1
|
Trouth A, Veronezi GMB, Ramachandran S. The impact of cell states on heterochromatin dynamics. Biochem J 2024; 481:1519-1533. [PMID: 39422321 DOI: 10.1042/bcj20240139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Establishing, maintaining, and removing histone post-translational modifications associated with heterochromatin is critical for shaping genomic structure and function as a cell navigates different stages of development, activity, and disease. Dynamic regulation of the repressive chromatin landscape has been documented in several key cell states - germline cells, activated immune cells, actively replicating, and quiescent cells - with notable variations in underlying mechanisms. Here, we discuss the role of cell states of these diverse contexts in directing and maintaining observed chromatin landscapes. These investigations reveal heterochromatin architectures that are highly responsive to the functional context of a cell's existence and, in turn, their contribution to the cell's stable identity.
Collapse
Affiliation(s)
- Abby Trouth
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| | - Giovana M B Veronezi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| |
Collapse
|
2
|
Ke W, Fujioka M, Schedl P, Jaynes JB. Stem-loop and circle-loop TADs generated by directional pairing of boundary elements have distinct physical and regulatory properties. eLife 2024; 13:RP94114. [PMID: 39110491 PMCID: PMC11305674 DOI: 10.7554/elife.94114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
The chromosomes in multicellular eukaryotes are organized into a series of topologically independent loops called TADs. In flies, TADs are formed by physical interactions between neighboring boundaries. Fly boundaries exhibit distinct partner preferences, and pairing interactions between boundaries are typically orientation-dependent. Pairing can be head-to-tail or head-to-head. The former generates a stem-loop TAD, while the latter gives a circle-loop TAD. The TAD that encompasses the Drosophila even skipped (eve) gene is formed by the head-to-tail pairing of the nhomie and homie boundaries. To explore the relationship between loop topology and the physical and regulatory landscape, we flanked the nhomie boundary region with two attP sites. The attP sites were then used to generate four boundary replacements: λ DNA, nhomie forward (WT orientation), nhomie reverse (opposite of WT orientation), and homie forward (same orientation as WT homie). The nhomie forward replacement restores the WT physical and regulatory landscape: in MicroC experiments, the eve TAD is a 'volcano' triangle topped by a plume, and the eve gene and its regulatory elements are sequestered from interactions with neighbors. The λ DNA replacement lacks boundary function: the endpoint of the 'new' eve TAD on the nhomie side is ill-defined, and eve stripe enhancers activate a nearby gene, eIF3j. While nhomie reverse and homie forward restore the eve TAD, the topology is a circle-loop, and this changes the local physical and regulatory landscape. In MicroC experiments, the eve TAD interacts with its neighbors, and the plume at the top of the eve triangle peak is converted to a pair of 'clouds' of contacts with the next-door TADs. Consistent with the loss of isolation afforded by the stem-loop topology, the eve enhancers weakly activate genes in the neighboring TADs. Conversely, eve function is partially disrupted.
Collapse
Affiliation(s)
- Wenfan Ke
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Miki Fujioka
- Department of Biochemistry and Molecular Biology, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Paul Schedl
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - James B Jaynes
- Department of Biochemistry and Molecular Biology, Thomas Jefferson UniversityPhiladelphiaUnited States
| |
Collapse
|
3
|
Brown JL, Zhang L, Rocha PP, Kassis JA, Sun MA. Polycomb protein binding and looping in the ON transcriptional state. SCIENCE ADVANCES 2024; 10:eadn1837. [PMID: 38657072 PMCID: PMC11042752 DOI: 10.1126/sciadv.adn1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Polycomb group (PcG) proteins mediate epigenetic silencing of important developmental genes by modifying histones and compacting chromatin through two major protein complexes, PRC1 and PRC2. These complexes are recruited to DNA by CpG islands (CGIs) in mammals and Polycomb response elements (PREs) in Drosophila. When PcG target genes are turned OFF, PcG proteins bind to PREs or CGIs, and PREs serve as anchors that loop together and stabilize gene silencing. Here, we address which PcG proteins bind to PREs and whether PREs mediate looping when their targets are in the ON transcriptional state. While the binding of most PcG proteins decreases at PREs in the ON state, one PRC1 component, Ph, remains bound. Further, PREs can loop to each other and with presumptive enhancers in the ON state and, like CGIs, may act as tethering elements between promoters and enhancers. Overall, our data suggest that PREs are important looping elements for developmental loci in both the ON and OFF states.
Collapse
Affiliation(s)
- J. Lesley Brown
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liangliang Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Pedro P. Rocha
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Judith A. Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
4
|
Brown JL, Zhang L, Rocha PP, Kassis JA, Sun MA. Polycomb protein binding and looping mediated by Polycomb Response Elements in the ON transcriptional state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565256. [PMID: 38076900 PMCID: PMC10705551 DOI: 10.1101/2023.11.02.565256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Polycomb group proteins (PcG) mediate epigenetic silencing of important developmental genes and other targets. In Drosophila, canonical PcG-target genes contain Polycomb Response Elements (PREs) that recruit PcG protein complexes including PRC2 that trimethylates H3K27 forming large H3K27me3 domains. In the OFF transcriptional state, PREs loop with each other and this looping strengthens silencing. Here we address the question of what PcG proteins bind to PREs when canonical PcG target genes are expressed, and whether PREs loop when these genes are ON. Our data show that the answer to this question is PRE-specific but general conclusions can be made. First, within a PcG-target gene, some regulatory DNA can remain covered with H3K27me3 and PcG proteins remain bound to PREs in these regions. Second, when PREs are within H3K27ac domains, PcG-binding decreases, however, this depends on the protein and PRE. The DNA binding protein GAF, and the PcG protein Ph remain at PREs even when other PcG proteins are greatly depleted. In the ON state, PREs can still loop with each other, but also form loops with presumptive enhancers. These data support the model that, in addition to their role in PcG silencing, PREs can act as "promoter-tethering elements" mediating interactions between promoter proximal PREs and distant enhancers.
Collapse
Affiliation(s)
- J. Lesley Brown
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liangliang Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Pedro P Rocha
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Judith A. Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Erokhin M, Mogila V, Lomaev D, Chetverina D. Polycomb Recruiters Inside and Outside of the Repressed Domains. Int J Mol Sci 2023; 24:11394. [PMID: 37511153 PMCID: PMC10379775 DOI: 10.3390/ijms241411394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The establishment and stable inheritance of individual patterns of gene expression in different cell types are required for the development of multicellular organisms. The important epigenetic regulators are the Polycomb group (PcG) and Trithorax group (TrxG) proteins, which control the silenced and active states of genes, respectively. In Drosophila, the PcG/TrxG group proteins are recruited to the DNA regulatory sequences termed the Polycomb response elements (PREs). The PREs are composed of the binding sites for different DNA-binding proteins, the so-called PcG recruiters. Currently, the role of the PcG recruiters in the targeting of the PcG proteins to PREs is well documented. However, there are examples where the PcG recruiters are also implicated in the active transcription and in the TrxG function. In addition, there is increasing evidence that the genome-wide PcG recruiters interact with the chromatin outside of the PREs and overlap with the proteins of differing regulatory classes. Recent studies of the interactomes of the PcG recruiters significantly expanded our understanding that they have numerous interactors besides the PcG proteins and that their functions extend beyond the regulation of the PRE repressive activity. Here, we summarize current data about the functions of the PcG recruiters.
Collapse
Affiliation(s)
- Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Vladic Mogila
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Dmitry Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
6
|
Erokhin M, Brown JL, Lomaev D, Vorobyeva NE, Zhang L, Fab L, Mazina M, Kulakovskiy I, Ziganshin R, Schedl P, Georgiev P, Sun MA, Kassis J, Chetverina D. Crol contributes to PRE-mediated repression and Polycomb group proteins recruitment in Drosophila. Nucleic Acids Res 2023; 51:6087-6100. [PMID: 37140047 PMCID: PMC10325914 DOI: 10.1093/nar/gkad336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
The Polycomb group (PcG) proteins are fundamental epigenetic regulators that control the repressive state of target genes in multicellular organisms. One of the open questions is defining the mechanisms of PcG recruitment to chromatin. In Drosophila, the crucial role in PcG recruitment is thought to belong to DNA-binding proteins associated with Polycomb response elements (PREs). However, current data suggests that not all PRE-binding factors have been identified. Here, we report the identification of the transcription factor Crooked legs (Crol) as a novel PcG recruiter. Crol is a C2H2-type Zinc Finger protein that directly binds to poly(G)-rich DNA sequences. Mutation of Crol binding sites as well as crol CRISPR/Cas9 knockout diminish the repressive activity of PREs in transgenes. Like other PRE-DNA binding proteins, Crol co-localizes with PcG proteins inside and outside of H3K27me3 domains. Crol knockout impairs the recruitment of the PRC1 subunit Polyhomeotic and the PRE-binding protein Combgap at a subset of sites. The decreased binding of PcG proteins is accompanied by dysregulated transcription of target genes. Overall, our study identified Crol as a new important player in PcG recruitment and epigenetic regulation.
