/s12915-021-00967-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Amyloids are ordered, insoluble protein aggregates, characterized by a cross-β sheet quaternary structure in which molecules in a β-strand conformation are stacked along the filament axis via intermolecular interactions. While amyloids are typically associated with pathological conditions, functional amyloids have also been identified and are present in a wide variety of organisms ranging from bacteria to humans. The cytoplasmic polyadenylation element-binding (CPEB) prion-like protein is an mRNA-binding translation regulator, whose neuronal isoforms undergo activity-dependent aggregation, a process that has emerged as a plausible biochemical substrate for memory maintenance. CPEB aggregation is driven by prion-like domains (PLD) that are divergent in sequence across species, and it remains unknown whether such divergent PLDs follow a similar aggregating assembly pathway. Here, we describe the amyloid-like features of the neuronal Aplysia CPEB (ApCPEB) PLD and compare them to those of the Drosophila ortholog, Orb2 PLD. RESULTS Using in vitro single-molecule and bulk biophysical methods, we find transient oligomers and mature amyloid-like filaments that suggest similarities in the late stages of the assembly pathway for both ApCPEB and Orb2 PLDs. However, while prior to aggregation the Orb2 PLD monomer remains mainly as a random coil in solution, ApCPEB PLD adopts a diversity of conformations comprising α-helical structures that evolve to coiled-coil species, indicating structural differences at the beginning of their amyloid assembly pathways. CONCLUSION Our results indicate that divergent PLDs of CPEB proteins from different species retain the ability to form a generic amyloid-like fold through different assembly mechanisms.
Collapse
Affiliation(s)
- Rubén Hervás
- Instituto Cajal, IC-CSIC, Avda. Doctor Arce 37, E-28002, Madrid, Spain. .,Present address: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | | | | | - Mari Suzuki
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Present address: Diabetic Neuropathy Project, Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Present address: Department of Neurology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Marta Bruix
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Serrano 119, E-28006, Madrid, Spain
| | - Margarita Menéndez
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Serrano 119, E-28006, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Respiratorias (CIBERES), C/ Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Douglas V Laurents
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Serrano 119, E-28006, Madrid, Spain
| | | |
Collapse
|
9
|
Dorweiler JE, Oddo MJ, Lyke DR, Reilly JA, Wisniewski BT, Davis EE, Kuborn AM, Merrill SJ, Manogaran AL. The actin cytoskeletal network plays a role in yeast prion transmission and contributes to prion stability. Mol Microbiol 2020; 114:480-494. [PMID: 32426863 DOI: 10.1111/mmi.14528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 04/21/2020] [Accepted: 05/09/2020] [Indexed: 01/22/2023]
Abstract
Chaperone networks are required for the shearing and generation of transmissible propagons from pre-existing prion aggregates. However, other cellular networks needed for maintaining yeast prions are largely uncharacterized. Here, we establish a novel role for actin networks in prion maintenance. The [PIN+ ] prion, also known as [RNQ+ ], exists as stable variants dependent upon the chaperone machinery for the transmission of propagons to daughter cells during cell division and cytoplasmic transfer. Loss of the Hsp104 molecular chaperone leads to the growth of prion particles until they are too large to be transmitted. Here, we isolated a unique [PIN+ ] variant, which is unstable in actin mutants. This prion loss is observed over many generations, and coincides with the detection of both high molecular weight species of Rnq1 and large visible aggregates that are asymmetrically retained during cell division. Our data suggest that the irregular actin networks found in these mutants may influence propagon number by slowly permitting aggregate growth over time, resulting in the generation of nontransmissible large aggregates. Thus, we show the potential contribution of cytoskeletal networks in the transmission of prion propagons, which parallels models that have been proposed for cell-to-cell transmission of small amyloids in neurodegenerative protein aggregation diseases.
Collapse
Affiliation(s)
- Jane E Dorweiler
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Mitchell J Oddo
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Douglas R Lyke
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Jacob A Reilly
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Brett T Wisniewski
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Emily E Davis
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Abigail M Kuborn
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Stephen J Merrill
- Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, WI, USA
| | - Anita L Manogaran
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
10
|
Drozdova PB, Barbitoff YA, Belousov MV, Skitchenko RK, Rogoza TM, Leclercq JY, Kajava AV, Matveenko AG, Zhouravleva GA, Bondarev SA. Estimation of amyloid aggregate sizes with semi-denaturing detergent agarose gel electrophoresis and its limitations. Prion 2020; 14:118-128. [PMID: 32306832 PMCID: PMC7199750 DOI: 10.1080/19336896.2020.1751574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Semi-denaturing detergent agarose gel electrophoresis (SDD-AGE) was proposed by Vitaly V. Kushnirov in the Michael D. Ter-Avanesyan’s laboratory as a method to compare sizes of amyloid aggregates. Currently, this method is widely used for amyloid investigation, but mostly as a qualitative approach. In this work, we assessed the possibilities and limitations of the quantitative analysis of amyloid aggregate size distribution using SDD-AGE results. For this purpose, we used aggregates of two well-characterized yeast amyloid-forming proteins, Sup35 and Rnq1, and developed a protocol to standardize image analysis and process the result. A detailed investigation of factors that may affect the results of SDD-AGE revealed that both the cell lysis method and electrophoresis conditions can substantially affect the estimation of aggregate size. Despite this, quantitative analysis of SDD-AGE results is possible when one needs to estimate and compare the size of aggregates on the same gel, or even in different experiments, if the experimental conditions are tightly controlled and additional standards are used.
Collapse
Affiliation(s)
- Polina B Drozdova
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia.,Institute of Biology, Irkutsk State University, Irkutsk, Russia
| | - Yury A Barbitoff
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Mikhail V Belousov
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia.,Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | - Rostislav K Skitchenko
- International Research Institute of Bioengineering, ITMO University, St. Petersburg, Russia
| | - Tatyana M Rogoza
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia.,Vavilov Institute of General Genetics Russian Academy of Sciences, St. Petersburg Branch, St. Petersburg, Russia
| | - Jeremy Y Leclercq
- Centre de Recherche En Biologie Cellulaire De Montpellier, UMR 5237 CNRS, Montpellier, France
| | - Andrey V Kajava
- International Research Institute of Bioengineering, ITMO University, St. Petersburg, Russia.,Centre de Recherche En Biologie Cellulaire De Montpellier, UMR 5237 CNRS, Montpellier, France
| | - Andrew G Matveenko
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
11
|
Trubitsina NP, Zemlyanko OM, Bondarev SA, Zhouravleva GA. Nonsense Mutations in the Yeast SUP35 Gene Affect the [ PSI+] Prion Propagation. Int J Mol Sci 2020; 21:E1648. [PMID: 32121268 PMCID: PMC7084296 DOI: 10.3390/ijms21051648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
The essential SUP35 gene encodes yeast translation termination factor eRF3. Previously, we isolated nonsense mutations sup35-n and proposed that the viability of such mutants can be explained by readthrough of the premature stop codon. Such mutations, as well as the prion [PSI+], can appear in natural yeast populations, and their combinations may have different effects on the cells. Here, we analyze the effects of the compatibility of sup35-n mutations with the [PSI+] prion in haploid and diploid cells. We demonstrated that sup35-n mutations are incompatible with the [PSI+] prion, leading to lethality of sup35-n [PSI+] haploid cells. In diploid cells the compatibility of [PSI+] with sup35-n depends on how the corresponding diploid was obtained. Nonsense mutations sup35-21, sup35-74, and sup35-218 are compatible with the [PSI+] prion in diploid strains, but affect [PSI+] properties and lead to the formation of new prion variant. The only mutation that could replace the SUP35 wild-type allele in both haploid and diploid [PSI+] strains, sup35-240, led to the prion loss. Possibly, short Sup351-55 protein, produced from the sup35-240 allele, is included in Sup35 aggregates and destabilize them. Alternatively, single molecules of Sup351-55 can stick to aggregate ends, and thus interrupt the fibril growth. Thus, we can conclude that sup35-240 mutation prevents [PSI+] propagation and can be considered as a new pnm mutation.
