1
|
Importins: Diverse roles in male fertility. Semin Cell Dev Biol 2021; 121:82-98. [PMID: 34426066 DOI: 10.1016/j.semcdb.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
Regulated nucleocytoplasmic transport is central to the changes in gene expression that underpin cellular development and homeostasis, including in the testis, and proteins in the importin family are the predominant facilitators of cargo transport through the nuclear envelope. Reports documenting cell-specific profiles of importin transcripts and proteins during spermatogenesis led us to hypothesize that importins facilitate developmental switches in the testis. More recently, importins have been shown to serve additional functions, both inside and outside the nucleus; these include acting as subcellular scaffolding, mediating cellular stress responses, and controlling transcription. This paper seeks to provide an overview and update on the functions of importin proteins, with a focus on testis development and spermatogenesis. We present an extended survey of importins by combining published single cell RNAseq data with immunohistochemistry on developing and adult mouse testes. This approach reinforces and broadens knowledge of importins in biological processes, including in spermatogenesis and during testis development, revealing additional avenues for impactful investigations.
Collapse
|
2
|
Park JH, Chung CG, Park SS, Lee D, Kim KM, Jeong Y, Kim ES, Cho JH, Jeon YM, Shen CKJ, Kim HJ, Hwang D, Lee SB. Cytosolic calcium regulates cytoplasmic accumulation of TDP-43 through Calpain-A and Importin α3. eLife 2020; 9:60132. [PMID: 33305734 PMCID: PMC7748415 DOI: 10.7554/elife.60132] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Cytoplasmic accumulation of TDP-43 in motor neurons is the most prominent pathological feature in amyotrophic lateral sclerosis (ALS). A feedback cycle between nucleocytoplasmic transport (NCT) defect and TDP-43 aggregation was shown to contribute to accumulation of TDP-43 in the cytoplasm. However, little is known about cellular factors that can control the activity of NCT, thereby affecting TDP-43 accumulation in the cytoplasm. Here, we identified via FRAP and optogenetics cytosolic calcium as a key cellular factor controlling NCT of TDP-43. Dynamic and reversible changes in TDP-43 localization were observed in Drosophila sensory neurons during development. Genetic and immunohistochemical analyses identified the cytosolic calcium-Calpain-A-Importin α3 pathway as a regulatory mechanism underlying NCT of TDP-43. In C9orf72 ALS fly models, upregulation of the pathway activity by increasing cytosolic calcium reduced cytoplasmic accumulation of TDP-43 and mitigated behavioral defects. Together, these results suggest the calcium-Calpain-A-Importin α3 pathway as a potential therapeutic target of ALS.
Collapse
Affiliation(s)
- Jeong Hyang Park
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Sung Soon Park
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Davin Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Kyung Min Kim
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeonjin Jeong
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Eun Seon Kim
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Dementia research group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Jae Ho Cho
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Yu-Mi Jeon
- Dementia research group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - C-K James Shen
- Taipei Medical University/Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hyung-Jun Kim
- Dementia research group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea.,Dementia research group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| |
Collapse
|
3
|
Yashiro R, Murota Y, Nishida KM, Yamashiro H, Fujii K, Ogai A, Yamanaka S, Negishi L, Siomi H, Siomi MC. Piwi Nuclear Localization and Its Regulatory Mechanism in Drosophila Ovarian Somatic Cells. Cell Rep 2018; 23:3647-3657. [DOI: 10.1016/j.celrep.2018.05.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/25/2018] [Accepted: 05/16/2018] [Indexed: 10/28/2022] Open
|
4
|
Sachan N, Mishra AK, Mutsuddi M, Mukherjee A. The Drosophila importin-α3 is required for nuclear import of notch in vivo and it displays synergistic effects with notch receptor on cell proliferation. PLoS One 2013; 8:e68247. [PMID: 23840889 PMCID: PMC3698139 DOI: 10.1371/journal.pone.0068247] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 05/27/2013] [Indexed: 01/02/2023] Open
Abstract
The Notch signaling pathway controls diverse cell-fate specification events throughout development. The versatility of this pathway to influence different aspects of development comes from its multiple levels of regulation. Upon ligand-induced Notch activation, the Notch intracellular domain (Notch-ICD) is released from the membrane and translocates to the nucleus, where it transduces Notch signals by regulating the transcription of downstream target genes. But the exact mechanism of translocation of Notch-ICD into the nucleus is not clear. Here, we implicate Importin-α3 (also known as karyopherin-α3) in the nuclear translocation of Notch-ICD in Drosophila. Our present analyses reveal that Importin-α3 can directly bind to Notch-ICD and loss of Importin-α3 function results in cytoplasmic accumulation of the Notch receptor. Using MARCM (Mosaic Analysis with a Repressible Cell Marker) technique, we demonstrate that Importin-α3 is required for nuclear localization of Notch-ICD. These results reveal that the nuclear transport of Notch-ICD is mediated by the canonical Importin-α3/Importin-β transport pathway. In addition, co-expression of both Notch-ICD and Importin-α3 displays synergistic effects on cell proliferation. Taken together, our results suggest that Importin-α3 mediated nuclear import of Notch-ICD may play important role in regulation of Notch signaling.