Collapse
Affiliation(s)
- Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - J Lesley Brown
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dmitry Lomaev
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Nadezhda E Vorobyeva
- Group of transcriptional complexes dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Liangliang Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lika V Fab
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Marina Yu Mazina
- Group of hormone-dependent transcription regulation, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow119991, Russia
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Paul Schedl
- Department of Molecular Biology Princeton University, Princeton, NJ 08544, USA
| | - Pavel Georgiev
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
7
|
Verma S, Pathak RU, Mishra RK. Genomic organization of the autonomous regulatory domain of eyeless locus in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2021; 11:6375946. [PMID: 34570231 PMCID: PMC8664461 DOI: 10.1093/g3journal/jkab338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
In Drosophila, expression of eyeless (ey) gene is restricted to the developing eyes and central nervous system. However, the flanking genes, myoglianin (myo), and bent (bt) have different temporal and spatial expression patterns as compared to the ey. How distinct regulation of ey is maintained is mostly unknown. Earlier, we have identified a boundary element intervening myo and ey genes (ME boundary) that prevents the crosstalk between the cis-regulatory elements of myo and ey genes. In the present study, we further searched for the cis-elements that define the domain of ey and maintain its expression pattern. We identify another boundary element between ey and bt, the EB boundary. The EB boundary separates the regulatory landscapes of ey and bt genes. The two boundaries, ME and EB, show a long-range interaction as well as interact with the nuclear architecture. This suggests functional autonomy of the ey locus and its insulation from differentially regulated flanking regions. We also identify a new Polycomb Response Element, the ey-PRE, within the ey domain. The expression state of the ey gene, once established during early development is likely to be maintained with the help of ey-PRE. Our study proposes a general regulatory mechanism by which a gene can be maintained in a functionally independent chromatin domain in gene-rich euchromatin.
Collapse
Affiliation(s)
- Shreekant Verma
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Rashmi U Pathak
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
8
|
Erokhin M, Gorbenko F, Lomaev D, Mazina MY, Mikhailova A, Garaev AK, Parshikov A, Vorobyeva NE, Georgiev P, Schedl P, Chetverina D. Boundaries potentiate polycomb response element-mediated silencing. BMC Biol 2021; 19:113. [PMID: 34078365 PMCID: PMC8170967 DOI: 10.1186/s12915-021-01047-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Background Epigenetic memory plays a critical role in the establishment and maintenance of cell identities in multicellular organisms. Polycomb and trithorax group (PcG and TrxG) proteins are responsible for epigenetic memory, and in flies, they are recruited to specialized DNA regulatory elements termed polycomb response elements (PREs). Previous transgene studies have shown that PREs can silence reporter genes outside of their normal context, often by pairing sensitive (PSS) mechanism; however, their silencing activity is non-autonomous and depends upon the surrounding chromatin context. It is not known why PRE activity depends on the local environment or what outside factors can induce silencing. Results Using an attP system in Drosophila, we find that the so-called neutral chromatin environments vary substantially in their ability to support the silencing activity of the well-characterized bxdPRE. In refractory chromosomal contexts, factors required for PcG-silencing are unable to gain access to the PRE. Silencing activity can be rescued by linking the bxdPRE to a boundary element (insulator). When placed next to the PRE, the boundaries induce an alteration in chromatin structure enabling factors critical for PcG silencing to gain access to the bxdPRE. When placed at a distance from the bxdPRE, boundaries induce PSS by bringing the bxdPREs on each homolog in close proximity. Conclusion This proof-of-concept study demonstrates that the repressing activity of PREs can be induced or enhanced by nearby boundary elements. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01047-8.
Collapse
Affiliation(s)
- Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia.
| | - Fedor Gorbenko
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia.,Present address: Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Dmitry Lomaev
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Marina Yu Mazina
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Mikhailova
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Azat K Garaev
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Aleksander Parshikov
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Nadezhda E Vorobyeva
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Paul Schedl
- Department of Molecular Biology Princeton University, Princeton, NJ, 08544, USA.
| | - Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia.
| |
Collapse
|
9
|
Postika N, Schedl P, Georgiev P, Kyrchanova O. Mapping of functional elements of the Fab-6 boundary involved in the regulation of the Abd-B hox gene in Drosophila melanogaster. Sci Rep 2021; 11:4156. [PMID: 33603202 PMCID: PMC7892861 DOI: 10.1038/s41598-021-83734-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
The autonomy of segment-specific regulatory domains in the Bithorax complex is conferred by boundary elements and associated Polycomb response elements (PREs). The Fab-6 boundary is located at the junction of the iab-5 and iab-6 domains. Previous studies mapped it to a nuclease hypersensitive region 1 (HS1), while the iab-6 PRE was mapped to a second hypersensitive region HS2 nearly 3 kb away. To analyze the role of HS1 and HS2 in boundary we generated deletions of HS1 or HS1 + HS2 that have attP site for boundary replacement experiments. The 1389 bp HS1 deletion can be rescued by a 529 bp core Fab-6 sequence that includes two CTCF sites. However, Fab-6 HS1 cannot rescue the HS1 + HS2 deletion or substitute for another BX-C boundary - Fab-7. For this it must be combined with a PRE, either Fab-7 HS3, or Fab-6 HS2. These findings suggest that the boundary function of Fab-6 HS1 must be bolstered by a second element that has PRE activity.
Collapse
Affiliation(s)
- Nikolay Postika
- grid.419021.f0000 0004 0380 8267Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334
| | - Paul Schedl
- grid.419021.f0000 0004 0380 8267Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334 ,grid.16750.350000 0001 2097 5006Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| | - Pavel Georgiev
- grid.419021.f0000 0004 0380 8267Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334
| | - Olga Kyrchanova
- grid.419021.f0000 0004 0380 8267Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334 ,grid.419021.f0000 0004 0380 8267Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow, Russia 119334
| |
Collapse
|
10
|
Chetverina D, Erokhin M, Schedl P. GAGA factor: a multifunctional pioneering chromatin protein. Cell Mol Life Sci 2021; 78:4125-4141. [PMID: 33528710 DOI: 10.1007/s00018-021-03776-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
The Drosophila GAGA factor (GAF) is a multifunctional protein implicated in nucleosome organization and remodeling, activation and repression of gene expression, long distance enhancer-promoter communication, higher order chromosome structure, and mitosis. This broad range of activities poses questions about how a single protein can perform so many seemingly different and unrelated functions. Current studies argue that GAF acts as a "pioneer" factor, generating nucleosome-free regions of chromatin for different classes of regulatory elements. The removal of nucleosomes from regulatory elements in turn enables other factors to bind to these elements and carry out their specialized functions. Consistent with this view, GAF associates with a collection of chromatin remodelers and also interacts with proteins implicated in different regulatory functions. In this review, we summarize the known activities of GAF and the functions of its protein partners.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia.
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
11
|
Reinig J, Ruge F, Howard M, Ringrose L. A theoretical model of Polycomb/Trithorax action unites stable epigenetic memory and dynamic regulation. Nat Commun 2020; 11:4782. [PMID: 32963223 PMCID: PMC7508846 DOI: 10.1038/s41467-020-18507-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Polycomb and Trithorax group proteins maintain stable epigenetic memory of gene expression states for some genes, but many targets show highly dynamic regulation. Here we combine experiment and theory to examine the mechanistic basis of these different modes of regulation. We present a mathematical model comprising a Polycomb/Trithorax response element (PRE/TRE) coupled to a promoter and including Drosophila developmental timing. The model accurately recapitulates published studies of PRE/TRE mediated epigenetic memory of both silencing and activation. With minimal parameter changes, the same model can also recapitulate experimental data for a different PRE/TRE that allows dynamic regulation of its target gene. The model predicts that both cell cycle length and PRE/TRE identity are critical for determining whether the system gives stable memory or dynamic regulation. Our work provides a simple unifying framework for a rich repertoire of PRE/TRE functions, and thus provides insights into genome-wide Polycomb/Trithorax regulation. Polycomb (PcG) and Trithorax (TrxG) group regulate several hundred target genes with important roles in development and disease. Here the authors combine experiment and theory to provide evidence that the Polycomb/Trithorax system has the potential for a rich repertoire of regulatory modes beyond simple epigenetic memory.