Collapse
Affiliation(s)
- Nina P. Trubitsina
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (S.A.B.)
| | - Olga M. Zemlyanko
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (S.A.B.)
- Laboratory of Amyloid Biology, Saint Petersburg State University, 199034 St. Petersburg, Russia
| | - Stanislav A. Bondarev
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (S.A.B.)
- Laboratory of Amyloid Biology, Saint Petersburg State University, 199034 St. Petersburg, Russia
| | - Galina A. Zhouravleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 St. Petersburg, Russia; (N.P.T.); (O.M.Z.); (S.A.B.)
- Laboratory of Amyloid Biology, Saint Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
12
|
Danilov LG, Matveenko AG, Ryzhkova VE, Belousov MV, Poleshchuk OI, Likholetova DV, Sokolov PA, Kasyanenko NA, Kajava AV, Zhouravleva GA, Bondarev SA. Design of a New [ PSI +]-No-More Mutation in SUP35 With Strong Inhibitory Effect on the [ PSI +] Prion Propagation. Front Mol Neurosci 2019; 12:274. [PMID: 31803017 PMCID: PMC6877606 DOI: 10.3389/fnmol.2019.00274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/28/2019] [Indexed: 12/04/2022] Open
Abstract
A number of [PSI+]-no-more (PNM) mutations, eliminating [PSI+] prion, were previously described in SUP35. In this study, we designed and analyzed a new PNM mutation based on the parallel in-register β-structure of Sup35 prion fibrils suggested by the known experimental data. In such an arrangement, substitution of non-charged residues by charged ones may destabilize the fibril structure. We introduced Q33K/A34K amino acid substitutions into the Sup35 protein, corresponding allele was called sup35-M0. The mutagenized residues were chosen based on ArchCandy in silico prediction of high inhibitory effect on the amyloidogenic potential of Sup35. The experiments confirmed that Sup35-M0 leads to the elimination of [PSI+] with high efficiency. Our data suggested that the elimination of the [PSI+] prion is associated with the decreased aggregation properties of the protein. The new mutation can induce the prion with very low efficiency and is able to propagate only weak [PSI+] prion variants. We also showed that Sup35-M0 protein co-aggregates with the wild-type Sup35 in vivo. Moreover, our data confirmed the utility of the strategy of substitution of non-charged residues by charged ones to design new mutations to inhibit a prion formation.
Collapse
Affiliation(s)
- Lavrentii G Danilov
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Andrew G Matveenko
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Varvara E Ryzhkova
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Mikhail V Belousov
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia.,Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia
| | - Olga I Poleshchuk
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Daria V Likholetova
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Petr A Sokolov
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, St. Petersburg, Russia
| | - Nina A Kasyanenko
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, St. Petersburg, Russia
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier, Montpellier, France.,Institut de Biologie Computationnelle (IBC), Universitè Montpellier, Montpellier, France
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
13
|
Manjrekar J, Shah H. Protein-based inheritance. Semin Cell Dev Biol 2019; 97:138-155. [PMID: 31344459 DOI: 10.1016/j.semcdb.2019.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/08/2019] [Indexed: 01/17/2023]
Abstract
Epigenetic mechanisms of inheritance have come to occupy a prominent place in our understanding of living systems, primarily eukaryotes. There has been considerable and lively discussion of the possible evolutionary significance of transgenerational epigenetic inheritance. One particular type of epigenetic inheritance that has not figured much in general discussions is that based on conformational changes in proteins, where proteins with altered conformations can act as templates to propagate their own structure. An increasing number of such proteins - prions and prion-like - are being discovered. Phenotypes due to the structurally altered proteins are transmitted along with their structures. This review discusses the properties and implications of "classical" amyloid-forming prions, as well as the broader class of proteins with intrinsically disordered domains, which are proving to have fascinating properties that appear to play important roles in cell organisation and function, especially during stress responses.
Collapse
Affiliation(s)
- Johannes Manjrekar
- Microbiology Department and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India.
| | - Hiral Shah
- Microbiology Department and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| |
Collapse
|
14
|
Three J-proteins impact Hsp104-mediated variant-specific prion elimination: a new critical role for a low-complexity domain. Curr Genet 2019; 66:51-58. [PMID: 31230108 PMCID: PMC6925661 DOI: 10.1007/s00294-019-01006-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
Prions are self-propagating protein isoforms that are typically amyloid. In Saccharomyces cerevisiae, amyloid prion aggregates are fragmented by a trio involving three classes of chaperone proteins: Hsp40s, also known as J-proteins, Hsp70s, and Hsp104. Hsp104, the sole Hsp100-class disaggregase in yeast, along with the Hsp70 Ssa and the J-protein Sis1, is required for the propagation of all known amyloid yeast prions. However, when Hsp104 is ectopically overexpressed, only the prion [PSI+] is efficiently eliminated from cell populations via a highly debated mechanism that also requires Sis1. Recently, we reported roles for two additional J-proteins, Apj1 and Ydj1, in this process. Deletion of Apj1, a J-protein involved in the degradation of sumoylated proteins, partially blocks Hsp104-mediated [PSI+] elimination. Apj1 and Sis1 were found to have overlapping functions, as overexpression of one compensates for loss of function of the other. In addition, overexpression of Ydj1, the most abundant J-protein in the yeast cytosol, completely blocks Hsp104-mediated curing. Yeast prions exhibit structural polymorphisms known as “variants”; most intriguingly, these J-protein effects were only observed for strong variants, suggesting variant-specific mechanisms. Here, we review these results and present new data resolving the domains of Apj1 responsible, specifically implicating the involvement of Apj1’s Q/S-rich low-complexity domain.
Collapse
|
15
|
Jiang Y, Berg MD, Genereaux J, Ahmed K, Duennwald ML, Brandl CJ, Lajoie P. Sfp1 links TORC1 and cell growth regulation to the yeast SAGA‐complex component Tra1 in response to polyQ proteotoxicity. Traffic 2019; 20:267-283. [DOI: 10.1111/tra.12637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Yuwei Jiang
- Department of Anatomy and Cell BiologyThe University of Western Ontario London Ontario Canada
| | - Matthew D. Berg
- Department of BiochemistryThe University of Western Ontario London Ontario Canada
| | - Julie Genereaux
- Department of Anatomy and Cell BiologyThe University of Western Ontario London Ontario Canada
- Department of BiochemistryThe University of Western Ontario London Ontario Canada
| | - Khadija Ahmed
- Department of Anatomy and Cell BiologyThe University of Western Ontario London Ontario Canada
| | - Martin L. Duennwald
- Department of Anatomy and Cell BiologyThe University of Western Ontario London Ontario Canada
- Department of Pathology and Laboratory MedicineThe University of Western Ontario London Ontario Canada
| | | | - Patrick Lajoie
- Department of Anatomy and Cell BiologyThe University of Western Ontario London Ontario Canada
| |
Collapse
|
16
|
Matveenko AG, Drozdova PB, Moskalenko SE, Tarasov OV, Zhouravleva GA. Whole genome sequencing data and analyses of the underlying SUP35 transcriptional regulation for a Saccharomyces cerevisiae nonsense suppressor mutant. Data Brief 2019; 23:103694. [PMID: 30788402 PMCID: PMC6369104 DOI: 10.1016/j.dib.2019.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/06/2019] [Accepted: 01/18/2019] [Indexed: 11/18/2022] Open
Abstract
Termination of translation in eukaryotes is governed by two release factors encoded by the SUP45 and SUP35 genes in Saccharomyces cerevisiae. Previously, a set of mutations in these genes had been obtained. However, the exact sequence change associated with one mutation, sup35-222, was not identified by Sanger sequencing of the SUP35 region. Presented here are whole-genome sequencing data for the sup35-222 strain, data on copy number variation in its genome along with supporting pulse-field gel electrophoresis experiment data, and the list of single-nucleotide variations that differentiate this strain and its wild-type ancestor. One substitution upstream the SUP35 gene was located in a sequence corresponding to the Abf1-binding site. Data obtained from the introduction of this variation from sup35-222 strain into a different wild-type strain, specifically, detection of a nonsense-suppressor phenotype accompanied by a decrease in the Sup35 protein level, are also presented in this article.