Collapse
Affiliation(s)
- Nalani Sachan
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, India
| | - Abhinava K. Mishra
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, India
- * E-mail:
| |
Collapse
|
5
|
R7 photoreceptor axon growth is temporally controlled by the transcription factor Ttk69, which inhibits growth in part by promoting transforming growth factor-β/activin signaling. J Neurosci 2013; 33:1509-20. [PMID: 23345225 DOI: 10.1523/jneurosci.2023-12.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Work on axon growth has classically focused on understanding how extrinsic cues control growth cone dynamics independent of the cell body. However, more recently, neuron-intrinsic transcription factors have been shown to influence both normal and regenerative axon growth, suggesting that understanding their mechanism of action is of clinical importance. We are studying axon targeting in the Drosophila visual system and here show that the BTB/POZ zinc-finger transcription factor Tramtrack69 (Ttk69) plays an instructive role in inhibiting the growth of R7 photoreceptor axon terminals. Although ttk69 mutant R7 axons project to the correct medullar target layer, M6, their terminals fail to remain retinotopically restricted and instead grow laterally within M6. This overgrowth is not caused by an inability to be repelled by neighboring R7 axons or by an inability to recognize and initiate synapse formation with postsynaptic targets. The overgrowth is progressive and occurs even if contact between ttk69 mutant R7 axons and their normal target layer is disrupted. Ttk69 is first expressed in wild-type R7s after their axons have reached the medulla; ttk69 mutant R7 axon terminal overgrowth begins shortly after this time point. We find that expressing Ttk69 prematurely in R7s collapses their growth cones and disrupts axon extension, indicating that Ttk69 plays an instructive role in this process. A TGF-β/Activin pathway was shown previously to inhibit R7 axon terminal growth. We find that Ttk69 is required for normal activation of this pathway but that Ttk69 likely also inhibits R7 axon growth by a TGF-β/Activin-independent mechanism.
Collapse
|
6
|
Belacortu Y, Weiss R, Kadener S, Paricio N. Transcriptional activity and nuclear localization of Cabut, the Drosophila ortholog of vertebrate TGF-β-inducible early-response gene (TIEG) proteins. PLoS One 2012; 7:e32004. [PMID: 22359651 PMCID: PMC3281117 DOI: 10.1371/journal.pone.0032004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/17/2012] [Indexed: 01/26/2023] Open
Abstract
Background Cabut (Cbt) is a C2H2-class zinc finger transcription factor involved in embryonic dorsal closure, epithelial regeneration and other developmental processes in Drosophila melanogaster. Cbt orthologs have been identified in other Drosophila species and insects as well as in vertebrates. Indeed, Cbt is the Drosophila ortholog of the group of vertebrate proteins encoded by the TGF-ß-inducible early-response genes (TIEGs), which belong to Sp1-like/Krüppel-like family of transcription factors. Several functional domains involved in transcriptional control and subcellular localization have been identified in the vertebrate TIEGs. However, little is known of whether these domains and functions are also conserved in the Cbt protein. Methodology/Principal Findings To determine the transcriptional regulatory activity of the Drosophila Cbt protein, we performed Gal4-based luciferase assays in S2 cells and showed that Cbt is a transcriptional repressor and able to regulate its own expression. Truncated forms of Cbt were then generated to identify its functional domains. This analysis revealed a sequence similar to the mSin3A-interacting repressor domain found in vertebrate TIEGs, although located in a different part of the Cbt protein. Using β-Galactosidase and eGFP fusion proteins, we also showed that Cbt contains the bipartite nuclear localization signal (NLS) previously identified in TIEG proteins, although it is non-functional in insect cells. Instead, a monopartite NLS, located at the amino terminus of the protein and conserved across insects, is functional in Drosophila S2 and Spodoptera exigua Sec301 cells. Last but not least, genetic interaction and immunohistochemical assays suggested that Cbt nuclear import is mediated by Importin-α2. Conclusions/Significance Our results constitute the first characterization of the molecular mechanisms of Cbt-mediated transcriptional control as well as of Cbt nuclear import, and demonstrate the existence of similarities and differences in both aspects of Cbt function between the insect and the vertebrate TIEG proteins.