Collapse
Affiliation(s)
- Jeannette Reinig
- Humboldt Universität zu Berlin, IRI- Lifesciences, Philippstr. 13, 10115, Berlin, Germany
| | - Frank Ruge
- IMBA, Institute of Molecular Biotechnology, Dr. Bohr- Gasse 3, 1030, Vienna, Austria
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Leonie Ringrose
- Humboldt Universität zu Berlin, IRI- Lifesciences, Philippstr. 13, 10115, Berlin, Germany. .,IMBA, Institute of Molecular Biotechnology, Dr. Bohr- Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
12
|
Abstract
Predicting regulatory potential from primary DNA sequences or transcription factor binding patterns is not possible. However, the annotation of the genome by chromatin proteins, histone modifications, and differential compaction is largely sufficient to reveal the locations of genes and their differential activity states. The Polycomb Group (PcG) and Trithorax Group (TrxG) proteins are the central players in this cell type-specific chromatin organization. PcG function was originally viewed as being solely repressive and irreversible, as observed at the homeotic loci in flies and mammals. However, it is now clear that modular and reversible PcG function is essential at most developmental genes. Focusing mainly on recent advances, we review evidence for how PcG and TrxG patterns change dynamically during cell type transitions. The ability to implement cell type-specific transcriptional programming with exquisite fidelity is essential for normal development.
Collapse
Affiliation(s)
- Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Hyuckjoon Kang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Sandip De
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| |
Collapse
|
13
|
Bredesen BA, Rehmsmeier M. DNA sequence models of genome-wide Drosophila melanogaster Polycomb binding sites improve generalization to independent Polycomb Response Elements. Nucleic Acids Res 2019; 47:7781-7797. [PMID: 31340029 PMCID: PMC6735708 DOI: 10.1093/nar/gkz617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/01/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Polycomb Response Elements (PREs) are cis-regulatory DNA elements that maintain gene transcription states through DNA replication and mitosis. PREs have little sequence similarity, but are enriched in a number of sequence motifs. Previous methods for modelling Drosophila melanogaster PRE sequences (PREdictor and EpiPredictor) have used a set of 7 motifs and a training set of 12 PREs and 16-23 non-PREs. Advances in experimental methods for mapping chromatin binding factors and modifications has led to the publication of several genome-wide sets of Polycomb targets. In addition to the seven motifs previously used, PREs are enriched in the GTGT motif, recently associated with the sequence-specific DNA binding protein Combgap. We investigated whether models trained on genome-wide Polycomb sites generalize to independent PREs when trained with control sequences generated by naive PRE models and including the GTGT motif. We also developed a new PRE predictor: SVM-MOCCA. Training PRE predictors with genome-wide experimental data improves generalization to independent data, and SVM-MOCCA predicts the majority of PREs in three independent experimental sets. We present 2908 candidate PREs enriched in sequence and chromatin signatures. 2412 of these are also enriched in H3K4me1, a mark of Trithorax activated chromatin, suggesting that PREs/TREs have a common sequence code.
Collapse
Affiliation(s)
- Bjørn André Bredesen
- Computational Biology Unit, Department of Informatics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway
| | - Marc Rehmsmeier
- Computational Biology Unit, Department of Informatics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway.,Integrated Research Institute (IRI) for the Life Sciences and Department of Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
14
|
Gozalo A, Duke A, Lan Y, Pascual-Garcia P, Talamas JA, Nguyen SC, Shah PP, Jain R, Joyce EF, Capelson M. Core Components of the Nuclear Pore Bind Distinct States of Chromatin and Contribute to Polycomb Repression. Mol Cell 2019; 77:67-81.e7. [PMID: 31784359 DOI: 10.1016/j.molcel.2019.10.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/04/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022]
Abstract
Interactions between the genome and the nuclear pore complex (NPC) have been implicated in multiple gene regulatory processes, but the underlying logic of these interactions remains poorly defined. Here, we report high-resolution chromatin binding maps of two core components of the NPC, Nup107 and Nup93, in Drosophila cells. Our investigation uncovered differential binding of these NPC subunits, where Nup107 preferentially targets active genes while Nup93 associates primarily with Polycomb-silenced regions. Comparison to Lamin-associated domains (LADs) revealed that NPC binding sites can be found within LADs, demonstrating a linear binding of the genome along the nuclear envelope. Importantly, we identified a functional role of Nup93 in silencing of Polycomb target genes and in spatial folding of Polycomb domains. Our findings lend to a model where different nuclear pores bind different types of chromatin via interactions with specific NPC sub-complexes, and a subset of Polycomb domains is stabilized by interactions with Nup93.
Collapse
Affiliation(s)
- Alejandro Gozalo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashley Duke
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pau Pascual-Garcia
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica A Talamas
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Son C Nguyen
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Parisha P Shah
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric F Joyce
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maya Capelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
|
16
|
Kassis JA, Kennison JA, Tamkun JW. Polycomb and Trithorax Group Genes in Drosophila. Genetics 2017; 206:1699-1725. [PMID: 28778878 PMCID: PMC5560782 DOI: 10.1534/genetics.115.185116] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) genes encode important regulators of development and differentiation in metazoans. These two groups of genes were discovered in Drosophila by their opposing effects on homeotic gene (Hox) expression. PcG genes collectively behave as genetic repressors of Hox genes, while the TrxG genes are necessary for HOX gene expression or function. Biochemical studies showed that many PcG proteins are present in two protein complexes, Polycomb repressive complexes 1 and 2, which repress transcription via chromatin modifications. TrxG proteins activate transcription via a variety of mechanisms. Here we summarize the large body of genetic and biochemical experiments in Drosophila on these two important groups of genes.
Collapse
Affiliation(s)
- Judith A Kassis
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Kennison
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - John W Tamkun
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| |
Collapse
|
17
|
Sex combs reduced (Scr) regulatory region of Drosophila revisited. Mol Genet Genomics 2017; 292:773-787. [DOI: 10.1007/s00438-017-1309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/08/2017] [Indexed: 10/19/2022]
|
18
|
Erceg J, Pakozdi T, Marco-Ferreres R, Ghavi-Helm Y, Girardot C, Bracken AP, Furlong EEM. Dual functionality of cis-regulatory elements as developmental enhancers and Polycomb response elements. Genes Dev 2017; 31:590-602. [PMID: 28381411 PMCID: PMC5393054 DOI: 10.1101/gad.292870.116] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/03/2017] [Indexed: 11/24/2022]
Abstract
Here, Erceg et al. studied the occupancy of the Drosophila PhoRC during embryogenesis and revealed extensive co-occupancy at developmental enhancers. By using an established in vivo assay for Polycomb response element (PRE) activity, they show that a subset of characterized developmental enhancers can function as PREs and silence transcription in a Polycomb-dependent manner, thereby suggesting that reuse of the same elements by the PcG system may help fine-tune gene expression and ensure the timely maintenance of cell identities. Developmental gene expression is tightly regulated through enhancer elements, which initiate dynamic spatio–temporal expression, and Polycomb response elements (PREs), which maintain stable gene silencing. These two cis-regulatory functions are thought to operate through distinct dedicated elements. By examining the occupancy of the Drosophila pleiohomeotic repressive complex (PhoRC) during embryogenesis, we revealed extensive co-occupancy at developmental enhancers. Using an established in vivo assay for PRE activity, we demonstrated that a subset of characterized developmental enhancers can function as PREs, silencing transcription in a Polycomb-dependent manner. Conversely, some classic Drosophila PREs can function as developmental enhancers in vivo, activating spatio–temporal expression. This study therefore uncovers elements with dual function: activating transcription in some cells (enhancers) while stably maintaining transcriptional silencing in others (PREs). Given that enhancers initiate spatio–temporal gene expression, reuse of the same elements by the Polycomb group (PcG) system may help fine-tune gene expression and ensure the timely maintenance of cell identities.
Collapse
Affiliation(s)
- Jelena Erceg
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg D69117, Germany
| | - Tibor Pakozdi
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg D69117, Germany
| | - Raquel Marco-Ferreres
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg D69117, Germany
| | - Yad Ghavi-Helm
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg D69117, Germany
| | - Charles Girardot
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg D69117, Germany
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Eileen E M Furlong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg D69117, Germany
| |
Collapse
|
19
|
Chetverina DA, Elizar’ev PV, Lomaev DV, Georgiev PG, Erokhin MM. Control of the gene activity by polycomb and trithorax group proteins in Drosophila. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417020028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Formation of a Polycomb-Domain in the Absence of Strong Polycomb Response Elements. PLoS Genet 2016; 12:e1006200. [PMID: 27466807 PMCID: PMC4965088 DOI: 10.1371/journal.pgen.1006200] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 06/25/2016] [Indexed: 12/24/2022] Open
Abstract
Polycomb group response elements (PREs) in Drosophila are DNA-elements that recruit Polycomb proteins (PcG) to chromatin and regulate gene expression. PREs are easily recognizable in the Drosophila genome as strong peaks of PcG-protein binding over discrete DNA fragments; many small but statistically significant PcG peaks are also observed in PcG domains. Surprisingly, in vivo deletion of the four characterized strong PREs from the PcG regulated invected-engrailed (inv-en) gene complex did not disrupt the formation of the H3K27me3 domain and did not affect inv-en expression in embryos or larvae suggesting the presence of redundant PcG recruitment mechanism. Further, the 3D-structure of the inv-en domain was only minimally altered by the deletion of the strong PREs. A reporter construct containing a 7.5kb en fragment that contains three weak peaks but no large PcG peaks forms an H3K27me3 domain and is PcG-regulated. Our data suggests a model for the recruitment of PcG-complexes to Drosophila genes via interactions with multiple, weak PREs spread throughout an H3K27me3 domain.