Collapse
Affiliation(s)
- Andrew G. Matveenko
- Department of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg 199034, Russia
| | - Polina B. Drozdova
- Department of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg 199034, Russia
| | - Svetlana E. Moskalenko
- Department of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg 199034, Russia
- St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Oleg V. Tarasov
- Department of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg 199034, Russia
| | - Galina A. Zhouravleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg 199034, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, St. Petersburg 199034, Russia
- Corresponding author at: Department of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya emb., 7/9, St. Petersburg 199034, Russia.
| |
Collapse
|
17
|
Abstract
Fungi are prone to phenotypic instability, that is, the vegetative phase of these organisms, be they yeasts or molds, undergoes frequent switching between two or more behaviors, often with different morphologies, but also sometime having different physiologies without any obvious morphological outcome. In the context of industrial utilization of fungi, this can have a negative impact on the maintenance of strains and/or on their productivity. Instabilities have been shown to result from various mechanisms, either genetic or epigenetic. This chapter will review different types of instabilities and discuss some lesser-known ones, mostly in filamentous fungi, while it will direct readers to additional literature in the case of well-known phenomena such as the amyloid prions or fungal senescence. It will present in depth the "white/opaque" switch of Candida albicans and the "crippled growth" degeneration of the model fungus Podospora anserina. These are two of the most thoroughly studied epigenetic phenotypic switches. I will also discuss the "sectors" presented by many filamentous ascomycetes, for which a prion-based model exists but is not demonstrated. Finally, I will also describe intriguing examples of phenotypic instability for which an explanation has yet to be provided.
Collapse
|
18
|
Astor MT, Kamiya E, Sporn ZA, Berger SE, Hines JK. Variant-specific and reciprocal Hsp40 functions in Hsp104-mediated prion elimination. Mol Microbiol 2018; 109:41-62. [PMID: 29633387 PMCID: PMC6099457 DOI: 10.1111/mmi.13966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 01/02/2023]
Abstract
The amyloid-based prions of Saccharomyces cerevisiae are heritable aggregates of misfolded proteins, passed to daughter cells following fragmentation by molecular chaperones including the J-protein Sis1, Hsp70 and Hsp104. Overexpression of Hsp104 efficiently cures cell populations of the prion [PSI+ ] by an alternative Sis1-dependent mechanism that is currently the subject of significant debate. Here, we broadly investigate the role of J-proteins in this process by determining the impact of amyloid polymorphisms (prion variants) on the ability of well-studied Sis1 constructs to compensate for Sis1 and ask whether any other S. cerevisiae cytosolic J-proteins are also required for this process. Our comprehensive screen, examining all 13 members of the yeast cytosolic/nuclear J-protein complement, uncovered significant variant-dependent genetic evidence for a role of Apj1 (antiprion DnaJ) in this process. For strong, but not weak [PSI+ ] variants, depletion of Apj1 inhibits Hsp104-mediated curing. Overexpression of either Apj1 or Sis1 enhances curing, while overexpression of Ydj1 completely blocks it. We also demonstrated that Sis1 was the only J-protein necessary for the propagation of at least two weak [PSI+ ] variants and no J-protein alteration, or even combination of alterations, affected the curing of weak [PSI+ ] variants, suggesting the possibility of biochemically distinct, variant-specific Hsp104-mediated curing mechanisms.
Collapse
Affiliation(s)
| | - Erina Kamiya
- Department of ChemistryLafayette CollegeEastonPAUSA
| | - Zachary A. Sporn
- Department of ChemistryLafayette CollegeEastonPAUSA
- Present address:
Geisinger Commonwealth School of MedicineScrantonPAUSA
| | | | | |
Collapse
|
19
|
Harvey ZH, Chen Y, Jarosz DF. Protein-Based Inheritance: Epigenetics beyond the Chromosome. Mol Cell 2017; 69:195-202. [PMID: 29153393 DOI: 10.1016/j.molcel.2017.10.030] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/01/2017] [Accepted: 10/20/2017] [Indexed: 12/23/2022]
Abstract
Epigenetics refers to changes in phenotype that are not rooted in DNA sequence. This phenomenon has largely been studied in the context of chromatin modification. Yet many epigenetic traits are instead linked to self-perpetuating changes in the individual or collective activity of proteins. Most such proteins are prions (e.g., [PSI+], [URE3], [SWI+], [MOT3+], [MPH1+], [LSB+], and [GAR+]), which have the capacity to adopt at least one conformation that self-templates over long biological timescales. This allows them to serve as protein-based epigenetic elements that are readily broadcast through mitosis and meiosis. In some circumstances, self-templating can fuel disease, but it also permits access to multiple activity states from the same polypeptide and transmission of that information across generations. Ensuing phenotypic changes allow genetically identical cells to express diverse and frequently adaptive phenotypes. Although long thought to be rare, protein-based epigenetic inheritance has now been uncovered in all domains of life.
Collapse
Affiliation(s)
- Zachary H Harvey
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | - Yiwen Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Nizhnikov AA, Antonets KS, Bondarev SA, Inge-Vechtomov SG, Derkatch IL. Prions, amyloids, and RNA: Pieces of a puzzle. Prion 2017; 10:182-206. [PMID: 27248002 DOI: 10.1080/19336896.2016.1181253] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amyloids are protein aggregates consisting of fibrils rich in β-sheets. Growth of amyloid fibrils occurs by the addition of protein molecules to the tip of an aggregate with a concurrent change of a conformation. Thus, amyloids are self-propagating protein conformations. In certain cases these conformations are transmissible / infectious; they are known as prions. Initially, amyloids were discovered as pathological extracellular deposits occurring in different tissues and organs. To date, amyloids and prions have been associated with over 30 incurable diseases in humans and animals. However, a number of recent studies demonstrate that amyloids are also functionally involved in a variety of biological processes, from biofilm formation by bacteria, to long-term memory in animals. Interestingly, amyloid-forming proteins are highly overrepresented among cellular factors engaged in all stages of mRNA life cycle: from transcription and translation, to storage and degradation. Here we review rapidly accumulating data on functional and pathogenic amyloids associated with mRNA processing, and discuss possible significance of prion and amyloid networks in the modulation of key cellular functions.
Collapse
Affiliation(s)
- Anton A Nizhnikov
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia.,c All-Russia Research Institute for Agricultural Microbiology , St. Petersburg , Russia
| | - Kirill S Antonets
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia
| | - Stanislav A Bondarev
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia
| | - Sergey G Inge-Vechtomov
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia
| | - Irina L Derkatch
- d Department of Neuroscience , College of Physicians and Surgeons of Columbia University, Columbia University , New York , NY , USA
| |
Collapse
|
21
|
Bondarev SA, Likholetova DV, Belousov MV, Zhouravleva GA. Rnq1 protein protects [PSI
+] prion from effect of the PNM mutation. Mol Biol 2017. [DOI: 10.1134/s0026893317010058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Du Z, Goncharoff DK, Cheng X, Li L. Analysis of [SWI + ] formation and propagation events. Mol Microbiol 2017; 104:105-124. [PMID: 28035761 DOI: 10.1111/mmi.13616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2016] [Indexed: 01/01/2023]
Abstract
The budding yeast, Saccharomyces cerevisiae, harbors several prions that are transmitted as altered, heritable protein conformations. [SWI+ ] is one such prion whose determinant is Swi1, a subunit of the evolutionarily conserved chromatin-remodeling complex SWI/SNF. Despite the importance of Swi1, the molecular events that lead to [SWI+ ] prionogenesis remain poorly understood. In this study, we have constructed floccullin-promoter-based URA3 reporters for [SWI+ ] identification. Using these reporters, we show that the spontaneous formation frequency of [SWI+ ] is significantly higher than that of [PSI+ ] (prion form of Sup35). We also show that preexisting [PSI+ ] or [PIN+ ] (prion form of Rnq1), or overproduction of Swi1 prion-domain (PrD) can considerably promote Swi1 prionogenesis. Moreover, our data suggest a strain-specific effect of overproduction of Sse1 - a nucleotide exchange factor of the molecular chaperone Hsp70, and its interaction with another molecular chaperone Hsp104 on [SWI+ ] maintenance. Additionally, we show that Swi1 aggregates are initially ring/ribbon-like then become dot-like in mature [SWI+ ] cells. In the presence of [PSI+ ] or [PIN+ ], Swi1 ring/ribbon-like aggregates predominantly colocalize with the Sup35 or Rnq1 aggregates; without a preexisting prion, however, such colocalizations are rarely seen during Swi1-PrD overproduction-promoted Swi1 prionogenesis. We have thus demonstrated a complex interacting mechanism of yeast prionogenesis.
