1
|
Sivakova B, Wagner A, Kretova M, Jakubikova J, Gregan J, Kratochwill K, Barath P, Cipak L. Quantitative proteomics and phosphoproteomics profiling of meiotic divisions in the fission yeast Schizosaccharomyces pombe. Sci Rep 2024; 14:23105. [PMID: 39367033 PMCID: PMC11452395 DOI: 10.1038/s41598-024-74523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
In eukaryotes, chromosomal DNA is equally distributed to daughter cells during mitosis, whereas the number of chromosomes is halved during meiosis. Despite considerable progress in understanding the molecular mechanisms that regulate mitosis, there is currently a lack of complete understanding of the molecular mechanisms regulating meiosis. Here, we took advantage of the fission yeast Schizosaccharomyces pombe, for which highly synchronous meiosis can be induced, and performed quantitative proteomics and phosphoproteomics analyses to track changes in protein expression and phosphorylation during meiotic divisions. We compared the proteomes and phosphoproteomes of exponentially growing mitotic cells with cells harvested around meiosis I, or meiosis II in strains bearing either the temperature-sensitive pat1-114 allele or conditional ATP analog-sensitive pat1-as2 allele of the Pat1 kinase. Comparing pat1-114 with pat1-as2 also allowed us to investigate the impact of elevated temperature (25 °C versus 34 °C) on meiosis, an issue that sexually reproducing organisms face due to climate change. Using TMTpro 18plex labeling and phosphopeptide enrichment strategies, we performed quantification of a total of 4673 proteins and 7172 phosphosites in S. pombe. We found that the protein level of 2680 proteins and the rate of phosphorylation of 4005 phosphosites significantly changed during progression of S. pombe cells through meiosis. The proteins exhibiting changes in expression and phosphorylation during meiotic divisions were represented mainly by those involved in the meiotic cell cycle, meiotic recombination, meiotic nuclear division, meiosis I, centromere clustering, microtubule cytoskeleton organization, ascospore formation, organonitrogen compound biosynthetic process, carboxylic acid metabolic process, gene expression, and ncRNA processing, among others. In summary, our findings provide global overview of changes in the levels and phosphorylation of proteins during progression of S. pombe cells through meiosis at normal and elevated temperatures, laying the groundwork for further elucidation of the functions and importance of specific proteins and their phosphorylation in regulating meiotic divisions in this yeast.
Collapse
Affiliation(s)
- Barbara Sivakova
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Anja Wagner
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Miroslava Kretova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Jana Jakubikova
- Department of Tumor Immunology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Juraj Gregan
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, 1030, Austria
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 24, Tulln an der Donau, 3430, Austria
| | - Klaus Kratochwill
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.
| | - Peter Barath
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia.
- Medirex Group Academy, Novozamocka 67, Nitra, 949 05, Slovakia.
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia.
| |
Collapse
|
2
|
Arter M, Keeney S. Divergence and conservation of the meiotic recombination machinery. Nat Rev Genet 2024; 25:309-325. [PMID: 38036793 DOI: 10.1038/s41576-023-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 12/02/2023]
Abstract
Sexually reproducing eukaryotes use recombination between homologous chromosomes to promote chromosome segregation during meiosis. Meiotic recombination is almost universally conserved in its broad strokes, but specific molecular details often differ considerably between taxa, and the proteins that constitute the recombination machinery show substantial sequence variability. The extent of this variation is becoming increasingly clear because of recent increases in genomic resources and advances in protein structure prediction. We discuss the tension between functional conservation and rapid evolutionary change with a focus on the proteins that are required for the formation and repair of meiotic DNA double-strand breaks. We highlight phylogenetic relationships on different time scales and propose that this remarkable evolutionary plasticity is a fundamental property of meiotic recombination that shapes our understanding of molecular mechanisms in reproductive biology.
Collapse
Affiliation(s)
- Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Tsubouchi H. The Hop2-Mnd1 Complex and Its Regulation of Homologous Recombination. Biomolecules 2023; 13:biom13040662. [PMID: 37189409 DOI: 10.3390/biom13040662] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Homologous recombination (HR) is essential for meiosis in most sexually reproducing organisms, where it is induced upon entry into meiotic prophase. Meiotic HR is conducted by the collaborative effort of proteins responsible for DNA double-strand break repair and those produced specifically during meiosis. The Hop2-Mnd1 complex was originally identified as a meiosis-specific factor that is indispensable for successful meiosis in budding yeast. Later, it was found that Hop2-Mnd1 is conserved from yeasts to humans, playing essential roles in meiosis. Accumulating evidence suggests that Hop2-Mnd1 promotes RecA-like recombinases towards homology search/strand exchange. This review summarizes studies on the mechanism of the Hop2-Mnd1 complex in promoting HR and beyond.
Collapse
Affiliation(s)
- Hideo Tsubouchi
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Kanagawa, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Kanagawa, Japan
| |
Collapse
|
5
|
DNA Repair in Haploid Context. Int J Mol Sci 2021; 22:ijms222212418. [PMID: 34830299 PMCID: PMC8620282 DOI: 10.3390/ijms222212418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 12/15/2022] Open
Abstract
DNA repair is a well-covered topic as alteration of genetic integrity underlies many pathological conditions and important transgenerational consequences. Surprisingly, the ploidy status is rarely considered although the presence of homologous chromosomes dramatically impacts the repair capacities of cells. This is especially important for the haploid gametes as they must transfer genetic information to the offspring. An understanding of the different mechanisms monitoring genetic integrity in this context is, therefore, essential as differences in repair pathways exist that differentiate the gamete’s role in transgenerational inheritance. Hence, the oocyte must have the most reliable repair capacity while sperm, produced in large numbers and from many differentiation steps, are expected to carry de novo variations. This review describes the main DNA repair pathways with a special emphasis on ploidy. Differences between Saccharomyces cerevisiae and Schizosaccharomyces pombe are especially useful to this aim as they can maintain a diploid and haploid life cycle respectively.
Collapse
|
6
|
Tsubouchi H, Argunhan B, Iwasaki H. Biochemical properties of fission yeast homologous recombination enzymes. Curr Opin Genet Dev 2021; 71:19-26. [PMID: 34246071 DOI: 10.1016/j.gde.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
Homologous recombination (HR) is a universal phenomenon conserved from viruses to humans. The mechanisms of HR are essentially the same in humans and simple unicellular eukaryotes like yeast. Two highly diverged yeast species, Saccharomyces cerevisiae and Schizosaccharomyces pombe, have proven exceptionally useful in understanding the fundamental mechanisms of eukaryotic HR by serving as a source for unique biological insights and also complementing each other. Here, we will review the features of S. pombe HR mechanisms in comparison to S. cerevisiae and other model organisms. Particular emphasis will be put on the biochemical characterization of HR mechanisms uncovered using S. pombe proteins.