Collapse
|
21
|
Combgap contributes to recruitment of Polycomb group proteins in Drosophila. Proc Natl Acad Sci U S A 2016; 113:3826-31. [PMID: 27001825 DOI: 10.1073/pnas.1520926113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polycomb group (PcG) proteins are responsible for maintaining the silenced transcriptional state of many developmentally regulated genes. PcG proteins are organized into multiprotein complexes that are recruited to DNA via cis-acting elements known as "Polycomb response elements" (PREs). In Drosophila, PREs consist of binding sites for many different DNA-binding proteins, some known and others unknown. Identification of these DNA-binding proteins is crucial to understanding the mechanism of PcG recruitment to PREs. We report here the identification of Combgap (Cg), a sequence-specific DNA-binding protein that is involved in recruitment of PcG proteins. Cg can bind directly to PREs via GTGT motifs and colocalizes with the PcG proteins Pleiohomeotic (Pho) and Polyhomeotic (Ph) at the majority of PREs in the genome. In addition, Cg colocalizes with Ph at a number of targets independent of Pho. Loss of Cg leads to decreased recruitment of Ph at only a subset of sites; some of these sites are binding sites for other Polycomb repressive complex 1 (PRC1) components, others are not. Our data suggest that Cg can recruit Ph in the absence of PRC1 and illustrate the diversity and redundancy of PcG protein recruitment mechanisms.
Collapse
|
22
|
Heterochromatin-Associated Proteins HP1a and Piwi Collaborate to Maintain the Association of Achiasmate Homologs in Drosophila Oocytes. Genetics 2016; 203:173-89. [PMID: 26984058 DOI: 10.1534/genetics.115.186460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
Accurate segregation of homologous chromosomes during meiosis depends on their ability to remain physically connected throughout prophase I. For homologs that achieve a crossover, sister chromatid cohesion distal to the chiasma keeps them attached until anaphase I. However, in Drosophila melanogaster wild-type oocytes, chromosome 4 never recombines, and the X chromosome fails to cross over in 6-10% of oocytes. Proper segregation of these achiasmate homologs relies on their pericentric heterochromatin-mediated association, but the mechanism(s) underlying this attachment remains poorly understood. Using an inducible RNA interference (RNAi) strategy combined with fluorescence in situ hybridization (FISH) to monitor centromere proximal association of the achiasmate FM7a/X homolog pair, we asked whether specific heterochromatin-associated proteins are required for the association and proper segregation of achiasmate homologs in Drosophila oocytes. When we knock down HP1a, H3K9 methytransferases, or the HP1a binding partner Piwi during mid-prophase, we observe significant disruption of pericentric heterochromatin-mediated association of FM7a/X homologs. Furthermore, for both HP1a and Piwi knockdown oocytes, transgenic coexpression of the corresponding wild-type protein is able to rescue RNAi-induced defects, but expression of a mutant protein with a single amino acid change that disrupts the HP1a-Piwi interaction is unable to do so. We show that Piwi is stably bound to numerous sites along the meiotic chromosomes, including centromere proximal regions. In addition, reduction of HP1a or Piwi during meiotic prophase induces a significant increase in FM7a/X segregation errors. We present a speculative model outlining how HP1a and Piwi could collaborate to keep achiasmate chromosomes associated in a homology-dependent manner.
Collapse
|
23
|
Voigt S, Laurent S, Litovchenko M, Stephan W. Positive Selection at the Polyhomeotic Locus Led to Decreased Thermosensitivity of Gene Expression in Temperate Drosophila melanogaster. Genetics 2015; 200:591-9. [PMID: 25855066 PMCID: PMC4492382 DOI: 10.1534/genetics.115.177030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/02/2015] [Indexed: 01/22/2023] Open
Abstract
Drosophila melanogaster as a cosmopolitan species has successfully adapted to a wide range of different environments. Variation in temperature is one important environmental factor that influences the distribution of species in nature. In particular for insects, which are mostly ectotherms, ambient temperature plays a major role in their ability to colonize new habitats. Chromatin-based gene regulation is known to be sensitive to temperature. Ambient temperature leads to changes in the activation of genes regulated in this manner. One such regulatory system is the Polycomb group (PcG) whose target genes are more expressed at lower temperatures than at higher ones. Therefore, a greater range in ambient temperature in temperate environments may lead to greater variability (plasticity) in the expression of these genes. This might have detrimental effects, such that positive selection acts to lower the degree of the expression plasticity. We provide evidence for this process in a genomic region that harbors two PcG-regulated genes, polyhomeotic proximal (ph-p) and CG3835. We found a signature of positive selection in this gene region in European populations of D. melanogaster and investigated the region by means of reporter gene assays. The target of selection is located in the intergenic fragment between the two genes. It overlaps with the promoters of both genes and an experimentally validated Polycomb response element (PRE). This fragment harbors five sequence variants that are highly differentiated between European and African populations. The African alleles confer a temperature-induced plasticity in gene expression, which is typical for PcG-mediated gene regulation, whereas thermosensitivity is reduced for the European alleles.
Collapse
Affiliation(s)
- Susanne Voigt
- Section of Evolutionary Biology, Department of Biology II, University of Munich, 82152 Planegg-Martinsried, Germany
| | - Stefan Laurent
- Section of Evolutionary Biology, Department of Biology II, University of Munich, 82152 Planegg-Martinsried, Germany
| | - Maria Litovchenko
- Section of Evolutionary Biology, Department of Biology II, University of Munich, 82152 Planegg-Martinsried, Germany
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, University of Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
24
|
Steffen PA, Ringrose L. What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat Rev Mol Cell Biol 2014; 15:340-56. [PMID: 24755934 DOI: 10.1038/nrm3789] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In any biological system with memory, the state of the system depends on its history. Epigenetic memory maintains gene expression states through cell generations without a change in DNA sequence and in the absence of initiating signals. It is immensely powerful in biological systems - it adds long-term stability to gene expression states and increases the robustness of gene regulatory networks. The Polycomb group (PcG) and Trithorax group (TrxG) proteins can confer long-term, mitotically heritable memory by sustaining silent and active gene expression states, respectively. Several recent studies have advanced our understanding of the molecular mechanisms of this epigenetic memory during DNA replication and mitosis.
Collapse
Affiliation(s)
- Philipp A Steffen
- Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Leonie Ringrose
- Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
25
|
Mapping polycomb response elements at the Drosophilla melanogaster giant locus. G3-GENES GENOMES GENETICS 2013; 3:2297-304. [PMID: 24170735 PMCID: PMC3852391 DOI: 10.1534/g3.113.008896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Polycomb-group (PcG) proteins are highly conserved epigenetic transcriptional regulators. They are capable of either maintaining the transcriptional silence of target genes through many cell cycles or enabling a dynamic regulation of gene expression in stem cells. In Drosophila melanogaster, recruitment of PcG proteins to targets requires the presence of at least one polycomb response element (PRE). Although the sequence requirements for PREs are not well-defined, the presence of Pho, a PRE-binding PcG protein, is a very good PRE indicator. In this study, we identify two PRE-containing regions at the PcG target gene, giant, one at the promoter, and another approximately 6 kb upstream. PRE-containing fragments, which coincide with localized presence of Pho in chromatin immunoprecipitations, were shown to maintain restricted expression of a lacZ reporter gene in embryos and to cause pairing-sensitive silencing of the mini-white gene in eyes. Our results also reinforce previous observations that although PRE maintenance and pairing-sensitive silencing activities are closely linked, the sequence requirements for these functions are not identical.