Collapse
Affiliation(s)
- Zhiqiang Du
- Department of Biochemistry and Molecular Genetics, the Feinberg School of Medicine, Northwestern University, 320 E Superior St, Searle 7-650, Chicago, IL, 60611, USA
| | - Dustin Kenneth Goncharoff
- Department of Biochemistry and Molecular Genetics, the Feinberg School of Medicine, Northwestern University, 320 E Superior St, Searle 7-650, Chicago, IL, 60611, USA
| | - Xudong Cheng
- Department of Biochemistry and Molecular Genetics, the Feinberg School of Medicine, Northwestern University, 320 E Superior St, Searle 7-650, Chicago, IL, 60611, USA
| | - Liming Li
- Department of Biochemistry and Molecular Genetics, the Feinberg School of Medicine, Northwestern University, 320 E Superior St, Searle 7-650, Chicago, IL, 60611, USA
| |
Collapse
|
23
|
Drozdova P, Mironova L, Zhouravleva G. Haploid yeast cells undergo a reversible phenotypic switch associated with chromosome II copy number. BMC Genet 2016; 17:152. [PMID: 28105933 PMCID: PMC5249023 DOI: 10.1186/s12863-016-0464-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SUP35 and SUP45 are essential genes encoding polypeptide chain release factors. However, mutants for these genes may be viable but display pleiotropic phenotypes which include, but are not limited to, nonsense suppressor phenotype due to translation termination defect. [PSI +] prion formation is another Sup35p-associated mechanism leading to nonsense suppression through decreased availability of functional Sup35p. [PSI +] differs from genuine sup35 mutations by the possibility of its elimination and subsequent re-induction. Some suppressor sup35 mutants had also been shown to undergo a reversible phenotypic switch in the opposite direction. This reversible switching had been attributed to a prion termed [ISP +]. However, even though many phenotypic and molecular level features of [ISP +] were revealed, the mechanism behind this phenomenon has not been clearly explained and might be more complex than suggested initially. RESULTS Here we took a genomic approach to look into the molecular basis of the difference between the suppressor (Isp-) and non-suppressor (Isp+) phenotypes. We report that the reason for the difference between the Isp+ and the Isp- phenotypes is chromosome II copy number changes and support our finding with showing that these changes are indeed reversible by reproducing the phenotypic switch and tracking karyotypic changes. Finally, we suggest mechanisms that mediate elevation in nonsense suppression efficiency upon amplification of chromosome II and facilitate switching between these states. CONCLUSIONS (i) In our experimental system, amplification of chromosome II confers nonsense suppressor phenotype and guanidine hydrochloride resistance at the cost of overall decreased viability in rich medium. (ii) SFP1 might represent a novel regulator of chromosome stability, as SFP1 overexpression elevates frequency of the additional chromosome loss in our system. (iii) Prolonged treatment with guanidine hydrochloride leads to selection of resistant isolates, some of which are disomic for chromosome II.
Collapse
Affiliation(s)
- Polina Drozdova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034, Universitetskaya nab. 7-9, St. Petersburg, Russia
| | - Ludmila Mironova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034, Universitetskaya nab. 7-9, St. Petersburg, Russia
| | - Galina Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034, Universitetskaya nab. 7-9, St. Petersburg, Russia
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034, Universitetskaya nab. 7-9, St. Petersburg, Russia
| |
Collapse
|
24
|
Matveenko AG, Drozdova PB, Belousov MV, Moskalenko SE, Bondarev SA, Barbitoff YA, Nizhnikov AA, Zhouravleva GA. SFP1-mediated prion-dependent lethality is caused by increased Sup35 aggregation and alleviated by Sis1. Genes Cells 2016; 21:1290-1308. [DOI: 10.1111/gtc.12444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 09/14/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Andrew G. Matveenko
- St Petersburg Branch; Vavilov Institute of General Genetics of the Russian Academy of Sciences; St Petersburg Russia
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- Laboratory of Amyloid Biology; Saint Petersburg State University; St Petersburg Russia
| | - Polina B. Drozdova
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- Laboratory of Amyloid Biology; Saint Petersburg State University; St Petersburg Russia
| | - Mikhail V. Belousov
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
| | - Svetlana E. Moskalenko
- St Petersburg Branch; Vavilov Institute of General Genetics of the Russian Academy of Sciences; St Petersburg Russia
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
| | - Stanislav A. Bondarev
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- Laboratory of Amyloid Biology; Saint Petersburg State University; St Petersburg Russia
| | - Yury A. Barbitoff
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
| | - Anton A. Nizhnikov
- St Petersburg Branch; Vavilov Institute of General Genetics of the Russian Academy of Sciences; St Petersburg Russia
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- All-Russia Research Institute for Agricultural Microbiology; Pushkin St Petersburg Russia
| | - Galina A. Zhouravleva
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- Laboratory of Amyloid Biology; Saint Petersburg State University; St Petersburg Russia
| |
Collapse
|
25
|
Drozdova PB, Tarasov OV, Matveenko AG, Radchenko EA, Sopova JV, Polev DE, Inge-Vechtomov SG, Dobrynin PV. Genome Sequencing and Comparative Analysis of Saccharomyces cerevisiae Strains of the Peterhof Genetic Collection. PLoS One 2016; 11:e0154722. [PMID: 27152522 PMCID: PMC4859572 DOI: 10.1371/journal.pone.0154722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/18/2016] [Indexed: 01/09/2023] Open
Abstract
The Peterhof genetic collection of Saccharomyces cerevisiae strains (PGC) is a large laboratory stock that has accumulated several thousands of strains for over than half a century. It originated independently of other common laboratory stocks from a distillery lineage (race XII). Several PGC strains have been extensively used in certain fields of yeast research but their genomes have not been thoroughly explored yet. Here we employed whole genome sequencing to characterize five selected PGC strains including one of the closest to the progenitor, 15V-P4, and several strains that have been used to study translation termination and prions in yeast (25-25-2V-P3982, 1B-D1606, 74-D694, and 6P-33G-D373). The genetic distance between the PGC progenitor and S288C is comparable to that between two geographically isolated populations. The PGC seems to be closer to two bakery strains than to S288C-related laboratory stocks or European wine strains. In genomes of the PGC strains, we found several loci which are absent from the S288C genome; 15V-P4 harbors a rare combination of the gene cluster characteristic for wine strains and the RTM1 cluster. We closely examined known and previously uncharacterized gene variants of particular strains and were able to establish the molecular basis for known phenotypes including phenylalanine auxotrophy, clumping behavior and galactose utilization. Finally, we made sequencing data and results of the analysis available for the yeast community. Our data widen the knowledge about genetic variation between Saccharomyces cerevisiae strains and can form the basis for planning future work in PGC-related strains and with PGC-derived alleles.