Collapse
Affiliation(s)
- Hideo Tsubouchi
- Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan.
| | - Bilge Argunhan
- Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
| | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan.
| |
Collapse
|
7
|
Abstract
Accurate DNA repair and replication are critical for genomic stability and cancer prevention. RAD51 and its gene family are key regulators of DNA fidelity through diverse roles in double-strand break repair, replication stress, and meiosis. RAD51 is an ATPase that forms a nucleoprotein filament on single-stranded DNA. RAD51 has the function of finding and invading homologous DNA sequences to enable accurate and timely DNA repair. Its paralogs, which arose from ancient gene duplications of RAD51, have evolved to regulate and promote RAD51 function. Underscoring its importance, misregulation of RAD51, and its paralogs, is associated with diseases such as cancer and Fanconi anemia. In this review, we focus on the mammalian RAD51 structure and function and highlight the use of model systems to enable mechanistic understanding of RAD51 cellular roles. We also discuss how misregulation of the RAD51 gene family members contributes to disease and consider new approaches to pharmacologically inhibit RAD51.
Collapse
Affiliation(s)
- Braulio Bonilla
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA;
| | - Sarah R Hengel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA;
| | - McKenzie K Grundy
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA;
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA;
| |
Collapse
|
8
|
Li D, Roca M, Yuecel R, Lorenz A. Immediate visualization of recombination events and chromosome segregation defects in fission yeast meiosis. Chromosoma 2019; 128:385-396. [PMID: 30739171 PMCID: PMC6823302 DOI: 10.1007/s00412-019-00691-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 02/07/2023]
Abstract
Schizosaccharomyces pombe, also known as fission yeast, is an established model for studying chromosome biological processes. Over the years, research employing fission yeast has made important contributions to our knowledge about chromosome segregation during meiosis, as well as meiotic recombination and its regulation. Quantification of meiotic recombination frequency is not a straightforward undertaking, either requiring viable progeny for a genetic plating assay, or relying on laborious Southern blot analysis of recombination intermediates. Neither of these methods lends itself to high-throughput screens to identify novel meiotic factors. Here, we establish visual assays novel to Sz. pombe for characterizing chromosome segregation and meiotic recombination phenotypes. Genes expressing red, yellow, and/or cyan fluorophores from spore-autonomous promoters have been integrated into the fission yeast genomes, either close to the centromere of chromosome 1 to monitor chromosome segregation, or on the arm of chromosome 3 to form a genetic interval at which recombination frequency can be determined. The visual recombination assay allows straightforward and immediate assessment of the genetic outcome of a single meiosis by epi-fluorescence microscopy without requiring tetrad dissection. We also demonstrate that the recombination frequency analysis can be automatized by utilizing imaging flow cytometry to enable high-throughput screens. These assays have several advantages over traditional methods for analyzing meiotic phenotypes.
Collapse
Affiliation(s)
- Dmitriy Li
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Iain Fraser Cytometry Centre (IFCC), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Marianne Roca
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, 06230, Villefranche-sur-Mer, France
| | - Raif Yuecel
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Iain Fraser Cytometry Centre (IFCC), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Alexander Lorenz
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
9
|
Genetic interactions between the chromosome axis-associated protein Hop1 and homologous recombination determinants in Schizosaccharomyces pombe. Curr Genet 2018; 64:1089-1104. [PMID: 29550859 PMCID: PMC6153652 DOI: 10.1007/s00294-018-0827-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 11/28/2022]
Abstract
Hop1 is a component of the meiosis-specific chromosome axis and belongs to the evolutionarily conserved family of HORMA domain proteins. Hop1 and its orthologs in higher eukaryotes are a major factor in promoting double-strand DNA break formation and inter-homolog recombination. In budding yeast and mammals, they are also involved in a meiotic checkpoint kinase cascade monitoring the completion of double-strand DNA break repair. We used the fission yeast, Schizosaccharomyces pombe, which lacks a canonical synaptonemal complex to test whether Hop1 has a role beyond supporting the generation of double-strand DNA breaks and facilitating inter-homolog recombination events. We determined how mutants of homologous recombination factors genetically interact with hop1, studied the role(s) of the HORMA domain of Hop1, and characterized a bio-informatically predicted interactor of Hop1, Aho1 (SPAC688.03c). Our observations indicate that in fission yeast, Hop1 does require its HORMA domain to support wild-type levels of meiotic recombination and localization to meiotic chromatin. Furthermore, we show that hop1∆ only weakly interacts genetically with mutants of homologous recombination factors, and in fission yeast likely has no major role beyond break formation and promoting inter-homolog events. We speculate that after the evolutionary loss of the synaptonemal complex, Hop1 likely has become less important for modulating recombination outcome during meiosis in fission yeast, and that this led to a concurrent rewiring of genetic pathways controlling meiotic recombination.
Collapse
|
10
|
Argunhan B, Leung WK, Afshar N, Terentyev Y, Subramanian VV, Murayama Y, Hochwagen A, Iwasaki H, Tsubouchi T, Tsubouchi H. Fundamental cell cycle kinases collaborate to ensure timely destruction of the synaptonemal complex during meiosis. EMBO J 2017; 36:2488-2509. [PMID: 28694245 DOI: 10.15252/embj.201695895] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 01/07/2023] Open
Abstract
The synaptonemal complex (SC) is a proteinaceous macromolecular assembly that forms during meiotic prophase I and mediates adhesion of paired homologous chromosomes along their entire lengths. Although prompt disassembly of the SC during exit from prophase I is a landmark event of meiosis, the underlying mechanism regulating SC destruction has remained elusive. Here, we show that DDK (Dbf4-dependent Cdc7 kinase) is central to SC destruction. Upon exit from prophase I, Dbf4, the regulatory subunit of DDK, directly associates with and is phosphorylated by the Polo-like kinase Cdc5. In parallel, upregulated CDK1 activity also targets Dbf4. An enhanced Dbf4-Cdc5 interaction pronounced phosphorylation of Dbf4 and accelerated SC destruction, while reduced/abolished Dbf4 phosphorylation hampered destruction of SC proteins. SC destruction relieved meiotic inhibition of the ubiquitous recombinase Rad51, suggesting that the mitotic recombination machinery is reactivated following prophase I exit to repair any persisting meiotic DNA double-strand breaks. Taken together, we propose that the concerted action of DDK, Polo-like kinase, and CDK1 promotes efficient SC destruction at the end of prophase I to ensure faithful inheritance of the genome.