Collapse
|
26
|
Fujioka M, Sun G, Jaynes JB. The Drosophila eve insulator Homie promotes eve expression and protects the adjacent gene from repression by polycomb spreading. PLoS Genet 2013; 9:e1003883. [PMID: 24204298 PMCID: PMC3814318 DOI: 10.1371/journal.pgen.1003883] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/29/2013] [Indexed: 12/18/2022] Open
Abstract
Insulators can block the action of enhancers on promoters and the spreading of repressive chromatin, as well as facilitating specific enhancer-promoter interactions. However, recent studies have called into question whether the activities ascribed to insulators in model transgene assays actually reflect their functions in the genome. The Drosophila even skipped (eve) gene is a Polycomb (Pc) domain with a Pc-group response element (PRE) at one end, flanked by an insulator, an arrangement also seen in other genes. Here, we show that this insulator has three major functions. It blocks the spreading of the eve Pc domain, preventing repression of the adjacent gene, TER94. It prevents activation of TER94 by eve regulatory DNA. It also facilitates normal eve expression. When Homie is deleted in the context of a large transgene that mimics both eve and TER94 regulation, TER94 is repressed. This repression depends on the eve PRE. Ubiquitous TER94 expression is “replaced” by expression in an eve pattern when Homie is deleted, and this effect is reversed when the PRE is also removed. Repression of TER94 is attributable to spreading of the eve Pc domain into the TER94 locus, accompanied by an increase in histone H3 trimethylation at lysine 27. Other PREs can functionally replace the eve PRE, and other insulators can block PRE-dependent repression in this context. The full activity of the eve promoter is also dependent on Homie, and other insulators can promote normal eve enhancer-promoter communication. Our data suggest that this is not due to preventing promoter competition, but is likely the result of the insulator organizing a chromosomal conformation favorable to normal enhancer-promoter interactions. Thus, insulator activities in a native context include enhancer blocking and enhancer-promoter facilitation, as well as preventing the spread of repressive chromatin. Insulators are specialized DNA elements that can separate the genome into functional units. Most of the current thinking about these elements comes from studies done with model transgenes. Studies of insulators within the specialized Hox gene complexes have suggested that model transgenes can reflect the normal functions of these elements in their native context. However, recent genome-wide studies have called this into question. This work analyzes the native function of an insulator that resides between the Drosophila genes eve and TER94, which are expressed in very different patterns. Also, the eve gene is a Polycomb (Pc) domain, a specialized type of chromatin that is found in many places throughout the genome. We show that this insulator has three major functions. It blocks the spreading of the eve Pc domain, preventing repression of TER94. It prevents activation of TER94 by eve regulatory DNA. It also facilitates normal eve expression. Each of these activities are consistent with those seen with model transgenes, and other known insulators can provide these functions in this context. This work provides a novel and convincing example of the normal role of insulators in regulating the eukaryotic genome, as well as providing insights into their mechanisms of action.
Collapse
Affiliation(s)
- Miki Fujioka
- Department of Biochemistry and Molecular Biology and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Guizhi Sun
- Department of Biochemistry and Molecular Biology and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - James B. Jaynes
- Department of Biochemistry and Molecular Biology and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
27
|
Abstract
Polycomb group response elements (PREs) play an essential role in gene regulation by the Polycomb group (PcG) repressor proteins in Drosophila. PREs are required for the recruitment and maintenance of repression by the PcG proteins. PREs are made up of binding sites for multiple DNA-binding proteins, but it is still unclear what combination(s) of binding sites is required for PRE activity. Here we compare the binding sites and activities of two closely linked yet separable PREs of the Drosophila engrailed (en) gene, PRE1 and PRE2. Both PRE1 and PRE2 contain binding sites for multiple PRE-DNA-binding proteins, but the number, arrangement, and spacing of the sites differs between the two PREs. These differences have functional consequences. Both PRE1 and PRE2 mediate pairing-sensitive silencing of mini-white, a functional assay for PcG repression; however, PRE1 requires two binding sites for Pleiohomeotic (Pho), whereas PRE2 requires only one Pho-binding site for this activity. Furthermore, for full pairing-sensitive silencing activity, PRE1 requires an AT-rich region not found in PRE2. These two PREs behave differently in a PRE embryonic and larval reporter construct inserted at an identical location in the genome. Our data illustrate the diversity of architecture and function of PREs.
Collapse
|
28
|
Kassis JA, Brown JL. Polycomb group response elements in Drosophila and vertebrates. ADVANCES IN GENETICS 2013; 81:83-118. [PMID: 23419717 DOI: 10.1016/b978-0-12-407677-8.00003-8] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycomb group genes (PcG) encode a group of about 16 proteins that were first identified in Drosophila as repressors of homeotic genes. PcG proteins are present in all metazoans and are best characterized as transcriptional repressors. In Drosophila, these proteins are known as epigenetic regulators because they remember, but do not establish, the patterned expression state of homeotic genes throughout development. PcG proteins, in general, are not DNA binding proteins, but act in protein complexes to repress transcription at specific target genes. How are PcG proteins recruited to the DNA? In Drosophila, there are specific regulatory DNA elements called Polycomb group response elements (PREs) that bring PcG protein complexes to the DNA. Drosophila PREs are made up of binding sites for a complex array of DNA binding proteins. Functional PRE assays in transgenes have shown that PREs act in the context of other regulatory DNA and PRE activity is highly dependent on genomic context. Drosophila PREs tend to regulate genes with a complex array of regulatory DNA in a cell or tissue-specific fashion and it is the interplay between regulatory DNA that dictates PRE function. In mammals, PcG proteins are more diverse and there are multiple ways to recruit PcG complexes, including RNA-mediated recruitment. In this review, we discuss evidence for PREs in vertebrates and explore similarities and differences between Drosophila and vertebrate PREs.
Collapse
Affiliation(s)
- Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
29
|
Zeng J, Kirk BD, Gou Y, Wang Q, Ma J. Genome-wide polycomb target gene prediction in Drosophila melanogaster. Nucleic Acids Res 2012; 40:5848-63. [PMID: 22416065 PMCID: PMC3401425 DOI: 10.1093/nar/gks209] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
As key epigenetic regulators, polycomb group (PcG) proteins are responsible for the control of cell proliferation and differentiation as well as stem cell pluripotency and self-renewal. Aberrant epigenetic modification by PcG is strongly correlated with the severity and invasiveness of many types of cancers. Unfortunately, the molecular mechanism of PcG-mediated epigenetic regulation remained elusive, partly due to the extremely limited pool of experimentally confirmed PcG target genes. In order to facilitate experimental identification of PcG target genes, here we propose a novel computational method, EpiPredictor, that achieved significantly higher matching ratios with several recent chromatin immunoprecipitation studies than jPREdictor, an existing computational method. We further validated a subset of genes that were uniquely predicted by EpiPredictor by cross-referencing existing literature and by experimental means. Our data suggest that multiple transcription factor networking at the cis-regulatory elements is critical for PcG recruitment, while high GC content and high conservation level are also important features of PcG target genes. EpiPredictor should substantially expedite experimental discovery of PcG target genes by providing an effective initial screening tool. From a computational standpoint, our strategy of modelling transcription factor interaction with a non-linear kernel is original, effective and transferable to many other applications.
Collapse
Affiliation(s)
- Jia Zeng
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
30
|
P-element homing is facilitated by engrailed polycomb-group response elements in Drosophila melanogaster. PLoS One 2012; 7:e30437. [PMID: 22276200 PMCID: PMC3261919 DOI: 10.1371/journal.pone.0030437] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/20/2011] [Indexed: 11/19/2022] Open
Abstract
P-element vectors are commonly used to make transgenic Drosophila and generally insert in the genome in a nonselective manner. However, when specific fragments of regulatory DNA from a few Drosophila genes are incorporated into P-transposons, they cause the vectors to be inserted near the gene from which the DNA fragment was derived. This is called P-element homing. We mapped the minimal DNA fragment that could mediate homing to the engrailed/invected region of the genome. A 1.6 kb fragment of engrailed regulatory DNA that contains two Polycomb-group response elements (PREs) was sufficient for homing. We made flies that contain a 1.5kb deletion of engrailed DNA (enΔ1.5) in situ, including the PREs and the majority of the fragment that mediates homing. Remarkably, homing still occurs onto the enΔ1. 5 chromosome. In addition to homing to en, P[en] inserts near Polycomb group target genes at an increased frequency compared to P[EPgy2], a vector used to generate 18,214 insertions for the Drosophila gene disruption project. We suggest that homing is mediated by interactions between multiple proteins bound to the homing fragment and proteins bound to multiple areas of the engrailed/invected chromatin domain. Chromatin structure may also play a role in homing.