Collapse
Affiliation(s)
- Polina B. Drozdova
- Dept. of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg, Russia
- Bioinformatics Institute, St. Petersburg, Russia
| | - Oleg V. Tarasov
- Dept. of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg, Russia
- St. Petersburg Scientific Center of RAS, St. Petersburg, Russia
| | - Andrew G. Matveenko
- Dept. of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg, Russia
- St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, St. Petersburg, Russia
| | - Elina A. Radchenko
- Dept. of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg, Russia
- Bioinformatics Institute, St. Petersburg, Russia
| | - Julia V. Sopova
- Dept. of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg, Russia
- St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, St. Petersburg, Russia
| | - Dmitrii E. Polev
- Research Resource Center for Molecular and Cell Technologies, Research Park, Saint-Petersburg State University, St. Petersburg, Russia
| | - Sergey G. Inge-Vechtomov
- Dept. of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg, Russia
- St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Pavel V. Dobrynin
- Bioinformatics Institute, St. Petersburg, Russia
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
26
|
Abstract
Although prions were first discovered through their link to severe brain degenerative diseases in animals, the emergence of prions as regulators of the phenotype of the yeast Saccharomyces cerevisiae and the filamentous fungus Podospora anserina has revealed a new facet of prion biology. In most cases, fungal prions are carried without apparent detriment to the host cell, representing a novel form of epigenetic inheritance. This raises the question of whether or not yeast prions are beneficial survival factors or actually gives rise to a "disease state" that is selected against in nature. To date, most studies on the impact of fungal prions have focused on laboratory-cultivated "domesticated" strains of S. cerevisiae. At least eight prions have now been described in this species, each with the potential to impact on a wide range of cellular processes. The discovery of prions in nondomesticated strains of S. cerevisiae and P. anserina has confirmed that prions are not simply an artifact of "domestication" of this species. In this review, I describe what we currently know about the phenotypic impact of fungal prions. I then describe how the interplay between host genotype and the prion-mediated changes can generate a wide array of phenotypic diversity. How such prion-generated diversity may be of benefit to the host in survival in a fluctuating, often hazardous environment is then outlined. Prion research has now entered a new phase in which we must now consider their biological function and evolutionary significance in the natural world.
Collapse
Affiliation(s)
- Mick F Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom.
| |
Collapse
|
27
|
Wickner RB, Edskes HK, Gorkovskiy A, Bezsonov EE, Stroobant EE. Yeast and Fungal Prions: Amyloid-Handling Systems, Amyloid Structure, and Prion Biology. ADVANCES IN GENETICS 2016; 93:191-236. [PMID: 26915272 PMCID: PMC9432818 DOI: 10.1016/bs.adgen.2015.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Yeast prions (infectious proteins) were discovered by their outré genetic properties and have become important models for an array of human prion and amyloid diseases. A single prion protein can become any of many distinct amyloid forms (called prion variants or strains), each of which is self-propagating, but with different biological properties (eg, lethal vs mild). The folded in-register parallel β sheet architecture of the yeast prion amyloids naturally suggests a mechanism by which prion variant information can be faithfully transmitted for many generations. The yeast prions rely on cellular chaperones for their propagation, but can be cured by various chaperone imbalances. The Btn2/Cur1 system normally cures most variants of the [URE3] prion that arise. Although most variants of the [PSI+] and [URE3] prions are toxic or lethal, some are mild in their effects. Even the most mild forms of these prions are rare in the wild, indicating that they too are detrimental to yeast. The beneficial [Het-s] prion of Podospora anserina poses an important contrast in its structure, biology, and evolution to the yeast prions characterized thus far.
Collapse
Affiliation(s)
- R B Wickner
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - H K Edskes
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - A Gorkovskiy
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - E E Bezsonov
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - E E Stroobant
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
28
|
Garcia DM, Jarosz DF. Rebels with a cause: molecular features and physiological consequences of yeast prions. FEMS Yeast Res 2015; 14:136-47. [PMID: 25667942 DOI: 10.1111/1567-1364.12116] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prions are proteins that convert between structurally and functionally distinct states, at least one of which is self-perpetuating. The prion fold templates the conversion of native protein, altering its structure and function, and thus serves as a protein-based element of inheritance. Molecular chaperones ensure that these prion aggregates are divided and faithfully passed from mother cells to their daughters. Prions were originally identified as the cause of several rare neurodegenerative diseases in mammals, but the last decade has brought great progress in understanding their broad importance in biology and evolution. Most prion proteins regulate information flow in signaling networks, or otherwise affect gene expression. Consequently, switching into and out of prion states creates diverse new traits – heritable changes based on protein structure rather than nucleic acid. Despite intense study of the molecular mechanisms of this paradigm-shifting, epigenetic mode of inheritance, many key questions remain. Recent studies in yeast that support the view that prions are common, often beneficial elements of inheritance that link environmental stress to the appearance of new traits.
Collapse
|
29
|
Zadorsky SP, Sopova YV, Andreichuk DY, Startsev VA, Medvedeva VP, Inge-Vechtomov SG. Chromosome VIII disomy influences the nonsense suppression efficiency and transition metal tolerance of the yeast Saccharomyces cerevisiae. Yeast 2015; 32:479-97. [PMID: 25874850 DOI: 10.1002/yea.3074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 02/24/2015] [Accepted: 03/27/2015] [Indexed: 01/26/2023] Open
Abstract
The SUP35 gene of the yeast Saccharomyces cerevisiae encodes the translation termination factor eRF3. Mutations in this gene lead to the suppression of nonsense mutations and a number of other pleiotropic phenotypes, one of which is impaired chromosome segregation during cell division. Similar effects result from replacing the S. cerevisiae SUP35 gene with its orthologues. A number of genetic and epigenetic changes that occur in the sup35 background result in partial compensation for this suppressor effect. In this study we showed that in S. cerevisiae strains in which the SUP35 orthologue from the yeast Pichia methanolica replaces the S. cerevisiae SUP35 gene, chromosome VIII disomy results in decreased efficiency of nonsense suppression. This antisuppressor effect is not associated with decreased stop codon read-through. We identified SBP1, a gene that localizes to chromosome VIII, as a dosage-dependent antisuppressor that strongly contributes to the overall antisuppressor effect of chromosome VIII disomy. Disomy of chromosome VIII also leads to a change in the yeast strains' tolerance of a number of transition metal salts.