Collapse
Affiliation(s)
- Bilge Argunhan
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton, East Sussex, UK.,Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Wing-Kit Leung
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton, East Sussex, UK
| | - Negar Afshar
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton, East Sussex, UK.,Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Yaroslav Terentyev
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton, East Sussex, UK
| | | | - Yasuto Murayama
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | | | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Tomomi Tsubouchi
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton, East Sussex, UK .,National Institute for Basic Biology, Okazaki, Japan
| | - Hideo Tsubouchi
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton, East Sussex, UK .,National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|
11
|
Lorenz A. Modulation of meiotic homologous recombination by DNA helicases. Yeast 2017; 34:195-203. [PMID: 27930825 DOI: 10.1002/yea.3227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022] Open
Abstract
DNA helicases are ATP-driven motor proteins which translocate along DNA capable of dismantling DNA-DNA interactions and/or removing proteins bound to DNA. These biochemical capabilities make DNA helicases main regulators of crucial DNA metabolic processes, including DNA replication, DNA repair, and genetic recombination. This budding topic will focus on reviewing the function of DNA helicases important for homologous recombination during meiosis, and discuss recent advances in how these modulators of meiotic recombination are themselves regulated. The emphasis is placed on work in the two model yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, which has vastly expanded our understanding of meiotic homologous recombination, a process whose correct execution is instrumental for healthy gamete formation, and thus functioning sexual reproduction. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alexander Lorenz
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
12
|
Ahlawat S, Chopra M, Jaiswal L, Sharma R, Arora R, Brahma B, Lal SV, De S. Exon skipping creates novel splice variants of DMC1 gene in ruminants. Mol Cell Probes 2016; 30:66-73. [PMID: 26945774 DOI: 10.1016/j.mcp.2016.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 11/26/2022]
Abstract
Disrupted meiotic cDNA1 (DMC1) recombinase plays a pivotal role in homology search and strand exchange reactions during meiotic homologous recombination. In the present study, full length coding sequence of DMC1 gene was sequence characterized for the first time from four ruminant species (cattle, buffalo, sheep and goat) and phylogenetic relationship of ruminant DMC1 with other eukaryotes was analyzed. DMC1 gene encodes a putative protein of 340 amino acids in cattle, sheep and buffalo and 341 amino acids in goat. A high degree of evolutionary conservation at both nucleotide and amino acid level was observed for the four ruminant orthologs. In cattle and sheep, novel alternatively spliced mRNAs with skipping of exons 7 and 8 (Transcript variant 1, TV1) were isolated in addition to the full length (FL) transcript. Novel transcript variants with partial skipping of exon 7 and complete skipping of exon 8 (Transcript variant 2, TV2) were found in sheep and goat. The presence of these variants was validated by amplifying cDNA isolated from testis tissue of ruminants using two oligonucleotides flanking the deleted region. To accurately estimate their relative proportions, real-time PCR was performed using primers specific for each variant. Expression level of DMC1-FL was significantly higher than that of TV1 in cattle and TV2 in goat (P < 0.05). Relative ratio for expression of DMC1-FL: TV1: TV2 in sheep was 6.78: 1.43: 1. In-silico analysis revealed presence of splice variants of DMC1 gene across other mammalian species underpinning the role of alternative splicing in functional innovation.
Collapse
Affiliation(s)
- S Ahlawat
- National Bureau of Animal Genetic Resources, Karnal, 132001, India.
| | - M Chopra
- National Dairy Research Institute, Karnal, 132001, India
| | - L Jaiswal
- National Dairy Research Institute, Karnal, 132001, India
| | - R Sharma
- National Bureau of Animal Genetic Resources, Karnal, 132001, India
| | - R Arora
- National Bureau of Animal Genetic Resources, Karnal, 132001, India
| | - B Brahma
- Krishi Vigyan Kendra, Bhaderwah, SKUAST, Jammu, 180016, India
| | - S V Lal
- National Dairy Research Institute, Karnal, 132001, India
| | - S De
- National Dairy Research Institute, Karnal, 132001, India
| |
Collapse
|
13
|
Lorenz A. New cassettes for single-step drug resistance and prototrophic marker switching in fission yeast. Yeast 2015; 32:703-10. [PMID: 26305038 DOI: 10.1002/yea.3097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/10/2015] [Accepted: 08/10/2015] [Indexed: 11/05/2022] Open
Abstract
Construction of multiply mutated strains for genetic interaction analysis and of strains carrying different epitope tags at multiple open reading frames for testing protein localization, abundance and protein-protein interactions is hampered by the availability of a sufficient number of different selectable markers. Moreover, strains with single gene deletions or tags often already exist in strain collections; for historical reasons these will mostly carry the ura4(+) gene or the G418-resistance kanMX as marker. Because it is rather cumbersome to produce multiply deleted or tagged strains using the same marker, or to completely reconstruct a particular strain with a different marker, single-step exchange protocols of markers are a time-saving alternative. In recent years, dominant drug resistance markers (DDRMs) against clonNAT, hygromycin B and bleomycin have been adapted and successfully used in Schizosaccharomyces pombe. The corresponding DDRM cassettes, natMX, hphMX and bleMX, carry the TEF promotor and terminator sequences from Ashbya gossypii as kanMX; this provides flanking homologies to enable single-step marker swapping by homologous gene targeting. To expand this very useful toolset for single-step marker exchange, I constructed MX cassettes containing the nutritional markers arg3(+), his3(+), leu1(+) and ura4(+). Furthermore, a set of constructs was created to enable single-step exchange of ura4(+) to kanMX6, natMX4 and hphMX4. The functionality of the cassettes is demonstrated by successful single-step marker swapping at several loci. These constructs allow straightforward and rapid remarking of existing ura4(+) - and MX-deleted and -tagged strains.
Collapse
|
14
|
Phadnis N, Cipak L, Polakova S, Hyppa RW, Cipakova I, Anrather D, Karvaiova L, Mechtler K, Smith GR, Gregan J. Casein Kinase 1 and Phosphorylation of Cohesin Subunit Rec11 (SA3) Promote Meiotic Recombination through Linear Element Formation. PLoS Genet 2015; 11:e1005225. [PMID: 25993311 PMCID: PMC4439085 DOI: 10.1371/journal.pgen.1005225] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/15/2015] [Indexed: 11/18/2022] Open
Abstract
Proper meiotic chromosome segregation, essential for sexual reproduction, requires timely formation and removal of sister chromatid cohesion and crossing-over between homologs. Early in meiosis cohesins hold sisters together and also promote formation of DNA double-strand breaks, obligate precursors to crossovers. Later, cohesin cleavage allows chromosome segregation. We show that in fission yeast redundant casein kinase 1 homologs, Hhp1 and Hhp2, previously shown to regulate segregation via phosphorylation of the Rec8 cohesin subunit, are also required for high-level meiotic DNA breakage and recombination. Unexpectedly, these kinases also mediate phosphorylation of a different meiosis-specific cohesin subunit Rec11. This phosphorylation in turn leads to loading of linear element proteins Rec10 and Rec27, related to synaptonemal complex proteins of other species, and thereby promotes DNA breakage and recombination. Our results provide novel insights into the regulation of chromosomal features required for crossing-over and successful reproduction. The mammalian functional homolog of Rec11 (STAG3) is also phosphorylated during meiosis and appears to be required for fertility, indicating wide conservation of the meiotic events reported here.
Collapse
Affiliation(s)
- Naina Phadnis
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lubos Cipak
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Silvia Polakova
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Randy W. Hyppa
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ingrid Cipakova
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Lucia Karvaiova
- Department of Genetics, Comenius University, Bratislava, Slovakia
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Gerald R. Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Juraj Gregan
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Institute of Molecular Pathology, Vienna, Austria
| |
Collapse
|
15
|
Lorenz A, Mehats A, Osman F, Whitby MC. Rad51/Dmc1 paralogs and mediators oppose DNA helicases to limit hybrid DNA formation and promote crossovers during meiotic recombination. Nucleic Acids Res 2014; 42:13723-35. [PMID: 25414342 PMCID: PMC4267644 DOI: 10.1093/nar/gku1219] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/17/2014] [Accepted: 11/06/2014] [Indexed: 11/30/2022] Open
Abstract
During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved.