Collapse
Affiliation(s)
- Yaiza Belacortu
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjasot, Spain
| | - Ron Weiss
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem, Israel
| | - Sebastian Kadener
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem, Israel
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Burjasot, Spain
- * E-mail:
| |
Collapse
|
7
|
Miyamoto Y, Boag PR, Hime GR, Loveland KL. Regulated nucleocytoplasmic transport during gametogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:616-30. [PMID: 22326858 DOI: 10.1016/j.bbagrm.2012.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 12/13/2022]
Abstract
Gametogenesis is the process by which sperm or ova are produced in the gonads. It is governed by a tightly controlled series of gene expression events, with some common and others distinct for males and females. Nucleocytoplasmic transport is of central importance to the fidelity of gene regulation that is required to achieve the precisely regulated germ cell differentiation essential for fertility. In this review we discuss the physiological importance for gamete formation of the molecules involved in classical nucleocytoplasmic protein transport, including importins/karyopherins, Ran and nucleoporins. To address what functions/factors are conserved or specialized for these developmental processes between species, we compare knowledge from mice, flies and worms. The present analysis provides evidence of the necessity for and specificity of each nuclear transport factor and for nucleoporins during germ cell differentiation. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Yoichi Miyamoto
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
8
|
Specific Cooperation Between Imp-α2 and Imp-β/Ketel in Spindle Assembly During Drosophila Early Nuclear Divisions. G3-GENES GENOMES GENETICS 2012; 2:1-14. [PMID: 22384376 PMCID: PMC3276186 DOI: 10.1534/g3.111.001073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 10/14/2011] [Indexed: 12/22/2022]
Abstract
The multifunctional factors Imp-α and Imp-β are involved in nuclear protein import, mitotic spindle dynamics, and nuclear membrane formation. Furthermore, each of the three members of the Imp-α family exerts distinct tasks during development. In Drosophila melanogaster, the imp-α2 gene is critical during oogenesis for ring canal assembly; specific mutations, which allow oogenesis to proceed normally, were found to block early embryonic mitosis. Here, we show that imp-α2 and imp-β genetically interact during early embryonic development, and we characterize the pattern of defects affecting mitosis in embryos laid by heterozygous imp-α2(D14) and imp-β(KetRE34) females. Embryonic development is arrested in these embryos but is unaffected in combinations between imp-β(KetRE34) and null mutations in imp-α1 or imp-α3. Furthermore, the imp-α2(D14)/imp-β(KetRE34) interaction could only be rescued by an imp-α2 transgene, albeit not imp-α1 or imp-α3, showing the exclusive imp-α2 function with imp-β. Use of transgenes carrying modifications in the major Imp-α2 domains showed the critical requirement of the nuclear localization signal binding (NLSB) site in this process. In the mutant embryos, we found metaphase-arrested mitoses made of enlarged spindles, suggesting an unrestrained activity of factors promoting spindle assembly. In accordance with this, we found that Imp-β(KetRE34) and Imp-β(KetD) bind a high level of RanGTP/GDP, and a deletion decreasing RanGTP level suppresses the imp-β(KetRE34) phenotype. These data suggest that a fine balance among Imp-α2, Imp-β, RanGTP, and the NLS cargos is critical for mitotic progression during early embryonic development.
Collapse
|
9
|
Phadnis N, Hsieh E, Malik HS. Birth, death, and replacement of karyopherins in Drosophila. Mol Biol Evol 2011; 29:1429-40. [PMID: 22160828 DOI: 10.1093/molbev/msr306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nucleocytoplasmic transport is a broadly conserved process across eukaryotes. Despite its essential function and conserved mechanism, components of the nuclear transport apparatus have been implicated in genetic conflicts in Drosophila, especially in the male germ line. The best understood case is represented by a truncated RanGAP gene duplication that is part of the segregation distorter system in Drosophila melanogaster. Consistent with the hypothesis that the nuclear transport pathway is at the heart of mediating genetic conflicts, both nucleoporins and directionality imposing components of nuclear transport have previously been shown to evolve under positive selection. Here, we present a comprehensive phylogenomic analysis of importins (karyopherins) in Drosophila evolution. Importins are adaptor molecules that physically mediate the transport of cargo molecules and comprise the third component of the nuclear transport apparatus. We find that importins have been repeatedly gained and lost throughout various stages of Drosophila evolution, including two intriguing examples of an apparently coincident loss and gain of nonorthologous and noncanonical importin-α. Although there are a few signatures of episodic positive selection, genetic innovation in importin evolution is more evident in patterns of recurrent gene birth and loss specifically for function in Drosophila testes, which is consistent with their role in supporting host genomes defense against segregation distortion.