Collapse
Affiliation(s)
- S P Zadorsky
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation.,St. Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, St Petersburg, Russian Federation
| | - Y V Sopova
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation.,St. Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, St Petersburg, Russian Federation
| | - D Y Andreichuk
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation
| | - V A Startsev
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation
| | - V P Medvedeva
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation
| | - S G Inge-Vechtomov
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation.,St. Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, St Petersburg, Russian Federation
| |
Collapse
|
30
|
Arslan F, Hong JY, Kanneganti V, Park SK, Liebman SW. Heterologous aggregates promote de novo prion appearance via more than one mechanism. PLoS Genet 2015; 11:e1004814. [PMID: 25568955 PMCID: PMC4287349 DOI: 10.1371/journal.pgen.1004814] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/09/2014] [Indexed: 12/12/2022] Open
Abstract
Prions are self-perpetuating conformational variants of particular proteins. In yeast, prions cause heritable phenotypic traits. Most known yeast prions contain a glutamine (Q)/asparagine (N)-rich region in their prion domains. [PSI+], the prion form of Sup35, appears de novo at dramatically enhanced rates following transient overproduction of Sup35 in the presence of [PIN+], the prion form of Rnq1. Here, we establish the temporal de novo appearance of Sup35 aggregates during such overexpression in relation to other cellular proteins. Fluorescently-labeled Sup35 initially forms one or a few dots when overexpressed in [PIN+] cells. One of the dots is perivacuolar, colocalizes with the aggregated Rnq1 dot and grows into peripheral rings/lines, some of which also colocalize with Rnq1. Sup35 dots that are not near the vacuole do not always colocalize with Rnq1 and disappear by the time rings start to grow. Bimolecular fluorescence complementation failed to detect any interaction between Sup35-VN and Rnq1-VC in [PSI+][PIN+] cells. In contrast, all Sup35 aggregates, whether newly induced or in established [PSI+], completely colocalize with the molecular chaperones Hsp104, Sis1, Ssa1 and eukaryotic release factor Sup45. In the absence of [PIN+], overexpressed aggregating proteins such as the Q/N-rich Pin4C or the non-Q/N-rich Mod5 can also promote the de novo appearance of [PSI+]. Similar to Rnq1, overexpressed Pin4C transiently colocalizes with newly appearing Sup35 aggregates. However, no interaction was detected between Mod5 and Sup35 during [PSI+] induction in the absence of [PIN+]. While the colocalization of Sup35 and aggregates of Rnq1 or Pin4C are consistent with the model that the heterologous aggregates cross-seed the de novo appearance of [PSI+], the lack of interaction between Mod5 and Sup35 leaves open the possibility of other mechanisms. We also show that Hsp104 is required in the de novo appearance of [PSI+] aggregates in a [PIN+]-independent pathway. Certain proteins can misfold into β-sheet-rich, self-seeding aggregates. Such proteins appear to be associated with neurodegenerative diseases such as prion, Alzheimer's and Parkinson's. Yeast prions also misfold into self-seeding aggregates and provide a good model to study how these rogue polymers first appear. De novo prion appearance can be made very frequent in yeast by transient overexpression of the prion protein in the presence of heterologous prions or prion-like aggregates. Here, we show that the aggregates of one such newly induced prion are initially formed in a dot-like structure near the vacuole. These dots then grow into rings at the periphery of the cell prior to becoming smaller rings surrounding the vacuole and maturing into the characteristic heritable prion tiny dots found throughout the cytoplasm. We found considerable colocalization of two heterologous prion/prion-like aggregates with the newly appearing prion protein aggregates, which is consistent with the prevalent model that existing prion aggregates can cross-seed the de novo aggregation of a heterologous prion protein. However, we failed to find any physical interaction between another heterologous aggregating protein and the newly appearing prion aggregates it stimulated to appear, which is inconsistent with cross-seeding.
Collapse
Affiliation(s)
- Fatih Arslan
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Joo Y. Hong
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Vydehi Kanneganti
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Sei-Kyoung Park
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Susan W. Liebman
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
31
|
Nizhnikov AA, Antonets KS, Inge-Vechtomov SG, Derkatch IL. Modulation of efficiency of translation termination in Saccharomyces cerevisiae. Prion 2014; 8:247-60. [PMID: 25486049 DOI: 10.4161/pri.29851] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nonsense suppression is a readthrough of premature termination codons. It typically occurs either due to the recognition of stop codons by tRNAs with mutant anticodons, or due to a decrease in the fidelity of translation termination. In the latter case, suppressors usually promote the readthrough of different types of nonsense codons and are thus called omnipotent nonsense suppressors. Omnipotent nonsense suppressors were identified in yeast Saccharomyces cerevisiae in 1960s, and most of subsequent studies were performed in this model organism. Initially, omnipotent suppressors were localized by genetic analysis to different protein- and RNA-encoding genes, mostly the components of translational machinery. Later, nonsense suppression was found to be caused not only by genomic mutations, but also by epigenetic elements, prions. Prions are self-perpetuating protein conformations usually manifested by infectious protein aggregates. Modulation of translational accuracy by prions reflects changes in the activity of their structural proteins involved in different aspects of protein synthesis. Overall, nonsense suppression can be seen as a "phenotypic mirror" of events affecting the accuracy of the translational machine. However, the range of proteins participating in the modulation of translation termination fidelity is not fully elucidated. Recently, the list has been expanded significantly by findings that revealed a number of weak genetic and epigenetic nonsense suppressors, the effect of which can be detected only in specific genetic backgrounds. This review summarizes the data on the nonsense suppressors decreasing the fidelity of translation termination in S. cerevisiae, and discusses the functional significance of the modulation of translational accuracy.
Collapse
Affiliation(s)
- Anton A Nizhnikov
- a Department of Genetics and Biotechnology ; St. Petersburg State University ; St. Petersburg , Russia
| | | | | | | |
Collapse
|
32
|
Drozdova P, Rogoza T, Radchenko E, Lipaeva P, Mironova L. Transcriptional response to the [ISP(+) ] prion of Saccharomyces cerevisiae differs from that induced by the deletion of its structural gene, SFP1. FEMS Yeast Res 2014; 14:1160-70. [PMID: 25227157 DOI: 10.1111/1567-1364.12211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 12/21/2022] Open
Abstract
Currently, several protein-based genetic determinants, or prions, are described in yeast, and several hundred prion candidates have been predicted. Importantly, many known and potential prion proteins regulate transcription; therefore, prion induction should affect gene expression. While it is generally believed that the prion phenotype should mimic the deletion phenotype, this rule has exceptions. Formed by the transcription factor Sfp1p, [ISP(+) ] is one such exception as the [ISP(+) ] and sfp1Δ strains differ in many phenotypic traits. These data suggest that effects of prion formation by a transcription factor and its absence may affect gene expression in a different way. However, studies addressing this issue are practically absent. Here, we explore how [ISP(+) ] affects gene expression and how these changes correspond to the effect of SFP1 deletion. Our data indicate that the [ISP(+) ]-related expression changes cannot be explained by the inactivation of Sfp1p. Remarkably, most Sfp1p targets are not affected in the [ISP(+) ] strain; instead, the genes upregulated in the [ISP(+) ] strain are enriched in Gcn4p and Aft1p targets. We propose that Sfp1p serves as a part of a regulatory complex, and the activity of this complex may be modulated differently by the absence or prionization of Sfp1p.
Collapse
Affiliation(s)
- Polina Drozdova
- Department of Genetics and Biotechnology, Saint Petersburg State University, St. Petersburg, Russia; Laboratory of Amyloid Biology, Saint Petersburg State University, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
33
|
Bondarev SA, Shirokolobova ED, Trubitsina NP, Zhouravleva GA. Modification of [PSI +] prion properties by combining amino acid changes in N-terminal domain of Sup35 protein. Mol Biol 2014. [DOI: 10.1134/s0026893314020034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Yeast prions and human prion-like proteins: sequence features and prediction methods. Cell Mol Life Sci 2014; 71:2047-63. [PMID: 24390581 DOI: 10.1007/s00018-013-1543-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 11/27/2022]
Abstract
Prions are self-propagating infectious protein isoforms. A growing number of prions have been identified in yeast, each resulting from the conversion of soluble proteins into an insoluble amyloid form. These yeast prions have served as a powerful model system for studying the causes and consequences of prion aggregation. Remarkably, a number of human proteins containing prion-like domains, defined as domains with compositional similarity to yeast prion domains, have recently been linked to various human degenerative diseases, including amyotrophic lateral sclerosis. This suggests that the lessons learned from yeast prions may help in understanding these human diseases. In this review, we examine what has been learned about the amino acid sequence basis for prion aggregation in yeast, and how this information has been used to develop methods to predict aggregation propensity. We then discuss how this information is being applied to understand human disease, and the challenges involved in applying yeast prediction methods to higher organisms.
Collapse
|
35
|
Bondarev SA, Shchepachev VV, Kajava AV, Zhouravleva GA. Effect of charged residues in the N-domain of Sup35 protein on prion [PSI+] stability and propagation. J Biol Chem 2013; 288:28503-13. [PMID: 23965990 DOI: 10.1074/jbc.m113.471805] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent studies have shown that Sup35p prion fibrils probably have a parallel in-register β-structure. However, the part(s) of the N-domain critical for fibril formation and maintenance of the [PSI(+)] phenotype remains unclear. Here we designed a set of five SUP35 mutant alleles (sup35(KK)) with lysine substitutions in each of five N-domain repeats, and investigated their effect on infectivity and ability of corresponding proteins to aggregate and coaggregate with wild type Sup35p in the [PSI(+)] strain. Alleles sup35-M1 (Y46K/Q47K) and sup35-M2 (Q61K/Q62K) led to prion loss, whereas sup35-M3 (Q70K/Q71K), sup35-M4 (Q80K/Q81K), and sup35-M5 (Q89K/Q90K) were able to maintain the [PSI(+)] prion. This suggests that the critical part of the parallel in-register β-structure for the studied [PSI(+)] prion variant lies in the first 63-69 residues. Our study also reveals an unexpected interplay between the wild type Sup35p and proteins expressed from the sup35(KK) alleles during prionization. Both Sup35-M1p and Sup35-M2p coaggregated with Sup35p, but only sup35-M2 led to prion loss in a dominant manner. We suggest that in the fibrils, Sup35p can bind to Sup35-M1p in the same conformation, whereas Sup35-M2p only allowed the Sup35p conformation that leads to the non-heritable fold. Mutations sup35-M4 and sup35-M5 influence the structure of the prion forming region to a lesser extent, and can lead to the formation of new prion variants.