Collapse
|
31
|
Modulation of the activity of a polycomb-group response element in Drosophila by a mutation in the transcriptional activator woc. G3-GENES GENOMES GENETICS 2011; 1:471-8. [PMID: 22384357 PMCID: PMC3276158 DOI: 10.1534/g3.111.001230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 09/19/2011] [Indexed: 01/10/2023]
Abstract
Polycomb group response elements (PRE) are cis-regulatory elements that bind Polycomb group proteins. We are studying a 181-bp PRE from the Drosophilaengrailed gene. This PRE causes pairing-sensitive silencing of mini-white in transgenes. Here we show that the 181-bp PRE also represses mini-white expression in flies with only one copy of the transgene. To isolate mutations that alter the activity of the 181-bp PRE, we screened for dominant suppressors of PRE-mediated mini-white repression. Dominant suppressors of mini-white repression were rare; we recovered only nine mutations out of 68,274 progeny screened. Two of the nine mutations isolated are due to the same single amino acid change in the transcriptional activator Woc (without children). Reversion experiments show that these are dominant gain-of-function mutations in woc. We suggest that Woc can interfere with the activity of the PRE. Our data have implications for how Polycomb group proteins act to either partially repress or completely silence their target genes.
Collapse
|
32
|
Pérez L, Barrio L, Cano D, Fiuza UM, Muzzopappa M, Milán M. Enhancer-PRE communication contributes to the expansion of gene expression domains in proliferating primordia. Development 2011; 138:3125-34. [PMID: 21715425 DOI: 10.1242/dev.065599] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trithorax-group and Polycomb-group proteins interact with chromosomal elements, termed PRE/TREs, to ensure stable heritable maintenance of the transcriptional state of nearby genes. Regulatory elements that bind both groups of proteins are termed maintenance elements (MEs). Some of these MEs maintain the initial activated transcriptional state of a nearby reporter gene through several rounds of mitosis during development. Here, we show that expression of hedgehog in the posterior compartment of the Drosophila wing results from the communication between a previously defined ME and a nearby cis-regulatory element termed the C enhancer. The C enhancer integrates the activities of the Notch and Hedgehog signalling pathways and, from the early wing primordium stage, drives expression to a thin stripe in the posterior compartment that corresponds to the dorsal-ventral compartment boundary. The ME maintains the initial activated transcriptional state conferred by the C enhancer and contributes to the expansion, by growth, of its expression domain throughout the posterior compartment. Communication between the ME and the C enhancer also contributes to repression of gene expression in anterior cells. Most interestingly, we present evidence that enhancers and MEs of different genes are interchangeable modules whose communication is involved in restricting and expanding the domains of gene expression. Our results emphasize the modular role of MEs in regulation of gene expression within growing tissues.
Collapse
Affiliation(s)
- Lidia Pérez
- Institute for Research in Biomedicine (IRB Barcelon), Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Okulski H, Druck B, Bhalerao S, Ringrose L. Quantitative analysis of polycomb response elements (PREs) at identical genomic locations distinguishes contributions of PRE sequence and genomic environment. Epigenetics Chromatin 2011; 4:4. [PMID: 21410956 PMCID: PMC3070613 DOI: 10.1186/1756-8935-4-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/16/2011] [Indexed: 01/24/2023] Open
Abstract
Background Polycomb/Trithorax response elements (PREs) are cis-regulatory elements essential for the regulation of several hundred developmentally important genes. However, the precise sequence requirements for PRE function are not fully understood, and it is also unclear whether these elements all function in a similar manner. Drosophila PRE reporter assays typically rely on random integration by P-element insertion, but PREs are extremely sensitive to genomic position. Results We adapted the ΦC31 site-specific integration tool to enable systematic quantitative comparison of PREs and sequence variants at identical genomic locations. In this adaptation, a miniwhite (mw) reporter in combination with eye-pigment analysis gives a quantitative readout of PRE function. We compared the Hox PRE Frontabdominal-7 (Fab-7) with a PRE from the vestigial (vg) gene at four landing sites. The analysis revealed that the Fab-7 and vg PREs have fundamentally different properties, both in terms of their interaction with the genomic environment at each site and their inherent silencing abilities. Furthermore, we used the ΦC31 tool to examine the effect of deletions and mutations in the vg PRE, identifying a 106 bp region containing a previously predicted motif (GTGT) that is essential for silencing. Conclusions This analysis showed that different PREs have quantifiably different properties, and that changes in as few as four base pairs have profound effects on PRE function, thus illustrating the power and sensitivity of ΦC31 site-specific integration as a tool for the rapid and quantitative dissection of elements of PRE design.
Collapse
Affiliation(s)
- Helena Okulski
- IMBA, Institute of Molecular Biotechnology GmBH, Dr, Bohr-Gasse 3, 1030 Vienna, Austria.
| | | | | | | |
Collapse
|
34
|
Brown JL, Kassis JA. Spps, a Drosophila Sp1/KLF family member, binds to PREs and is required for PRE activity late in development. Development 2010; 137:2597-602. [PMID: 20627963 DOI: 10.1242/dev.047761] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Polycomb group of proteins (PcG) is important for transcriptional repression and silencing in all higher eukaryotes. In Drosophila, PcG proteins are recruited to the DNA by Polycomb-group response elements (PREs), regulatory sequences whose activity depends on the binding of many different sequence-specific DNA-binding proteins. We previously showed that a binding site for the Sp1/KLF family of zinc-finger proteins is required for PRE activity. Here, we report that the Sp1/KLF family member Spps binds specifically to Ubx and engrailed PREs, and that Spps binds to polytene chromosomes in a pattern virtually identical to that of the PcG protein, Psc. A deletion of the Spps gene causes lethality late in development and a loss in pairing-sensitive silencing, an activity associated with PREs. Finally, the Spps mutation enhances the phenotype of pho mutants. We suggest that Spps may work with, or in parallel to, Pho to recruit PcG protein complexes to PREs.
Collapse
Affiliation(s)
- J Lesley Brown
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
35
|
Beck S, Faradji F, Brock H, Peronnet F. Maintenance of Hox Gene Expression Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 689:41-62. [DOI: 10.1007/978-1-4419-6673-5_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Characterization of the polycomb group response elements of the Drosophila melanogaster invected Locus. Mol Cell Biol 2009; 30:820-8. [PMID: 19948883 DOI: 10.1128/mcb.01287-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Polycomb group proteins (PcGs) play a vital role throughout development by maintaining precise gene expression patterns. In Drosophila melanogaster, PcG-mediated gene silencing is achieved through DNA elements called Polycomb response elements (PREs); however, the mechanism for establishing silencing and the requirements and composition of a working PRE are not fully understood. We have used the computer program jPREdictor to uncover PREs located within the invected (inv) locus. The functionalities of these predicted PREs were tested in two different assays: one analyzing their abilities to maintain expression of a beta-galactosidase reporter gene and the other evaluating their abilities to establish pairing-sensitive silencing of the mini-white reporter in the vector pCaSpeR. We have identified two previously uncharacterized PREs at the inv gene and demonstrate that they produce similar results in the two assays. Our results indicate that clusters of protein binding sites do not accurately predict PREs and provide new insight into the DNA sequence requirements for the binding of the PcG protein Pho. Finally, our data show that PREs and regulatory DNA from different genes can function together to establish PcG-mediated silencing, highlighting the versatility of PREs despite discrepancies in the number and location of DNA binding sites.
Collapse
|
37
|
Fedorova EV, Pindyurin AV, Baricheva EM. Maintenance of the patterns of expression of homeotic genes in the development of Drosophila melanogaster by proteins of the polycomb, trithorax, and ETP groups. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Fujioka M, Yusibova GL, Zhou J, Jaynes JB. The DNA-binding Polycomb-group protein Pleiohomeotic maintains both active and repressed transcriptional states through a single site. Development 2009; 135:4131-9. [PMID: 19029043 DOI: 10.1242/dev.024554] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although epigenetic maintenance of either the active or repressed transcriptional state often involves overlapping regulatory elements, the underlying basis of this is not known. Epigenetic and pairing-sensitive silencing are related properties of Polycomb-group proteins, whereas their activities are generally opposed by the trithorax group. Both groups modify chromatin structure, but how their opposing activities are targeted to allow differential maintenance remains a mystery. Here, we identify a strong pairing-sensitive silencing (PSS) element at the 3' border of the Drosophila even skipped (eve) locus. This element can maintain repression during embryonic as well as adult eye development. Transgenic dissection revealed that silencing activity depends on a binding site for the Polycomb-group protein Pleiohomeotic (Pho) and on pho gene function. Binding sites for the trithorax-group protein GAGA factor also contribute, whereas sites for the known Polycomb response element binding factors Zeste and Dsp1 are dispensible. Normally, eve expression in the nervous system is maintained throughout larval stages. An enhancer that functions fully in embryos does not maintain expression, but the adjacent PSS element confers maintenance. This positive activity also depends on pho gene activity and on Pho binding. Thus, a DNA-binding complex requiring Pho is differentially regulated to facilitate epigenetic transcriptional memory of both the active and the repressed state.