Collapse
Affiliation(s)
- Nitin Phadnis
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | |
Collapse
|
10
|
Hall MN, Griffin CA, Simionescu A, Corbett AH, Pavlath GK. Distinct roles for classical nuclear import receptors in the growth of multinucleated muscle cells. Dev Biol 2011; 357:248-58. [PMID: 21741962 DOI: 10.1016/j.ydbio.2011.06.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 05/25/2011] [Accepted: 06/21/2011] [Indexed: 01/06/2023]
Abstract
Proper muscle function is dependent on spatial and temporal control of gene expression in myofibers. Myofibers are multinucleated cells that are formed, repaired and maintained by the process of myogenesis in which progenitor myoblasts proliferate, differentiate and fuse. Gene expression is dependent upon proteins that require facilitated nuclear import, however little is known about the regulation of nucleocytoplasmic transport during the formation of myofibers. We analyzed the role of karyopherin alpha (KPNA), a key classical nuclear import receptor, during myogenesis. We established that five karyopherin alpha paralogs are expressed by primary mouse myoblasts in vitro and that their steady-state levels increase in multinucleated myotubes, suggesting a global increase in demand for classical nuclear import during myogenesis. We used siRNA-mediated knockdown to identify paralog-specific roles for KPNA1 and KPNA2 during myogenesis. KPNA1 knockdown increased myoblast proliferation, whereas KPNA2 knockdown decreased proliferation. In contrast, no proliferation defect was observed with KPNA4 knockdown. Only knockdown of KPNA2 decreased myotube growth. These results identify distinct pathways involved in myoblast proliferation and myotube growth that rely on specific nuclear import receptors suggesting that regulation of classical nuclear import pathways likely plays a critical role in controlling gene expression in skeletal muscle.
Collapse
Affiliation(s)
- Monica N Hall
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
11
|
Importin α7 is essential for zygotic genome activation and early mouse development. PLoS One 2011; 6:e18310. [PMID: 21479251 PMCID: PMC3066239 DOI: 10.1371/journal.pone.0018310] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 03/03/2011] [Indexed: 12/27/2022] Open
Abstract
Importin α is involved in the nuclear import of proteins. It also contributes to spindle assembly and nuclear membrane formation, however, the underlying mechanisms are poorly understood. Here, we studied the function of importin α7 by gene targeting in mice and show that it is essential for early embryonic development. Embryos lacking importin α7 display a reduced ability for the first cleavage and arrest completely at the two-cell stage. We show that the zygotic genome activation is severely disturbed in these embryos. Our findings indicate that importin α7 is a new member of the small group of maternal effect genes.
Collapse
|
12
|
Moriyama T, Nagai M, Oka M, Ikawa M, Okabe M, Yoneda Y. Targeted disruption of one of the importin α family members leads to female functional incompetence in delivery. FEBS J 2011; 278:1561-72. [PMID: 21371262 DOI: 10.1111/j.1742-4658.2011.08079.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Importin α mediates the nuclear import of proteins through nuclear pore complexes in eukaryotic cells, and is common to all eukaryotes. Previous reports identified at least six importin α family genes in mice. Although these isoforms show differential binding to various import cargoes in vitro, the in vivo physiological roles of these mammalian importin α isoforms remain unknown. Here, we generated and examined importin α5 knockout (impα5(-/-)) mice. These mice developed normally, and showed no gross histological abnormalities in most major organs. However, the ovary and uterus of impα5(-/-) female mice exhibited hypoplasia. Furthermore, we found that impα5(-/-) female mice had a 50% decrease in serum progesterone levels and a 57% decrease in progesterone receptor mRNA levels in the ovary. Additionally, impα5(-/-) uteruses that were treated with exogenous gonadotropins displayed hypertrophy, similarly to progesterone receptor-deficient mice. Although these mutant female mice could become pregnant, the total number of pups was significantly decreased, and some of the pups were dead at birth. These results suggest that importin α5 has essential roles in the mammalian female reproductive organs.
Collapse
Affiliation(s)
- Tetsuji Moriyama
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Hall MN, Corbett AH, Pavlath GK. Regulation of nucleocytoplasmic transport in skeletal muscle. Curr Top Dev Biol 2011; 96:273-302. [PMID: 21621074 DOI: 10.1016/b978-0-12-385940-2.00010-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proper skeletal muscle function is dependent on spatial and temporal control of gene expression in multinucleated myofibers. In addition, satellite cells, which are tissue-specific stem cells that contribute critically to repair and maintenance of skeletal muscle, are also required for normal muscle physiology. Gene expression in both myofibers and satellite cells is dependent upon nuclear proteins that require facilitated nuclear transport. A unique challenge for myofibers is controlling the transcriptional activity of hundreds of nuclei in a common cytoplasm yet achieving nuclear selectivity in transcription at specific locations such as neuromuscular synapses and myotendinous junctions. Nucleocytoplasmic transport of macromolecular cargoes is regulated by a complex interplay among various components of the nuclear transport machinery, namely nuclear pore complexes, nuclear envelope proteins, and various soluble transport receptors. The focus of this review is to highlight what is known about the nuclear transport machinery and its regulation in skeletal muscle and to consider the unique challenges that multinucleated muscle cells as well as satellite cells encounter in regulating nucleocytoplasmic transport during cell differentiation and tissue adaptation. Understanding how regulated nucleocytoplasmic transport controls gene expression in skeletal muscle may lead to further insights into the mechanisms contributing to muscle growth and maintenance throughout the lifespan of an individual.