Collapse
Affiliation(s)
- Alexander Lorenz
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK The Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alizée Mehats
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Fekret Osman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Matthew C Whitby
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
16
|
Lorenz A, Osman F, Sun W, Nandi S, Steinacher R, Whitby MC. The fission yeast FANCM ortholog directs non-crossover recombination during meiosis. Science 2012; 336:1585-8. [PMID: 22723423 PMCID: PMC3399777 DOI: 10.1126/science.1220111] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The formation of healthy gametes depends on programmed DNA double-strand breaks (DSBs), which are each repaired as a crossover (CO) or non-crossover (NCO) from a homologous template. Although most of these DSBs are repaired without giving COs, little is known about the genetic requirements of NCO-specific recombination. We show that Fml1, the Fanconi anemia complementation group M (FANCM)-ortholog of Schizosaccharomyces pombe, directs the formation of NCOs during meiosis in competition with the Mus81-dependent pro-CO pathway. We also define the Rad51/Dmc1-mediator Swi5-Sfr1 as a major determinant in biasing the recombination process in favor of Mus81, to ensure the appropriate amount of COs to guide meiotic chromosome segregation. The conservation of these proteins from yeast to humans suggests that this interplay may be a general feature of meiotic recombination.
Collapse
Affiliation(s)
- Alexander Lorenz
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Fekret Osman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Weili Sun
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Saikat Nandi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Roland Steinacher
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Matthew C. Whitby
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
17
|
Tange Y, Kurabayashi A, Goto B, Hoe KL, Kim DU, Park HO, Hayles J, Chikashige Y, Tsutumi C, Hiraoka Y, Yamao F, Nurse P, Niwa O. The CCR4-NOT complex is implicated in the viability of aneuploid yeasts. PLoS Genet 2012; 8:e1002776. [PMID: 22737087 PMCID: PMC3380822 DOI: 10.1371/journal.pgen.1002776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/05/2012] [Indexed: 12/23/2022] Open
Abstract
To identify the genes required to sustain aneuploid viability, we screened a deletion library of non-essential genes in the fission yeast Schizosaccharomyces pombe, in which most types of aneuploidy are eventually lethal to the cell. Aneuploids remain viable for a period of time and can form colonies by reducing the extent of the aneuploidy. We hypothesized that a reduction in colony formation efficiency could be used to screen for gene deletions that compromise aneuploid viability. Deletion mutants were used to measure the effects on the viability of spores derived from triploid meiosis and from a chromosome instability mutant. We found that the CCR4-NOT complex, an evolutionarily conserved general regulator of mRNA turnover, and other related factors, including poly(A)-specific nuclease for mRNA decay, are involved in aneuploid viability. Defective mutations in CCR4-NOT complex components in the distantly related yeast Saccharomyces cerevisiae also affected the viability of spores produced from triploid cells, suggesting that this complex has a conserved role in aneuploids. In addition, our findings suggest that the genes required for homologous recombination repair are important for aneuploid viability.
Collapse
Affiliation(s)
- Yoshie Tange
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | - Bunshiro Goto
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Kwang-Lae Hoe
- Chungnam National University, Graduate School of New Drug Discovery and Development, Yusong-gu, Daejeon, Korea
| | - Dong-Uk Kim
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yusong-gu, Daejeon, Korea
| | | | - Jacqueline Hayles
- Cancer Research UK, The London Research Institute, London, United Kingdom
| | - Yuji Chikashige
- National Institute of Information and Communications Technology, Kobe, Japan
| | - Chihiro Tsutumi
- National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- National Institute of Information and Communications Technology, Kobe, Japan
| | - Fumiaki Yamao
- National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Paul Nurse
- Cancer Research UK, The London Research Institute, London, United Kingdom
- The Rockefeller University, New York, New York, United States of America
| | - Osami Niwa
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
- The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
18
|
Mallela S, Latypov V, Kohli J. Rec10- and Rec12-independent recombination in meiosis of Schizosaccharomyces pombe. Yeast 2011; 28:405-21. [PMID: 21387406 DOI: 10.1002/yea.1847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/03/2011] [Indexed: 11/11/2022] Open
Abstract
The Rec10 protein, a component of the linear elements forming along sister chromatids in meiotic prophase of Schizosaccharomyces pombe, plays an important role in the activation of Rec12 for double-strand break formation, and thus the initiation of recombination between homologous chromosomes. Recombination between homologous chromosomes was moderately reduced in homozygous crosses of the C-terminal truncation mutant rec10-155 and strongly in the full deletion allele rec10-175. Both alleles were also tested in two assays for intrachromosomal recombination (PS1 and VL1) and showed only slight reductions, while deletion of rec12 led to a 13-fold reduction. The even stronger reductions in rec10 rec12 double deletion crosses indicate partially redundant functions of Rec10 and Rec12 in the initiation of intrachromosomal recombination. A low level of double-strand breaks has been detected in rec10-175 meiosis at the mbs1 hotspot of recombination, and spore viability in the double mutant was also lower than in the single-deletion mutants. Low levels of apparent crossover and conversion between homologous chromosomes in the absence of Rec12 have been quantified using a newly developed assay. The results also indicate that the functions of Rec10 differ in several respects from those of its distant homologue Red1 in Saccharomyces cerevisiae, including interactions with Hop1 and Mek1 for promotion of recombination between homologues at the expense of sister chromatid recombination.
Collapse
Affiliation(s)
- Shamroop Mallela
- Institute of Cell Biology, University of Berne, Baltzer-Strasse 4, Berne, Switzerland
| | | | | |
Collapse
|
19
|
Howard-Till RA, Lukaszewicz A, Loidl J. The recombinases Rad51 and Dmc1 play distinct roles in DNA break repair and recombination partner choice in the meiosis of Tetrahymena. PLoS Genet 2011; 7:e1001359. [PMID: 21483758 PMCID: PMC3069121 DOI: 10.1371/journal.pgen.1001359] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 03/01/2011] [Indexed: 11/18/2022] Open
Abstract
Repair of programmed DNA double-strand breaks (DSBs) by meiotic recombination relies on the generation of flanking 3' single-stranded DNA overhangs and their interaction with a homologous double-stranded DNA template. In various common model organisms, the ubiquitous strand exchange protein Rad51 and its meiosis-specific homologue Dmc1 have been implicated in the joint promotion of DNA-strand exchange at meiotic recombination sites. However, the division of labor between these two recombinases is still a puzzle. Using RNAi and gene-disruption experiments, we have studied their roles in meiotic recombination and chromosome pairing in the ciliated protist Tetrahymena as an evolutionarily distant meiotic model. Cytological and electrophoresis-based assays for DSBs revealed that, without Rad51p, DSBs were not repaired. However, in the absence of Dmc1p, efficient Rad51p-dependent repair took place, but crossing over was suppressed. Immunostaining and protein tagging demonstrated that only Dmc1p formed strong DSB-dependent foci on meiotic chromatin, whereas the distribution of Rad51p was diffuse within nuclei. This suggests that meiotic nucleoprotein filaments consist primarily of Dmc1p. Moreover, a proximity ligation assay confirmed that little if any Rad51p forms mixed nucleoprotein filaments with Dmc1p. Dmc1p focus formation was independent of the presence of Rad51p. The absence of Dmc1p did not result in compensatory assembly of Rad51p repair foci, and even artificial DNA damage by UV failed to induce Rad51p foci in meiotic nuclei, while it did so in somatic nuclei within one and the same cell. The observed interhomologue repair deficit in dmc1Δ meiosis is consistent with a requirement for Dmc1p in promoting the homologue as the preferred recombination partner. We propose that relatively short and/or transient Rad51p nucleoprotein filaments are sufficient for intrachromosomal recombination, whereas long nucleoprotein filaments consisting primarily of Dmc1p are required for interhomolog recombination.