Collapse
Affiliation(s)
- Miki Fujioka
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
39
|
Hauenschild A, Ringrose L, Altmutter C, Paro R, Rehmsmeier M. Evolutionary plasticity of polycomb/trithorax response elements in Drosophila species. PLoS Biol 2008; 6:e261. [PMID: 18959483 PMCID: PMC2573935 DOI: 10.1371/journal.pbio.0060261] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 09/15/2008] [Indexed: 12/22/2022] Open
Abstract
cis-Regulatory DNA elements contain multiple binding sites for activators and repressors of transcription. Among these elements are enhancers, which establish gene expression states, and Polycomb/Trithorax response elements (PREs), which take over from enhancers and maintain transcription states of several hundred developmentally important genes. PREs are essential to the correct identities of both stem cells and differentiated cells. Evolutionary differences in cis-regulatory elements are a rich source of phenotypic diversity, and functional binding sites within regulatory elements turn over rapidly in evolution. However, more radical evolutionary changes that go beyond motif turnover have been difficult to assess. We used a combination of genome-wide bioinformatic prediction and experimental validation at specific loci, to evaluate PRE evolution across four Drosophila species. Our results show that PRE evolution is extraordinarily dynamic. First, we show that the numbers of PREs differ dramatically between species. Second, we demonstrate that functional binding sites within PREs at conserved positions turn over rapidly in evolution, as has been observed for enhancer elements. Finally, although it is theoretically possible that new elements can arise out of nonfunctional sequence, evidence that they do so is lacking. We show here that functional PREs are found at nonorthologous sites in conserved gene loci. By demonstrating that PRE evolution is not limited to the adaptation of preexisting elements, these findings document a novel dimension of cis-regulatory evolution.
Collapse
Affiliation(s)
- Arne Hauenschild
- Universität Bielefeld, Center for Biotechnology (CeBiTec),
Bielefeld, Germany
| | - Leonie Ringrose
- Institute of Molecular Biotechnology (IMBA), Vienna, Austria
- Zentrum für Molekulare Biologie der Universität
Heidelberg (ZMBH), Heidelberg, Germany
- * To whom correspondence should be addressed. E-mail:
(MR); (LR)
| | | | - Renato Paro
- Zentrum für Molekulare Biologie der Universität
Heidelberg (ZMBH), Heidelberg, Germany
- Department of Biosystems Science and Engineering, ETH Zurich,
Basel, Switzerland
| | - Marc Rehmsmeier
- Universität Bielefeld, Center for Biotechnology (CeBiTec),
Bielefeld, Germany
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Vienna,
Austria
- * To whom correspondence should be addressed. E-mail:
(MR); (LR)
| |
Collapse
|
40
|
Components of the RNAi machinery that mediate long-distance chromosomal associations are dispensable for meiotic and early somatic homolog pairing in Drosophila melanogaster. Genetics 2008; 180:1355-65. [PMID: 18791234 DOI: 10.1534/genetics.108.092650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Homolog pairing is indispensable for the proper segregation of chromosomes in meiosis but the mechanism by which homologs uniquely pair with each other is poorly understood. In Drosophila, somatic chromosomes also undergo full homolog pairing by an unknown mechanism. It has been recently demonstrated that both insulator function and somatic long-distance interactions between Polycomb response elements (PREs) are stabilized by the RNAi machinery in Drosophila. This suggests the possibility that long-distance pairing interactions between homologs, either during meiosis or in the soma, may be stabilized by a similar mechanism. To test this hypothesis, we have characterized meiotic and early somatic chromosome pairing of homologous chromosomes in flies that are mutant for various components of the RNAi machinery. Despite the identification of a novel role for the piRNA machinery in meiotic progression and synaptonemal complex (SC) assembly, we have found that the components of the RNAi machinery that mediate long-distance chromosomal interactions are dispensable for homologous chromosome pairing. Thus, there appears to be at least two mechanisms that bring homologous sequences together within the nucleus: those that act between dispersed homologous sequences and those that act to align and pair homologous chromosomes.
Collapse
|
41
|
Vasanthi D, Mishra RK. Epigenetic regulation of genes during development: A conserved theme from flies to mammals. J Genet Genomics 2008; 35:413-29. [DOI: 10.1016/s1673-8527(08)60059-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 01/16/2023]
|
42
|
Chopra VS, Srinivasan A, Kumar RP, Mishra K, Basquin D, Docquier M, Seum C, Pauli D, Mishra RK. Transcriptional activation by GAGA factor is through its direct interaction with dmTAF3. Dev Biol 2008; 317:660-70. [PMID: 18367161 DOI: 10.1016/j.ydbio.2008.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 01/27/2008] [Accepted: 02/02/2008] [Indexed: 01/02/2023]
Abstract
The GAGA factor (GAF), encoded by the Trithorax like gene (Trl) is a multifunctional protein involved in gene activation, Polycomb-dependent repression, chromatin remodeling and is a component of chromatin domain boundaries. Although first isolated as transcriptional activator of the Drosophila homeotic gene Ultrabithorax (Ubx), the molecular basis of this GAF activity is unknown. Here we show that dmTAF3 (also known as BIP2 and dTAF(II)155), a component of TFIID, interacts directly with GAF. We generated mutations in dmTAF3 and show that, in Trl mutant background, they affect transcription of Ubx leading to enhancement of Ubx phenotype. These results reveal that the gene activation pathway involving GAF is through its direct interaction with dmTAF3.
Collapse
|
43
|
DeVido SK, Kwon D, Brown JL, Kassis JA. The role of Polycomb-group response elements in regulation of engrailed transcription in Drosophila. Development 2008; 135:669-76. [PMID: 18199580 DOI: 10.1242/dev.014779] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Polycomb group proteins are required for long-term repression of many genes in Drosophila and all metazoans. In Drosophila, DNA fragments called Polycomb-group response elements (PREs) have been identified that mediate the action of Polycomb-group proteins. Previous studies have shown that a 2 kb fragment located from -2.4 kb to -395 bp upstream of the Drosophila engrailed promoter contains a multipartite PRE that can mediate mini-white silencing and act as a PRE in an Ubx-reporter construct. Here, we study the role of this 2 kb fragment in the regulation of the engrailed gene itself. Our results show that within this 2 kb fragment, there are two subfragments that can act as PREs in embryos. In addition to their role in gene silencing, these two adjacent PRE fragments can facilitate the activation of the engrailed promoter by distant enhancers. The repressive action of the engrailed PRE can also act over a distance. A 181 bp subfragment can act as a PRE and also mediate positive effects in an enhancer-detector construct. Finally, a deletion of 530 bp of the 2 kb PRE fragment within the endogenous engrailed gene causes a loss-of-function phenotype, showing the importance of the positive regulatory effects of this PRE-containing fragment. Our data are consistent with the model that engrailed PREs bring chromatin together, allowing both positive and negative regulatory interactions between distantly located DNA fragments.
Collapse
Affiliation(s)
- Sarah K DeVido
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20982, USA
| | | | | | | |
Collapse
|
44
|
Beaster-Jones L, Schubert M, Holland LZ. Cis-regulation of the amphioxus engrailed gene: Insights into evolution of a muscle-specific enhancer. Mech Dev 2007; 124:532-42. [PMID: 17624741 DOI: 10.1016/j.mod.2007.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 11/24/2022]
Abstract
To gain insights into the relation between evolution of cis-regulatory DNA and evolution of gene function, we identified tissue-specific enhancers of the engrailed gene of the basal chordate amphioxus (Branchiostoma floridae) and compared their ability to direct expression in both amphioxus and its nearest chordate relative, the tunicate Ciona intestinalis. In amphioxus embryos, the native engrailed gene is expressed in three domains - the eight most anterior somites, a few cells in the central nervous system (CNS) and a few ectodermal cells. In contrast, in C. intestinalis, in which muscle development is highly divergent, engrailed expression is limited to the CNS. To characterize the tissue-specific enhancers of amphioxus engrailed, we first showed that 7.8kb of upstream DNA of amphioxus engrailed directs expression to all three domains in amphioxus that express the native gene. We then identified the amphioxus engrailed muscle-specific enhancer as the 1.2kb region of upstream DNA with the highest sequence identity to the mouse en-2 jaw muscle enhancer. This amphioxus enhancer directed expression to both the somites in amphioxus and to the larval muscles in C. intestinalis. These results show that even though expression of the native engrailed has apparently been lost in developing C. intestinalis muscles, they express the transcription factors necessary to activate transcription from the amphioxus engrailed enhancer, suggesting that gene networks may not be completely disrupted if an individual component is lost.