Collapse
Affiliation(s)
- Monica N Hall
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
14
|
Drosophila Importin-α2 is involved in synapse, axon and muscle development. PLoS One 2010; 5:e15223. [PMID: 21151903 PMCID: PMC2997784 DOI: 10.1371/journal.pone.0015223] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/30/2010] [Indexed: 01/22/2023] Open
Abstract
Nuclear import is required for communication between the cytoplasm and the nucleus and to enact lasting changes in gene transcription following stimuli. Binding to an Importin-α molecule in the cytoplasm is often required to mediate nuclear entry of a signaling protein. As multiple isoforms of Importin-α exist, some may be responsible for the entry of distinct cargoes rather than general nuclear import. Indeed, in neuronal systems, Importin-α isoforms can mediate very specific processes such as axonal tiling and communication of an injury signal. To study nuclear import during development, we examined the expression and function of Importin-α2 in Drosophila melanogaster. We found that Importin-α2 was expressed in the nervous system where it was required for normal active zone density at the NMJ and axonal commissure formation in the central nervous system. Other aspects of synaptic morphology at the NMJ and the localization of other synaptic markers appeared normal in importin-α2 mutants. Importin-α2 also functioned in development of the body wall musculature. Mutants in importin-α2 exhibited errors in muscle patterning and organization that could be alleviated by restoring muscle expression of Importin-α2. Thus, Importin-α2 is needed for some processes in the development of both the nervous system and the larval musculature.
Collapse
|
15
|
Kelley JB, Talley AM, Spencer A, Gioeli D, Paschal BM. Karyopherin alpha7 (KPNA7), a divergent member of the importin alpha family of nuclear import receptors. BMC Cell Biol 2010; 11:63. [PMID: 20701745 PMCID: PMC2929220 DOI: 10.1186/1471-2121-11-63] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 08/11/2010] [Indexed: 12/03/2022] Open
Abstract
Background Classical nuclear localization signal (NLS) dependent nuclear import is carried out by a heterodimer of importin α and importin β. NLS cargo is recognized by importin α, which is bound by importin β. Importin β mediates translocation of the complex through the central channel of the nuclear pore, and upon reaching the nucleus, RanGTP binding to importin β triggers disassembly of the complex. To date, six importin α family members, encoded by separate genes, have been described in humans. Results We sequenced and characterized a seventh member of the importin α family of transport factors, karyopherin α 7 (KPNA7), which is most closely related to KPNA2. The domain of KPNA7 that binds Importin β (IBB) is divergent, and shows stronger binding to importin β than the IBB domains from of other importin α family members. With regard to NLS recognition, KPNA7 binds to the retinoblastoma (RB) NLS to a similar degree as KPNA2, but it fails to bind the SV40-NLS and the human nucleoplasmin (NPM) NLS. KPNA7 shows a predominantly nuclear distribution under steady state conditions, which contrasts with KPNA2 which is primarily cytoplasmic. Conclusion KPNA7 is a novel importin α family member in humans that belongs to the importin α2 subfamily. KPNA7 shows different subcellular localization and NLS binding characteristics compared to other members of the importin α family. These properties suggest that KPNA7 could be specialized for interactions with select NLS-containing proteins, potentially impacting developmental regulation.
Collapse
Affiliation(s)
- Joshua B Kelley
- Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
16
|
The nuclear transport machinery as a regulator of Drosophila development. Semin Cell Dev Biol 2009; 20:582-9. [DOI: 10.1016/j.semcdb.2009.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/13/2009] [Accepted: 02/22/2009] [Indexed: 12/19/2022]
|
17
|
Adam SA. The nuclear transport machinery in Caenorhabditis elegans: A central role in morphogenesis. Semin Cell Dev Biol 2009; 20:576-81. [PMID: 19577735 DOI: 10.1016/j.semcdb.2009.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/05/2009] [Accepted: 03/18/2009] [Indexed: 12/27/2022]
Abstract
Our full understanding of the various roles for the nuclear transport machinery has come from a variety of model organisms including yeast, nematodes, fruit flies and vertebrates. Using the nematode Caenorhabditis elegans, it has been shown that the karyopherin family of nuclear transporters and the components of the Ran cycle have roles not only in nuclear protein transport, but also in mitotic spindle formation and regulation, and in nuclear envelope assembly. These studies have also demonstrated a role for nuclear transport factors in cellular differentiation and development, particularly for the formation of germ cells. This review highlights the small number of studies in C. elegans that have been critical to our understanding of this important cellular process.