Collapse
Affiliation(s)
- Rachel A. Howard-Till
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Agnieszka Lukaszewicz
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Abstract
Sister chromatids are held together from the time of their formation in S phase until they segregate in anaphase by the cohesin complex. In meiosis of most organisms, the mitotic Mcd1/Scc1/Rad21 subunit of the cohesin complex is largely replaced by its paralog named Rec8. This article reviews the specialized functions of Rec8 that are crucial for diverse aspects of chromosome dynamics in meiosis, and presents some speculations relating to meiotic chromosome organization.
Collapse
|
21
|
Hyppa RW, Smith GR. Crossover invariance determined by partner choice for meiotic DNA break repair. Cell 2010; 142:243-55. [PMID: 20655467 PMCID: PMC2911445 DOI: 10.1016/j.cell.2010.05.041] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/23/2010] [Accepted: 05/18/2010] [Indexed: 11/21/2022]
Abstract
Crossovers between meiotic homologs are crucial for their proper segregation, and crossover number and position are carefully controlled. Crossover homeostasis in budding yeast maintains crossovers at the expense of noncrossovers when double-strand DNA break (DSB) frequency is reduced. The mechanism of maintaining constant crossover levels in other species has been unknown. Here we investigate in fission yeast a different aspect of crossover control--the near invariance of crossover frequency per kb of DNA despite large variations in DSB intensity across the genome. Crossover invariance involves the choice of sister chromatid versus homolog for DSB repair. At strong DSB hotspots, intersister repair outnumbers interhomolog repair approximately 3:1, but our genetic and physical data indicate the converse in DSB-cold regions. This unanticipated mechanism of crossover control may operate in many species and explain, for example, the large excess of DSBs over crossovers and the repair of DSBs on unpaired chromosomes in diverse species.
Collapse
Affiliation(s)
- Randy W. Hyppa
- Fred Hutchinson Cancer Research Center Division of Basic Sciences Seattle, WA 98109 USA
| | - Gerald R. Smith
- Fred Hutchinson Cancer Research Center Division of Basic Sciences Seattle, WA 98109 USA
| |
Collapse
|
22
|
Latypov V, Rothenberg M, Lorenz A, Octobre G, Csutak O, Lehmann E, Loidl J, Kohli J. Roles of Hop1 and Mek1 in meiotic chromosome pairing and recombination partner choice in Schizosaccharomyces pombe. Mol Cell Biol 2010; 30:1570-81. [PMID: 20123974 PMCID: PMC2838064 DOI: 10.1128/mcb.00919-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/26/2009] [Accepted: 01/19/2010] [Indexed: 11/20/2022] Open
Abstract
Synaptonemal complex (SC) proteins Hop1 and Mek1 have been proposed to promote homologous recombination in meiosis of Saccharomyces cerevisiae by establishment of a barrier against sister chromatid recombination. Therefore, it is interesting to know whether the homologous proteins play a similar role in Schizosaccharomyces pombe. Unequal sister chromatid recombination (USCR) was found to be increased in hop1 and mek1 single and double deletion mutants in assays for intrachromosomal recombination (ICR). Meiotic intergenic (crossover) and intragenic (conversion) recombination between homologous chromosomes was reduced. Double-strand break (DSB) levels were also lowered. Notably, deletion of hop1 restored DSB repair in rad50S meiosis. This may indicate altered DSB repair kinetics in hop1 and mek1 deletion strains. A hypothesis is advanced proposing transient inhibition of DSB processing by Hop1 and Mek1 and thus providing more time for repair by interaction with the homologous chromosome. Loss of Hop1 and Mek1 would then result in faster repair and more interaction with the sister chromatid. Thus, in S. pombe meiosis, where an excess of sister Holliday junction over homologous Holliday junction formation has been demonstrated, Hop1 and Mek1 possibly enhance homolog interactions to ensure wild-type level of crossover formation rather than inhibiting sister chromatid interactions.
Collapse
Affiliation(s)
- Vitaly Latypov
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Maja Rothenberg
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Alexander Lorenz
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Guillaume Octobre
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Ortansa Csutak
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Elisabeth Lehmann
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Josef Loidl
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Jürg Kohli
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
23
|
Abstract
The mating-type bias (mat-bias) of gene conversion was previously described as a phenomenon in which the number of prototrophic recombinants in an ura4A heteroallelic two-factor cross relates to the mating types of the parents. We show now that the mat-bias is restricted neither to ura4A nor to recombination hotspots, but occurs at other genomic loci, too. It is specific for gene conversion and absent in azygotic meiosis. Thus, the mat-bias must originate from mating-type-specific "imprinting" events before karyogamy takes place. Structural variations of the mating-type locus, such as h(+N), h(+S), h(-S), h(+smtDelta), or h(-smtDelta), showed mat-bias manifestation. Mutations in genes coding for histone acetylase (gcn5, ada2) and histone deacetylase (hos2, clr6) activities smooth or abolish the mat-bias. In addition, the mat-bias depends on the presence of Swi5. We propose a new role for Swi5 and the histone acetylation status in mat-bias establishment through directionality of repair from the intact chromatid to the broken chromatid.
Collapse
|
24
|
Doll E, Molnar M, Cuanoud G, Octobre G, Latypov V, Ludin K, Kohli J. Cohesin and recombination proteins influence the G1-to-S transition in azygotic meiosis in Schizosaccharomyces pombe. Genetics 2008; 180:727-40. [PMID: 18780734 PMCID: PMC2567376 DOI: 10.1534/genetics.108.092619] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/05/2008] [Indexed: 11/18/2022] Open
Abstract
To determine whether recombination and/or sister-chromatid cohesion affect the timing of meiotic prophase events, the horsetail stage and S phase were analyzed in Schizosaccharomyces pombe strains carrying mutations in the cohesin genes rec8 or rec11, the linear element gene rec10, the pairing gene meu13, the double-strand-break formation genes rec6, rec7, rec12, rec14, rec15, and mde2, and the recombination gene dmc1. The double-mutant strains rec8 rec11 and rec8 rec12 were also assayed. Most of the single and both double mutants showed advancement of bulk DNA synthesis, start of nuclear movement (horsetail stage), and meiotic divisions by up to 2 hr. Only mde2 and dmc1 deletion strains showed wild-type timing. Contrasting behavior was observed for rec8 deletions (delayed by 1 hr) compared to a rec8 point mutation (advanced by 1 hr). An hypothesis for the role of cohesin and recombination proteins in the control of the G(1)-to-S transition is proposed. Finally, differences between azygotic meiosis and two other types of fission yeast meiosis (zygotic and pat1-114 meiosis) are discussed with respect to possible control steps in meiotic G(1).