Collapse
Affiliation(s)
- Laura Beaster-Jones
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA
| | | | | |
Collapse
|
45
|
Breiling A, Sessa L, Orlando V. Biology of Polycomb and Trithorax Group Proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:83-136. [PMID: 17338920 DOI: 10.1016/s0074-7696(07)58002-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular phenotypes can be ascribed to different patterns of gene expression. Epigenetic mechanisms control the generation of different phenotypes from the same genotype. Thus differentiation is basically a process driven by changes in gene activity during development, often in response to transient factors or environmental stimuli. To keep the specific characteristics of cell types, tissue-specific gene expression patterns must be transmitted stably from one cell to the daughter cells, also in the absence of the early-acting determination factors. This heritability of patterns of active and inactive genes is enabled by epigenetic mechanisms that create a layer of information on top of the DNA sequence that ensures mitotic and sometimes also meiotic transmission of expression patterns. The proteins of the Polycomb and Trithorax group comprise such a cellular memory mechanism that preserves gene expression patterns through many rounds of cell division. This review provides an overview of the genetics and molecular biology of these maintenance proteins, concentrating mainly on mechanisms of Polycomb group-mediated repression.
Collapse
Affiliation(s)
- Achim Breiling
- Dulbecco Telethon Institute, Institute of Genetics and Biophysics, CNR, 80131 Naples, Italy
| | | | | |
Collapse
|
46
|
Wilkinson FH, Park K, Atchison ML. Polycomb recruitment to DNA in vivo by the YY1 REPO domain. Proc Natl Acad Sci U S A 2006; 103:19296-301. [PMID: 17158804 PMCID: PMC1748220 DOI: 10.1073/pnas.0603564103] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polycomb group (PcG) proteins are responsible for maintaining transcriptional repression of developmentally important genes. However, the mechanism of PcG recruitment to specific DNA sequences is poorly understood. Transcription factor YY1 is one of the few PcG proteins with sequence-specific DNA binding activity. We previously showed that YY1 can recruit other PcG proteins to DNA, leading to histone posttranslational modifications and stable transcriptional repression. Using Drosophila transgenic approaches, we identified YY1 sequences 201-226 as necessary and sufficient for PcG transcriptional repression in vivo. When fused to a heterologous DNA-binding domain, this short 26-aa motif was sufficient for transcriptional repression, recruitment of PcG proteins to DNA, and methylation of histone H3 lysine 27. Deletion of this short YY1 motif did not affect transient transcriptional repression but ablated PcG repression, PcG protein recruitment to DNA, and methylation of H3 lysine 27. We propose that this motif be named the REPO domain for its function in recruitment of Polycomb. The REPO domain is well conserved in YY1 orthologs and in related proteins.
Collapse
Affiliation(s)
- Frank H. Wilkinson
- *Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104; and
| | - Kyoungsook Park
- Molecular Therapy Research Center, Sungkyunkwan University, Samsung Medical Center Annex 8F, 50, Ilwon-dong, Kangnam-ku, Seoul 135-710, Korea
| | - Michael L. Atchison
- *Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Calonje M, Sung ZR. Complexity beneath the silence. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:530-7. [PMID: 16979931 DOI: 10.1016/j.pbi.2006.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 07/18/2006] [Indexed: 05/11/2023]
Abstract
Polycomb group (PcG)-mediated silencing by proteins that are conserved across plants and animals is a key feature of eukaryotic gene regulation. Investigation of PcG-mediated gene silencing has revealed a surprising degree of complexity in the molecular mechanisms that recruit the protein complexes, repress expression, and maintain the epigenetic silent state of target genes. This review summarizes our current understanding of the mechanism of PcG-mediated gene silencing in animals and higher plants.
Collapse
Affiliation(s)
- Myriam Calonje
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
48
|
Müller J, Kassis JA. Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Curr Opin Genet Dev 2006; 16:476-84. [PMID: 16914306 DOI: 10.1016/j.gde.2006.08.005] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 08/03/2006] [Indexed: 01/02/2023]
Abstract
Polycomb group (PcG) proteins are conserved regulatory proteins that repress transcription of particular target genes in animals and plants. Studies over the past decade have established that most PcG proteins are not classic DNA binding factors but that they exist in multisubunit protein complexes that bind to and modify chromatin. Nevertheless, PcG repression of target genes in Drosophila requires specific cis-regulatory sequences, called Polycomb response elements (PREs), and chromatin immunoprecipitation studies have shown that, in vivo, most PcG proteins are specifically bound at the PREs of target genes. However, the mechanisms by which these PcG protein complexes are recruited to PREs and how they repress transcription are still poorly understood. Recent studies challenge earlier models that invoke covalent histone modifications and chromatin binding as the key steps in the recruitment of PcG proteins to PREs. The available evidence suggests that PREs are largely devoid of nucleosomes and that PRE DNA serves as an assembly platform for many different PcG protein complexes through DNA-protein and protein-protein interactions. The emerging picture suggests that the binding and modification of chromatin by PcG proteins is needed for interaction of PRE-tethered PcG protein complexes with nucleosomes in the flanking chromatin in order to maintain a Polycomb-repressed chromatin state at promoters and coding regions of target genes.
Collapse
Affiliation(s)
- Jürg Müller
- European Molecular Biology Laboratory, Gene Expression Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|
49
|
Comet I, Savitskaya E, Schuettengruber B, Nègre N, Lavrov S, Parshikov A, Juge F, Gracheva E, Georgiev P, Cavalli G. PRE-Mediated Bypass of Two Su(Hw) Insulators Targets PcG Proteins to a Downstream Promoter. Dev Cell 2006; 11:117-24. [PMID: 16824958 DOI: 10.1016/j.devcel.2006.05.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 04/21/2006] [Accepted: 05/30/2006] [Indexed: 11/29/2022]
Abstract
Drosophila Polycomb group response elements (PRE) silence neighboring genes, but silencing can be blocked by one copy of the Su(Hw) insulator element. We show here that Polycomb group (PcG) proteins can spread from a PRE in the flanking chromatin region and that PRE blocking depends on a physical barrier established by the insulator to PcG protein spreading. On the other hand, PRE-mediated silencing can bypass two Su(Hw) insulators to repress a downstream reporter gene. Strikingly, insulator bypass involves targeting of PcG proteins to the downstream promoter, while they are completely excluded from the intervening insulated domain. This shows that PRE-dependent silencing is compatible with looping of the PRE in order to bring PcG proteins in contact with the promoter and does not require the coating of the whole chromatin domain between PRE and promoter.
Collapse
Affiliation(s)
- Itys Comet
- Institute of Human Genetics, Centre National de la Recherche Scientifique, 141 rue de la Cardonille, F-34396 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nègre N, Hennetin J, Sun LV, Lavrov S, Bellis M, White KP, Cavalli G. Chromosomal distribution of PcG proteins during Drosophila development. PLoS Biol 2006; 4:e170. [PMID: 16613483 PMCID: PMC1440717 DOI: 10.1371/journal.pbio.0040170] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 03/23/2006] [Indexed: 11/18/2022] Open
Abstract
Polycomb group (PcG) proteins are able to maintain the memory of silent transcriptional states of homeotic genes throughout development. In Drosophila, they form multimeric complexes that bind to specific DNA regulatory elements named PcG response elements (PREs). To date, few PREs have been identified and the chromosomal distribution of PcG proteins during development is unknown. We used chromatin immunoprecipitation (ChIP) with genomic tiling path microarrays to analyze the binding profile of the PcG proteins Polycomb (PC) and Polyhomeotic (PH) across 10 Mb of euchromatin. We also analyzed the distribution of GAGA factor (GAF), a sequence-specific DNA binding protein that is found at most previously identified PREs. Our data show that PC and PH often bind to clustered regions within large loci that encode transcription factors which play multiple roles in developmental patterning and in the regulation of cell proliferation. GAF co-localizes with PC and PH to a limited extent, suggesting that GAF is not a necessary component of chromatin at PREs. Finally, the chromosome-association profile of PC and PH changes during development, suggesting that the function of these proteins in the regulation of some of their target genes might be more dynamic than previously anticipated.
Collapse
Affiliation(s)
- Nicolas Nègre
- 1Institute of Human Genetics, Centre national de la recherche scientifique (CNRS), Montpellier Cedex, France
| | - Jérôme Hennetin
- 2Centre de Recherche en Biochimie Macromoléculaire, CNRS, Montpellier, France
| | - Ling V Sun
- 3Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sergey Lavrov
- 1Institute of Human Genetics, Centre national de la recherche scientifique (CNRS), Montpellier Cedex, France
| | - Michel Bellis
- 2Centre de Recherche en Biochimie Macromoléculaire, CNRS, Montpellier, France
| | - Kevin P White
- 3Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Giacomo Cavalli
- 1Institute of Human Genetics, Centre national de la recherche scientifique (CNRS), Montpellier Cedex, France
| |
Collapse
|