Collapse
Affiliation(s)
- Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
18
|
Mason DA, Stage DE, Goldfarb DS. Evolution of the metazoan-specific importin alpha gene family. J Mol Evol 2009; 68:351-65. [PMID: 19308634 DOI: 10.1007/s00239-009-9215-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 02/11/2009] [Accepted: 02/16/2009] [Indexed: 01/09/2023]
Abstract
Importin alphas are import receptors for nuclear localization signal-containing proteins. Most animal importin alphas assort into alpha1, alpha2, and alpha3 groups. Studies in Drosophila melanogaster, Caenorhabditis elegans, and mouse suggest that the animal importin alpha gene family evolved from ancestral plant-like genes to serve paralog-specific roles in gametogenesis. To explore this hypothesis we extended the phylogenetic analysis of the importin alpha gene family to nonbilateral animals and investigated whether animal-like genes occur in premetazoan taxa. Maximum likelihood analysis suggests that animal-like importin alpha genes occur in the Choanoflaggelate Monosiga brevicollis and the amoebozoan Dictyostelium; however, both of these results are caused by long-branch attraction effects. The absence of animal-like alpha genes in premetazoan taxa is consistent with the hypothesis that they duplicated and then specialized to function in animal gametogenesis. The gene structures of the importin alphas provide insight into how the animal importin alpha gene family may have evolved from the most likely ancestral gene. Interestingly, animal alpha1s are more similar to plant and fungal alpha1-like sequences than they are to animal alpha2s or alpha3s. We show that animal alpha1 genes share most of their introns with plant alpha1-like genes, and alpha2s and alpha3s share many more intron positions with each other than with the alpha1s. Together, phylogenetics and gene structure analysis suggests a parsimonious path for the evolution of the mammalian importin alpha gene family from an ancestral alpha1-like progenitor. Finally, these results establish a rational basis for a unified nomenclature of the importin alpha gene family.
Collapse
Affiliation(s)
- D Adam Mason
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | |
Collapse
|
19
|
Mikhaylova LM, Nguyen K, Nurminsky DI. Analysis of the Drosophila melanogaster testes transcriptome reveals coordinate regulation of paralogous genes. Genetics 2008; 179:305-15. [PMID: 18493055 PMCID: PMC2390609 DOI: 10.1534/genetics.107.080267] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 02/25/2008] [Indexed: 01/29/2023] Open
Abstract
Gene duplications have been broadly implicated in the generation of testis-specific genes. To perform a comprehensive analysis of paralogous testis-biased genes, we characterized the testes transcriptome of Drosophila melanogaster by comparing gene expression in testes vs. ovaries, heads, and gonadectomized males. A number of the identified 399 testis-biased genes code for the known components of mature sperm. Among the detected 69 genes downregulated in testes, a large fraction is required for viability. By analyzing paralogs of testis-biased genes, we identified "co-regulated" paralogous pairs in which both genes are testis biased, "anti-regulated" pairs in which one paralog is testis biased and the other downregulated in testes, and "neutral" pairs in which one paralog is testis biased and the other constitutively expressed. The numbers of identified co-regulated and anti-regulated pairs were higher than expected by chance. Testis-biased genes included in these pairs show decreased frequency of lethal mutations, suggesting their specific role in male reproduction. These genes also show exceptionally high interspecific variability of expression in comparison between D. melanogaster and the closely related D. simulans. Further, interspecific changes in testis bias of expression are generally correlated within the co-regulated pairs and are anti-correlated within the anti-regulated pairs, suggesting coordinated regulation within both types of paralogous gene pairs.
Collapse
Affiliation(s)
- Lyudmila M Mikhaylova
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
20
|
Chan CC, Zhang S, Rousset R, Wharton KA. Drosophila Naked cuticle (Nkd) engages the nuclear import adaptor Importin-alpha3 to antagonize Wnt/beta-catenin signaling. Dev Biol 2008; 318:17-28. [PMID: 18423435 DOI: 10.1016/j.ydbio.2008.02.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/06/2008] [Accepted: 02/07/2008] [Indexed: 01/08/2023]
Abstract
Precise control of Wnt/beta-catenin signaling is critical for animal development, stem cell renewal, and prevention of disease. In the fruit fly Drosophila melanogaster, the naked cuticle (nkd) gene limits signaling by the Wnt ligand Wingless (Wg) during embryo segmentation. Nkd is an intracellular protein that is composed of separable membrane- and nuclear-localization sequences (NLS) as well as a conserved EF-hand motif that binds the Wnt receptor-associated scaffold protein Dishevelled (Dsh), but the mechanism by which Nkd inhibits Wnt signaling remains a mystery. Here we identify a second NLS in Nkd that is required for full activity and that binds to the canonical nuclear import adaptor Importin-alpha3. The Nkd NLS is similar to the Importin-alpha3-binding NLS in the Drosophila heat-shock transcription factor (dHSF), and each Importin-alpha3-binding NLS required intact basic residues in similar positions for nuclear import and protein function. Our results provide further support for the hypothesis that Nkd inhibits nuclear step(s) in Wnt/beta-catenin signaling and broaden our understanding of signaling pathways that engage the nuclear import machinery.