Collapse
Affiliation(s)
- Stanislav A Bondarev
- From the Department of Genetics and Biotechnology, St. Petersburg State University, Saint Petersburg, Russia
| | | | | | | |
Collapse
|
36
|
Wickner RB, Edskes HK, Bateman DA, Kelly AC, Gorkovskiy A, Dayani Y, Zhou A. Amyloids and yeast prion biology. Biochemistry 2013; 52:1514-27. [PMID: 23379365 DOI: 10.1021/bi301686a] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prions (infectious proteins) of Saccharomyces cerevisiae are proteins acting as genes, by templating their conformation from one molecule to another in analogy to DNA templating its sequence. Most yeast prions are amyloid forms of normally soluble proteins, and a single protein sequence can have any of several self-propagating forms (called prion strains or variants), analogous to the different possible alleles of a DNA gene. A central issue in prion biology is the structural basis of this conformational templating process. The in-register parallel β sheet structure found for several infectious yeast prion amyloids naturally suggests an explanation for this conformational templating. While most prions are plainly diseases, the [Het-s] prion of Podospora anserina may be a functional amyloid, with important structural implications. Yeast prions are important models for human amyloid diseases in general, particularly because new evidence is showing infectious aspects of several human amyloidoses not previously classified as prions. We also review studies of the roles of chaperones, aggregate-collecting proteins, and other cellular components using yeast that have led the way in improving the understanding of similar processes that must be operating in many human amyloidoses.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the "protein only" model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions.
Collapse
Affiliation(s)
- Susan W Liebman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA.
| | | |
Collapse
|
38
|
Wickner RB, Edskes HK, Shewmaker FP, Kryndushkin D, Nemecek J, McGlinchey R, Bateman D. The relationship of prions and translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:81-9. [PMID: 21339834 DOI: 10.1002/wrna.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prions are infectious proteins, without the need for an accompanying nucleic acid. Nonetheless, there are connections of prions with translation and RNA, which we explore here. Most prions are based on self-propagating amyloids. The yeast [PSI+] prion is an amyloid of Sup35p, a subunit of the translation termination factor. The normal function of the Sup35p prion domain is in shortening the 3 polyA of mRNAs and thus in mRNA turnover. The [ISP+] prion is so named because it produces antisuppression, the opposite of the effect of [PSI+]. Another connection of prions with translation is the influence on prion propagation and generation of ribosome-associated chaperones, the Ssbs, and a chaperone activity intrinsic to the 60S ribosomal subunits.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Staniforth GL, Tuite MF. Fungal prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:417-56. [PMID: 22482457 DOI: 10.1016/b978-0-12-385883-2.00007-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
For both mammalian and fungal prion proteins, conformational templating drives the phenomenon of protein-only infectivity. The conformational conversion of a protein to its transmissible prion state is associated with changes to host cellular physiology. In mammals, this change is synonymous with disease, whereas in fungi no notable detrimental effect on the host is typically observed. Instead, fungal prions can serve as epigenetic regulators of inheritance in the form of partial loss-of-function phenotypes. In the presence of environmental challenges, the prion state [PRION(+)], with its resource for phenotypic plasticity, can be associated with a growth advantage. The growing number of yeast proteins that can switch to a heritable [PRION(+)] form represents diverse and metabolically penetrating cellular functions, suggesting that the [PRION(+)] state in yeast is a functional one, albeit rarely found in nature. In this chapter, we introduce the biochemical and genetic properties of fungal prions, many of which are shared by the mammalian prion protein PrP, and then outline the major contributions that studies on fungal prions have made to prion biology.
Collapse
Affiliation(s)
- Gemma L Staniforth
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | | |
Collapse
|
40
|
Radchenko E, Rogoza T, Khokhrina M, Drozdova P, Mironova L. SUP35 expression is enhanced in yeast containing [ISP+], a prion form of the transcriptional regulator Sfp1. Prion 2011. [PMID: 22156729 DOI: 10.4161/pri.5.4.18426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
[ISP+] is a prion form of the global transcriptional regulator Sfp1 in Saccharomyces cerevisiae that manifests phenotypically as an antisuppressor of specific sup35 nonsense suppressor mutations. Although SUP35 is a Sfp1 target, the mechanism of antisuppression is unclear. Here we show that the level of SUP35 transcription in [ISP+] cells containing the sup35 mutation is increased relative to [isp-] cells and cells with a SFP1 deletion. As a result, [ISP+] cells have increased amounts of Sup35 encoded by the mutant allele. Indeed, additional experiments showed that increased amounts of mutant Sup35 may cause antisuppression. Remarkably, [ISP+] effects are not equivalent to those produced by SFP1 deletion, so [ISP+] represents an obvious example of a functionally active prion form of a protein. This feature distinguishes [ISP+] from other yeast prions, where prion switch often has the same effect as inactivation of a prion host gene. We suggest that enhancement of SUP35 expression in [ISP+] cells is caused by specific interaction of Sfp1 in its prion form with some negative SUP35 regulator. We also demonstrate that the advantage of [ISP+] strains over [isp-] strains described in our earlier work is specific for certain genetic background and growth conditions.
Collapse
Affiliation(s)
- Elina Radchenko
- Department of Genetics, St. Petersburg State University, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
41
|
Radchenko E, Rogoza T, Khokhrina M, Drozdova P, Mironova L. SUP35 expression is enhanced in yeast containing [ISP+], a prion form of the transcriptional regulator Sfp1. Prion 2011; 5:317-22. [PMID: 22156729 DOI: 10.4161/pri.18426] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
[ISP+] is a prion form of the global transcriptional regulator Sfp1 in Saccharomyces cerevisiae that manifests phenotypically as an antisuppressor of specific sup35 nonsense suppressor mutations. Although SUP35 is a Sfp1 target, the mechanism of antisuppression is unclear. Here we show that the level of SUP35 transcription in [ISP+] cells containing the sup35 mutation is increased relative to [isp-] cells and cells with a SFP1 deletion. As a result, [ISP+] cells have increased amounts of Sup35 encoded by the mutant allele. Indeed, additional experiments showed that increased amounts of mutant Sup35 may cause antisuppression. Remarkably, [ISP+] effects are not equivalent to those produced by SFP1 deletion, so [ISP+] represents an obvious example of a functionally active prion form of a protein. This feature distinguishes [ISP+] from other yeast prions, where prion switch often has the same effect as inactivation of a prion host gene. We suggest that enhancement of SUP35 expression in [ISP+] cells is caused by specific interaction of Sfp1 in its prion form with some negative SUP35 regulator. We also demonstrate that the advantage of [ISP+] strains over [isp-] strains described in our earlier work is specific for certain genetic background and growth conditions.
Collapse
Affiliation(s)
- Elina Radchenko
- Department of Genetics, St. Petersburg State University, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
42
|
Abstract
Prions are infectious proteins with altered conformations converted from otherwise normal host proteins. While there is only one known mammalian prion protein, PrP, a handful of prion proteins have been identified in the yeast Saccharomyces cerevisiae. Yeast prion proteins usually have a defined region called prion domain (PrD) essential for prion properties, which are typically rich in glutamine (Q) and asparagine (N). Despite sharing several common features, individual yeast PrDs are generally intricate and divergent in their compositional characteristics, which potentially implicates their prion phenotypes, such as prion-mediated transcriptional regulations.