Collapse
Affiliation(s)
- Eveline Doll
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
25
|
Khasanov FK, Salakhova AF, Khasanova OS, Grishchuk AL, Chepurnaja OV, Korolev VG, Kohli J, Bashkirov VI. Genetic analysis reveals different roles of Schizosaccharomyces pombe sfr1/dds20 in meiotic and mitotic DNA recombination and repair. Curr Genet 2008; 54:197-211. [PMID: 18769921 DOI: 10.1007/s00294-008-0212-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 08/15/2008] [Indexed: 11/26/2022]
Abstract
DNA double-strand break (DSB) repair mediated by the Rad51 pathway of homologous recombination is conserved in eukaryotes. In yeast, Rad51 paralogs, Saccharomyces cerevisiae Rad55-Rad57 and Schizosaccharomyces pombe Rhp55-Rhp57, are mediators of Rad51 nucleoprotein formation. The recently discovered S. pombe Sfr1/Dds20 protein has been shown to interact with Rad51 and to operate in the Rad51-dependent DSB repair pathway in parallel to the paralog-mediated pathway. Here we show that Sfr1 is a nuclear protein and acts downstream of Rad50 in DSB processing. sfr1Delta is epistatic to rad18 (-) and rad60 (-), and Sfr1 is a high-copy suppressor of the replication and repair defects of a rad60 mutant. Sfr1 functions in a Cds1-independent UV damage tolerance mechanism. In contrast to mitotic recombination, meiotic recombination is significantly reduced in sfr1Delta strains. Our data indicate that Sfr1 acts in DSB repair mainly outside of S-phase, and is required for wild-type levels of meiotic recombination. We suggest that Sfr1 acts early in recombination and has a specific role in Rad51 filament assembly, distinct from that of the Rad51 paralogs.
Collapse
Affiliation(s)
- Fuat K Khasanov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
The Rad52 homologs Rad22 and Rti1 of Schizosaccharomyces pombe are not essential for meiotic interhomolog recombination, but are required for meiotic intrachromosomal recombination and mating-type-related DNA repair. Genetics 2008; 178:2399-412. [PMID: 18430957 DOI: 10.1534/genetics.107.085696] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins of the RAD52 epistasis group play an essential role in repair of some types of DNA damage and genetic recombination. In Schizosaccharomyces pombe, Rad22 (a Rad52 ortholog) has been shown to be as necessary for repair and recombination events during vegetative growth as its Saccharomyces cerevisiae counterpart. This finding contrasts with previous reports where, due to suppressor mutations in the fbh1 gene, rad22 mutants did not display a severe defect. We have analyzed the roles of Rad22 and Rti1, another Rad52 homolog, during meiotic recombination and meiosis in general. Both proteins play an important role in spore viability. During meiotic prophase I, they partially colocalize and partially localize to Rad51 foci and linear elements. Genetic analysis showed that meiotic interchromosomal crossover and conversion events were unexpectedly not much affected by deletion of either or both genes. A strong decrease of intrachromosomal recombination assayed by a gene duplication construct was observed. Therefore, we propose that the most important function of Rad22 and Rti1 in S. pombe meiosis is repair of double-strand breaks with involvement of the sister chromatids. In addition, a novel mating-type-related repair function of Rad22 specific to meiosis and spore germination is described.
Collapse
|
27
|
Cromie G, Smith GR. Meiotic Recombination in Schizosaccharomyces pombe: A Paradigm for Genetic and Molecular Analysis. GENOME DYNAMICS AND STABILITY 2008; 3:195. [PMID: 20157622 DOI: 10.1007/7050_2007_025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The fission yeast Schizosaccharomyces pombe is especially well-suited for both genetic and biochemical analysis of meiotic recombination. Recent studies have revealed ~50 gene products and two DNA intermediates central to recombination, which we place into a pathway from parental to recombinant DNA. We divide recombination into three stages - chromosome alignment accompanying nuclear "horsetail" movement, formation of DNA breaks, and repair of those breaks - and we discuss the roles of the identified gene products and DNA intermediates in these stages. Although some aspects of recombination are similar to those in the distantly related budding yeast Saccharomyces cerevisiae, other aspects are distinctly different. In particular, many proteins required for recombination in one species have no clear ortholog in the other, and the roles of identified orthologs in regulating recombination often differ. Furthermore, in S. pombe the dominant joint DNA molecule intermediates contain single Holliday junctions, and intersister joint molecules are more frequent than interhomolog types, whereas in S. cerevisiae interhomolog double Holliday junctions predominate. We speculate that meiotic recombination in other organisms shares features of each of these yeasts.
Collapse
Affiliation(s)
- Gareth Cromie
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, U. S. A
| | | |
Collapse
|
28
|
Vignard J, Siwiec T, Chelysheva L, Vrielynck N, Gonord F, Armstrong SJ, Schlögelhofer P, Mercier R. The interplay of RecA-related proteins and the MND1-HOP2 complex during meiosis in Arabidopsis thaliana. PLoS Genet 2007; 3:1894-906. [PMID: 17937504 PMCID: PMC2014788 DOI: 10.1371/journal.pgen.0030176] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 08/29/2007] [Indexed: 12/23/2022] Open
Abstract
During meiosis, homologous chromosomes recognize each other, align, and exchange genetic information. This process requires the action of RecA-related proteins Rad51 and Dmc1 to catalyze DNA strand exchanges. The Mnd1-Hop2 complex has been shown to assist in Dmc1-dependent processes. Furthermore, higher eukaryotes possess additional RecA-related proteins, like XRCC3, which are involved in meiotic recombination. However, little is known about the functional interplay between these proteins during meiosis. We investigated the functional relationship between AtMND1, AtDMC1, AtRAD51, and AtXRCC3 during meiosis in Arabidopsis thaliana. We demonstrate the localization of AtMND1 to meiotic chromosomes, even in the absence of recombination, and show that AtMND1 loading depends exclusively on AHP2, the Arabidopsis Hop2 homolog. We provide evidence of genetic interaction between AtMND1, AtDMC1, AtRAD51, and AtXRCC3. In vitro assays suggest that this functional link is due to direct interaction of the AtMND1-AHP2 complex with AtRAD51 and AtDMC1. We show that AtDMC1 foci accumulate in the Atmnd1 mutant, but are reduced in number in Atrad51 and Atxrcc3 mutants. This study provides the first insights into the functional differences of AtRAD51 and AtXRCC3 during meiosis, demonstrating that AtXRCC3 is dispensable for AtDMC1 focus formation in an Atmnd1 mutant background, whereas AtRAD51 is not. These results clarify the functional interactions between key players in the strand exchange processes during meiotic recombination. Furthermore, they highlight a direct interaction between MND1 and RAD51 and show a functional divergence between RAD51 and XRCC3.