Collapse
Affiliation(s)
- Chih-Chiang Chan
- Laboratory of Molecular Pathology, Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390-9072, USA
| | | | | | | |
Collapse
|
21
|
Ting CY, Herman T, Yonekura S, Gao S, Wang J, Serpe M, O'Connor MB, Zipursky SL, Lee CH. Tiling of r7 axons in the Drosophila visual system is mediated both by transduction of an activin signal to the nucleus and by mutual repulsion. Neuron 2008; 56:793-806. [PMID: 18054857 DOI: 10.1016/j.neuron.2007.09.033] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 08/29/2007] [Accepted: 09/25/2007] [Indexed: 11/18/2022]
Abstract
The organization of neuronal wiring into layers and columns is a common feature of both vertebrate and invertebrate brains. In the Drosophila visual system, each R7 photoreceptor axon projects within a single column to a specific layer of the optic lobe. We refer to the restriction of terminals to single columns as tiling. In a genetic screen based on an R7-dependent behavior, we identified the Activin receptor Baboon and the nuclear import adaptor Importin-alpha3 as being required to prevent R7 axon terminals from overlapping with the terminals of R7s in neighboring columns. This tiling function requires the Baboon ligand, dActivin, the transcription factor, dSmad2, and retrograde transport from the growth cone to the R7 nucleus. We propose that dActivin is an autocrine signal that restricts R7 growth cone motility, and we demonstrate that it acts in parallel with a paracrine signal that mediates repulsion between R7 terminals.
Collapse
Affiliation(s)
- Chun-Yuan Ting
- Unit on Neuronal Connectivity, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Drosophila importin alpha1 performs paralog-specific functions essential for gametogenesis. Genetics 2008; 178:839-50. [PMID: 18245351 DOI: 10.1534/genetics.107.081778] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Importin alpha's mediate nuclear transport by linking nuclear localization signal (NLS)-containing proteins to importin beta1. Animal genomes encode three conserved groups of importin alpha's, alpha1's, alpha2's, and alpha3's, each of which are competent to bind classical NLS sequences. Using Drosophila melanogaster we describe the isolation and phenotypic characterization of the first animal importin alpha1 mutant. Animal alpha1's are more similar to ancestral plant and fungal alpha1-like genes than to animal alpha2 and alpha3 genes. Male and female importin alpha1 (Dalpha1) null flies developed normally to adulthood (with a minor wing defect) but were sterile with defects in gametogenesis. The Dalpha1 mutant phenotypes were rescued by Dalpha1 transgenes, but not by Dalpha2 or Dalpha3 transgenes. Genetic interactions between the ectopic expression of Dalpha1 and the karyopherins CAS and importin beta1 suggest that high nuclear levels of Dalpha1 are deleterious. We conclude that Dalpha1 performs paralog-specific activities that are essential for gametogenesis and that regulation of subcellular Dalpha1 localization may affect cell fate decisions. The initial expansion and specialization of the animal importin alpha-gene family may have been driven by the specialized needs of gametogenesis. These results provide a framework for studies of the more complex mammalian importin alpha-gene family.
Collapse
|
23
|
Gorjánácz M, Török I, Pomozi I, Garab G, Szlanka T, Kiss I, Mechler BM. Domains of Importin-alpha2 required for ring canal assembly during Drosophila oogenesis. J Struct Biol 2006; 154:27-41. [PMID: 16458020 DOI: 10.1016/j.jsb.2005.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 11/10/2005] [Accepted: 12/07/2005] [Indexed: 10/25/2022]
Abstract
Null-mutation in Drosophila importin-alpha2, such as the deficiency imp-alpha2(D14), causes recessive female sterility with the formation of dumpless eggs. In imp-alpha2(D14) the transfer of nurse cell components to the oocyte is interrupted and the Kelch protein, an oligomeric ring canal actin organizer, is normally produced but fails to associate with the ring canals resulting in their occlusion. To define domains regulating Kelch deposition on ring canals we performed site-directed mutagenesis on protein binding domains and putative phosphorylation sites of Imp-alpha2. Phenotypic analysis of the mutant transgenes in imp-alpha2(D14) revealed that mutations affecting the Imp-beta binding-domain, the dimerization domain, and specific serine residues of putative phosphorylation sites led to a normal or nearly normal oogenesis but arrested early embryonic development, whereas mutations in the nuclear localization signal (NLS) and CAS/exportin binding domains resulted in ring canal occlusion and a drastic nuclear accumulation of the mutant proteins. Deletion of the Imp-beta binding domain also gave rise to a nuclear localization of the mutant protein, which partially retained its function in ring canal assembly. Thus, we propose that mutations in NLS and CAS binding domains affect the deposition of Kelch onto the ring canals and prevent the association of Imp-alpha2 with a negative regulator of Kelch function.