Collapse
Affiliation(s)
- Zhiqiang Du
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
43
|
Abstract
The unexpected discovery of two prions, [URE3] and [PSI+], in Saccharomyces cerevisiae led to questions about how many other proteins could undergo similar prion-based structural conversions. However, [URE3] and [PSI+] were discovered by serendipity in genetic screens. Cataloging the full range of prions in yeast or in other organisms will therefore require more systematic search methods. Taking advantage of some of the unique features of prions, various researchers have developed bioinformatic and experimental methods for identifying novel prion proteins. These methods have generated long lists of prion candidates. The systematic testing of some of these prion candidates has led to notable successes; however, even in yeast, where rapid growth rate and ease of genetic manipulation aid in testing for prion activity, such candidate testing is laborious. Development of better methods to winnow the field of prion candidates will greatly aid in the discovery of new prions, both in yeast and in other organisms, and help us to better understand the role of prions in biology.
Collapse
Affiliation(s)
- Kyle S MacLea
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
44
|
Hines JK, Craig EA. The sensitive [SWI (+)] prion: new perspectives on yeast prion diversity. Prion 2011; 5:164-8. [PMID: 21811098 DOI: 10.4161/pri.5.3.16895] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Yeast prions are heritable protein-based genetic elements which rely on molecular chaperone proteins for stable transmission to cell progeny. Within the past few years, five new prions have been validated and 18 additional putative prions identified in Saccharomyces cerevisiae. The exploration of the physical and biological properties of these "nouveau prions" has begun to reveal the extent of prion diversity in yeast. We recently reported that one such prion, [SWI(+)], differs from the best studied, archetypal prion [PSI(+)] in several significant ways. ( 1) Notably, [SWI(+)] is highly sensitive to alterations in Hsp70 system chaperone activity and is lost upon growth at elevated temperatures. In that report we briefly noted a correlation amongst prions regarding amino acid composition, seed number and sensitivity to the activity of the Hsp70 chaperone system. Here we extend that analysis and put forth the idea that [SWI(+)] may be representative of a class of asparagine-rich yeast prions which also includes [URE3], [MOT3(+)] and [ISP(+)], distinct from the glutamine-rich prions such as [PSI(+)] and [RNQ(+)]. While much work remains, it is apparent that our understanding of the extent of the diversity of prion characteristics is in its infancy.
Collapse
Affiliation(s)
- Justin K Hines
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
45
|
Crow ET, Li L. Newly identified prions in budding yeast, and their possible functions. Semin Cell Dev Biol 2011; 22:452-9. [PMID: 21397710 DOI: 10.1016/j.semcdb.2011.03.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 11/25/2022]
Abstract
Yeast prions are atypical genetic elements that are transmitted as heritable protein conformations. [PSI+], [URE3], and [PIN+] are three well-studied prions in the budding yeast, Saccharomyces cerevisiae. In the last three years, several additional prions have been reported in yeast, including [SWI+], [OCT+], [MCA], [GAR+], [MOT3+], [ISP+], and [NSI+]. The growing number of yeast prions suggests that protein-based inheritance might be a widespread biological phenomenon. In this review, we summarize the characteristics of each prion element, and discuss their potential functional roles in yeast biology.
Collapse
Affiliation(s)
- Emily T Crow
- Department of Molecular Pharmacology and Biological Chemistry, The Feinberg School of Medicine, Northwestern University, 320 East Superior Street, Chicago, IL 60611, USA.
| | | |
Collapse
|
46
|
Abstract
The unexpected discovery of two prions, [URE3] and [PSI+], in Saccharomyces cerevisiae led to questions about how many other proteins could undergo similar prion-based structural conversions. However, [URE3] and [PSI+] were discovered by serendipity in genetic screens. Cataloging the full range of prions in yeast or in other organisms will therefore require more systematic search methods. Taking advantage of some of the unique features of prions, various researchers have developed bioinformatic and experimental methods for identifying novel prion proteins. These methods have generated long lists of prion candidates. The systematic testing of some of these prion candidates has led to notable successes; however, even in yeast, where rapid growth rate and ease of genetic manipulation aid in testing for prion activity, such candidate testing is laborious. Development of better methods to winnow the field of prion candidates will greatly aid in the discovery of new prions, both in yeast and in other organisms, and help us to better understand the role of prions in biology.
Collapse
|
47
|
Abstract
Prions are infectious proteins with altered conformations converted from otherwise normal host proteins. While there is only one known mammalian prion protein, PrP, a handful of prion proteins have been identified in the yeast Saccharomyces cerevisiae. Yeast prion proteins usually have a defined region called prion domain (PrD) essential for prion properties, which are typically rich in glutamine (Q) and asparagine (N). Despite sharing several common features, individual yeast PrDs are generally intricate and divergent in their compositional characteristics, which potentially implicates their prion phenotypes, such as prion-mediated transcriptional regulations.
Collapse
|
48
|
Ivanov MS, Radchenko EA, Mironova LN. Protein complex Ppz1p/Hal3p and the efficiency of nonsense suppression in yeasts Saccharomyces cerevisiae. Mol Biol 2010. [DOI: 10.1134/s0026893310060075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
[NSI (+)]: a novel non-Mendelian nonsense suppressor determinant in Saccharomyces cerevisiae. Curr Genet 2010; 56:467-78. [PMID: 20668856 DOI: 10.1007/s00294-010-0314-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 07/12/2010] [Accepted: 07/14/2010] [Indexed: 10/19/2022]
Abstract
Non-Mendelian determinants that control heritable traits in yeast are subdivided into two major groups-one that includes DNA- or RNA-based elements and another that comprises protein-based factors that are analogous to mammalian prion. All yeast non-Mendelian determinants show dominant inheritance, and some of them demonstrate cytoplasmic infectivity. Only prions, however, harbor-specific features, such as high frequency of induction following overproduction of prion-encoding protein, loss of the protein's normal function, and reversible curability. Here, we describe a novel nonchromosomal determinant that, in addition to [PSI (+)] and [ISP (+)], is involved in epigenetic control of nonsense suppression. This determinant, which we have designated [NSI (+)], causes nonsense suppression in the strains bearing the N-terminal-deleted or -modified SUP35 gene, but has no manifestation in the strains with the intact copy of SUP35. [NSI (+)] shows dominant non-Mendelian inheritance, reversible curability and may be transmitted by cytoduction, albeit with low frequency. Similar to yeast prions, this determinant can be cured by deletion or mutational inactivation of Hsp104. We have shown that [NSI (+)] does not correspond to the already identified yeast prions. Based on the data obtained, we hypothesize that [NSI (+)] is a novel prion factor involved in epigenetic control of nonsense suppression.
Collapse
|
50
|
Non-Mendelian determinant [ISP+] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1. Proc Natl Acad Sci U S A 2010; 107:10573-7. [PMID: 20498075 DOI: 10.1073/pnas.1005949107] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four protein-based genetic determinants or prions-[SWI(+)], [MCA], [OCT(+)], and [MOT3(+)]-are recent additions to the list of well-known Saccharomyces cerevisiae prions, [PSI(+)], [URE3], and [PIN(+)]. A rapid expansion of this list may indicate that many yeast proteins can convert into heritable prion forms and underscores a problem of prion input into cellular physiology. Here, we prove that the global transcriptional regulator Sfp1 can become a prion corresponding to the prion-like determinant [ISP(+)] described earlier. We show that SFP1 deletion causes an irreversible [ISP(+)] loss, whereas increased SFP1 expression induces [ISP(+)] appearance. Cells that display the [ISP(+)] phenotype contain the aggregated form of Sfp1. Indeed, these aggregates demonstrate a nuclear location. We also show that the phenotypic manifestation of Sfp1 prionization differs from the manifestation of SFP1 deletion. These properties and others distinguish [ISP(+)] from yeast prions described to date.
Collapse
|