Collapse
Affiliation(s)
- Julien Vignard
- Station de Génétique et d'Amélioration des Plantes, INRA, Versailles, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Li J, Harper LC, Golubovskaya I, Wang CR, Weber D, Meeley RB, McElver J, Bowen B, Cande WZ, Schnable PS. Functional analysis of maize RAD51 in meiosis and double-strand break repair. Genetics 2007; 176:1469-82. [PMID: 17507687 PMCID: PMC1931559 DOI: 10.1534/genetics.106.062604] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae, Rad51p plays a central role in homologous recombination and the repair of double-strand breaks (DSBs). Double mutants of the two Zea mays L. (maize) rad51 homologs are viable and develop well under normal conditions, but are male sterile and have substantially reduced seed set. Light microscopic analyses of male meiosis in these plants reveal reduced homologous pairing, synapsis of nonhomologous chromosomes, reduced bivalents at diakinesis, numerous chromosome breaks at anaphase I, and that >33% of quartets carry cells that either lack an organized nucleolus or have two nucleoli. This indicates that RAD51 is required for efficient chromosome pairing and its absence results in nonhomologous pairing and synapsis. These phenotypes differ from those of an Arabidopsis rad51 mutant that exhibits completely disrupted chromosome pairing and synapsis during meiosis. Unexpectedly, surviving female gametes produced by maize rad51 double mutants are euploid and exhibit near-normal rates of meiotic crossovers. The finding that maize rad51 double mutant embryos are extremely susceptible to radiation-induced DSBs demonstrates a conserved role for RAD51 in the repair of mitotic DSBs in plants, vertebrates, and yeast.
Collapse
Affiliation(s)
- Jin Li
- Department of Genetics, Development and Cell Biology, Iowa State Unversity, Ames, Iowa 50011, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Raji H, Hartsuiker E. Double-strand break repair and homologous recombination in Schizosaccharomyces pombe. Yeast 2007; 23:963-76. [PMID: 17072889 DOI: 10.1002/yea.1414] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The study of double-strand break repair and homologous recombination in Saccharomyces cerevisiae meiosis has provided important information about the mechanisms involved. However, it has become clear that the resulting recombination models are only partially applicable to repair in mitotic cells, where crossover formation is suppressed. In recent years our understanding of double-strand break repair and homologous recombination in Schizosaccharomyces pombe has increased significantly, and the identification of novel pathways and genes with homologues in higher eukaryotes has increased its value as a model organism for double-strand break repair. In this review we will focus on the involvement of homologous recombination and repair in different aspects of genome stability in Sz. pombe meiosis, replication and telomere maintenance. We will also discuss anti-recombination pathways (that suppress crossover formation), non-homologous end-joining, single-strand annealing and factors that influence the choice and prevalence of the different repair pathways in Sz. pombe.
Collapse
Affiliation(s)
- Hayatu Raji
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | | |
Collapse
|
31
|
Sultanova AN, Salakhova AF, Bashkirov VI, Khasanov FK. Cell phenotypes of a mutant in the gene encoding a Rad51 paralog in fission yeast. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Sakem B, Kohli J. Theend1 gene ofSchizosaccharomyces pombe coding for a DNase is identical with thepnu1 gene coding for an RNase. Yeast 2007; 24:11-6. [PMID: 17192844 DOI: 10.1002/yea.1427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The DNA nuclease activity encoded by the end1 gene, and its inactivation by mutation, was described in connection with the characterization of DNA topoisomerases in the fission yeast Schizosaccharomyces pombe (Uemura and Yanagida, 1984). Subsequently, end1 mutant strains were used for the preparation of cell extracts for the study of enzymes and intermediates involved in DNA metabolism. The molecular identification of the end1 gene and its identity with the pnu1 gene is presented. The end1-458 mutation alters glycine to glutamate in the conserved motif TGPYLP. The pnu1 gene codes for an RNase that is induced by nitrogen starvation (Nakashima et al., 2002b). Thus, the End1/Pnu1 protein, like related mitochondrial proteins in other organisms, is an example of a sugar-non-specific nuclease. The analysis of strains carrying a pnu1 deletion revealed no defects in meiotic recombination and spore viability.
Collapse
Affiliation(s)
- Benjamin Sakem
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | |
Collapse
|
33
|
Gregan J, Rabitsch PK, Sakem B, Csutak O, Latypov V, Lehmann E, Kohli J, Nasmyth K. Novel genes required for meiotic chromosome segregation are identified by a high-throughput knockout screen in fission yeast. Curr Biol 2006; 15:1663-9. [PMID: 16169489 DOI: 10.1016/j.cub.2005.07.059] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 07/16/2005] [Accepted: 07/19/2005] [Indexed: 11/20/2022]
Abstract
Two rounds of chromosome segregation after only a single round of DNA replication enable the production of haploid gametes from diploid precursors during meiosis. To identify genes involved in meiotic chromosome segregation, we developed an efficient strategy to knock out genes in the fission yeast on a large scale. We used this technique to delete 180 functionally uncharacterized genes whose expression is upregulated during meiosis. Deletion of two genes, sgo1 and mde2, caused massive chromosome missegregation. sgo1 is required for retention of centromeric sister-chromatid cohesion after anaphase I. We show here that mde2 is required for formation of the double-strand breaks necessary for meiotic recombination.
Collapse
Affiliation(s)
- Juraj Gregan
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Mazheika IS, Kolomiets OL, Dyakov YT, Bogdanov YF. Abnormal meiosis in bisporic strains of white button mushroom Agaricus bisporus (Lange) imbach. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406030070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Malapeira J, Moldón A, Hidalgo E, Smith GR, Nurse P, Ayté J. A meiosis-specific cyclin regulated by splicing is required for proper progression through meiosis. Mol Cell Biol 2005; 25:6330-7. [PMID: 16024772 PMCID: PMC1190344 DOI: 10.1128/mcb.25.15.6330-6337.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The meiotic cell cycle is modified from the mitotic cell cycle by having a premeiotic S phase which leads to high levels of recombination, a reductional pattern of chromosome segregation at the first division, and a second division with no intervening DNA synthesis. Cyclin-dependent kinases are essential for progression through the meiotic cell cycle, as for the mitotic cycle. Here we show that a fission yeast cyclin, Rem1, is present only during meiosis. Cells lacking Rem1 have impaired meiotic recombination, and Rem1 is required for premeiotic DNA synthesis when Cig2 is not present. rem1 expression is regulated at the level of both transcription and splicing, with Mei4 as a positive and Cig2 a negative factor of rem1 splicing. This regulation ensures the timely appearance of the different cyclins during meiosis, which is required for the proper progression through the meiotic cell cycle. We propose that the meiosis-specific B-type cyclin Rem1 has a central role in bringing about progression through meiosis.