Collapse
Affiliation(s)
- Mátyás Gorjánácz
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
24
|
Monferrer L, Artero R. An Interspecific Functional Complementation Test in Drosophila for Introductory Genetics Laboratory Courses. J Hered 2006; 97:67-73. [PMID: 16394256 DOI: 10.1093/jhered/esj003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introductory genetics courses often include evolutionary genetics concepts such as sequence homology and functional conservation. It is usually assumed that two sequences showing homology (i.e., sharing a common ancestral sequence) perform the same molecular function. The correlation, however, does not always hold true, and evidence for functional conservation must come from functional studies. In this study we describe a genetics laboratory class that demonstrates functional conservation between the Drosophila protein Muscleblind (Mbl) and its human ortholog MBNL1. We use the Gal4/UAS system to express MBNL1 in a Drosophila mutant background and measure the in vivo activity of the human protein by rescue of mbl mutant phenotype in embryos. As a control, ubiquitous expression of Drosophila MblC, one of the four protein isoforms encoded by the gene, increased by 71% the viability of mbl mutant embryos and greatly reduced the hypercontracted abdomen of mutant larvae. In a parallel experiment, human MBNL1 provided a robust rescue of the embryonic lethality (78%) and improved abdomen hypercontraction as well. Under both conditions, rescued larvae die as first instars, probably due to overexpression effects, lack of alternative protein isoforms, or incomplete expression in critical tissues such as the nervous system. The use of two constructs in the rescue experiment (UAS-mblC and UAS-MBNL1) and the incomplete rescue prompt several questions for students. The fact that a human protein works in a Drosophila cellular context illustrates the use of an in vivo test to prove functional conservation.
Collapse
Affiliation(s)
- Lidon Monferrer
- Department of Genetics, Valencia University, Doctor Moliner 50, Burjasot 46100, Valencia, Spain
| | | |
Collapse
|
25
|
Papanicolaou A, Joron M, McMillan WO, Blaxter ML, Jiggins CD. Genomic tools and cDNA derived markers for butterflies. Mol Ecol 2005; 14:2883-97. [PMID: 16029486 DOI: 10.1111/j.1365-294x.2005.02609.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Lepidoptera have long been used as examples in the study of evolution, but some questions remain difficult to resolve due to a lack of molecular genetic data. However, as technology improves, genomic tools are becoming increasingly available to tackle unanswered evolutionary questions. Here we have used expressed sequence tags (ESTs) to develop genetic markers for two Müllerian mimic species, Heliconius melpomene and Heliconius erato. In total 1363 ESTs were generated, representing 330 gene objects in H. melpomene and 431 in H. erato. User-friendly bioinformatic tools were used to construct a nonredundant database of these putative genes (available at http://www.heliconius.org), and annotate them with blast similarity searches, InterPro matches and Gene Ontology terms. This database will be continually updated with EST sequences for the Papilionideae as they become publicly available, providing a tool for gene finding in the butterflies. Alignments of the Heliconius sequences with putative homologues derived from Bombyx mori or other public data sets were used to identify conserved PCR priming sites, and develop 55 markers that can be amplified from genomic DNA in both H. erato and H. melpomene. These markers will be used for comparative linkage mapping in Heliconius and will have applications in other phylogenetic and genomic studies in the Lepidoptera.
Collapse
Affiliation(s)
- Alexie Papanicolaou
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, Kings Buildings, West Mains Road, University of Edinburgh, EH9 3JT, Edinburgh, UK
| | | | | | | | | |
Collapse
|
26
|
Goldfarb DS, Corbett AH, Mason DA, Harreman MT, Adam SA. Importin alpha: a multipurpose nuclear-transport receptor. Trends Cell Biol 2005; 14:505-14. [PMID: 15350979 DOI: 10.1016/j.tcb.2004.07.016] [Citation(s) in RCA: 529] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The importin alpha/beta heterodimer targets hundreds of proteins to the nuclear-pore complex (NPC) and facilitates their translocation across the nuclear envelope. Importin alpha binds to classical nuclear localization signal (cNLS)-containing proteins and links them to importin beta, the karyopherin that ferries the ternary complex through the NPC. A second karyopherin, the exportin CAS, recycles importin alpha back to the cytoplasm. In this article, we discuss control mechanisms that importin alpha exerts over the assembly and disassembly of the ternary complex and we describe how new groups of importin alpha genes arose during the evolution of metazoan animals to function in development and differentiation. We also describe activities of importin alpha that seem to be distinct from its housekeeping functions in nuclear transport.
Collapse
Affiliation(s)
- David S Goldfarb
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | | | | | | | |
Collapse
|