Collapse
Affiliation(s)
- Jordi Malapeira
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
36
|
Ellermeier C, Smith GR. Cohesins are required for meiotic DNA breakage and recombination in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 2005; 102:10952-7. [PMID: 16043696 PMCID: PMC1182449 DOI: 10.1073/pnas.0504805102] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In preparation for the unique segregation of homologs at the first meiotic division, chromosomes undergo dramatic changes. The meiosis-specific sister chromatid cohesins Rec8 and Rec11 of Schizosaccharomyces pombe are recruited around the time of premeiotic replication, and Rec10, a component of meiosis-specific linear elements, is subsequently added. Here we report that Rec10 is essential for meiosis-specific DNA breakage by Rec12 (Spo11 homolog) and for meiotic recombination. DNA breakage and recombination also depend on the Rec8 and Rec11 cohesins, strictly in some genomic intervals but less so in others. Thus, in addition to their previously recognized role in meiotic chromosome segregation, cohesins have a direct role, as do linear element components, in meiotic recombination by enabling double-strand DNA break formation by Rec12. Our results reveal a pathway, whose regulation is significantly different from that in the distantly related yeast Saccharomyces cerevisiae, for meiosis-specific chromosome differentiation and high-frequency recombination.
Collapse
Affiliation(s)
- Chad Ellermeier
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A1-162, Seattle, WA 98109, USA
| | | |
Collapse
|
37
|
Young JA, Hyppa RW, Smith GR. Conserved and nonconserved proteins for meiotic DNA breakage and repair in yeasts. Genetics 2005; 167:593-605. [PMID: 15238514 PMCID: PMC1470912 DOI: 10.1534/genetics.103.023762] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During meiosis DNA double-strand breaks initiate recombination in the distantly related budding and fission yeasts and perhaps in most eukaryotes. Repair of broken meiotic DNA is essential for formation of viable gametes. We report here distinct but overlapping sets of proteins in these yeasts required for formation and repair of double-strand breaks. Meiotic DNA breakage in Schizosaccharomyces pombe did not require Rad50 or Rad32, although the homologs Rad50 and Mre11 are required in Saccharomyces cerevisiae; these proteins are required for meiotic DNA break repair in both yeasts. DNA breakage required the S. pombe midmeiosis transcription factor Mei4, but the structurally unrelated midmeiosis transcription factor Ndt80 is not required for breakage in S. cerevisiae. Rhp51, Swi5, and Rad22 + Rti1 were required for full levels of DNA repair in S. pombe, as are the related S. cerevisiae proteins Rad51, Sae3, and Rad52. Dmc1 was not required for repair in S. pombe, but its homolog Dmc1 is required in the well-studied strain SK1 of S. cerevisiae. Additional proteins required in one yeast have no obvious homologs in the other yeast. The occurrence of conserved and nonconserved proteins indicates potential diversity in the mechanism of meiotic recombination and divergence of the machinery during the evolution of eukaryotes.
Collapse
Affiliation(s)
- Jennifer A Young
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
38
|
Baur M, Hartsuiker E, Lehmann E, Ludin K, Munz P, Kohli J. The meiotic recombination hot spot ura4A in Schizosaccharomyces pombe. Genetics 2005; 169:551-61. [PMID: 15489526 PMCID: PMC1449133 DOI: 10.1534/genetics.104.033647] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 10/18/2004] [Indexed: 11/18/2022] Open
Abstract
The meiotic recombination hot spot ura4A (formerly ura4-aim) of Schizosaccharomyces pombe was observed at the insertion of the ura4+ gene 15 kb centromere-proximal to ade6 on chromosome III. Crosses heterozygous for the insertion showed frequent conversion at the heterology with preferential loss of the insertion. This report concerns the characterization of 12 spontaneous ura4A mutants. A gradient of conversion ranging from 18% at the 5' end to 6% at the 3' end was detected. A novel phenomenon also was discovered: a mating-type-related bias of conversion. The allele entering with the h+ parent acts preferentially as the acceptor for conversion (ratio of 3:2). Tetrad analysis of two-factor crosses showed that heteroduplex DNA is predominantly asymmetrical, enters from the 5' end, and more often than not covers the entire gene. Restoration repair of markers at the 5' end was inferred. Random spore analyses of two-factor crosses and normalization of prototroph-recombinant frequencies to physical distance led to the demonstration of map expansion: Crosses involving distant markers yielded recombinant frequencies higher than the sum of the frequencies measured in the subintervals. Finally, marker effects on recombination were defined for two of the ura4A mutations.
Collapse
Affiliation(s)
- Michel Baur
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
39
|
Ellermeier C, Schmidt H, Smith GR. Swi5 acts in meiotic DNA joint molecule formation in Schizosaccharomyces pombe. Genetics 2004; 168:1891-8. [PMID: 15466419 PMCID: PMC1448720 DOI: 10.1534/genetics.104.034280] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previously isolated Schizosaccharomyces pombe swi5 mutants are defective in mitotic mating-type switching and in repair of meiotic recombination-related DNA double-strand breaks. Here, we identify the swi5 gene, which encodes an 85-amino-acid polypeptide, similar to Sae3 of Saccharomyces cerevisiae, with an N-terminal predicted coiled-coil domain. A swi5 complete deletion mutant had normal mitotic growth rate but was hypersensitive to DNA-damaging agents and defective in mating-type switching. In meiosis, recombinant frequencies were reduced by a factor of approximately 10. The swi5 deletion strongly reduced the viable spore yields of mutants lacking Rhp55 or Rhp57, proteins thought to aid joint molecule formation. Furthermore, the swi5 deletion strongly suppressed the low viable spore yield of mutants lacking Mus81*Eme1, which resolves joint molecules such as Holliday junctions. These and previous results indicate that the small Swi5 polypeptide acts in a branched pathway of joint molecule formation to repair meiotic DNA breaks.
Collapse
Affiliation(s)
- Chad Ellermeier
- Fred Hutchinson Research Cancer Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
40
|
Grishchuk AL, Kraehenbuehl R, Molnar M, Fleck O, Kohli J. Genetic and cytological characterization of the RecA-homologous proteins Rad51 and Dmc1 of Schizosaccharomyces pombe. Curr Genet 2004; 44:317-28. [PMID: 12955454 DOI: 10.1007/s00294-003-0439-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Revised: 07/27/2003] [Accepted: 07/29/2003] [Indexed: 10/26/2022]
Abstract
The Schizosaccharomyces pombe rad51(+) and dmc1(+) genes code for homologues of the Escherichia coli recombination protein RecA. Deletion of rad51(+) causes slow growth, retardation of cell division and a decrease in viability. rad51Delta cells have a defect in mating-type switching. The DNA modification at the mating-type locus required for mating-type switching contributes to slow growth in the rad51 mutant. Cell mating is reduced in crosses homozygous for rad51Delta. Ectopic expression of the dmc1(+) gene allowed us to demonstrate that the reduction in meiotic recombination in dmc1 mutants is not caused by a disturbance of rad24 expression from the dmc1- rad24 bicistronic RNA. We describe the functional defects of terminally epitope-tagged Dmc1 and Rad51 and discuss it in terms of protein interaction. Presumptive Rad51 and Dmc1 foci were detected on spreads of meiotic chromatin.
Collapse
Affiliation(s)
- Alexandra L Grishchuk
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|