1
|
Baião GC, Schneider DI, Miller WJ, Klasson L. Multiple introgressions shape mitochondrial evolutionary history in Drosophila paulistorum and the Drosophila willistoni group. Mol Phylogenet Evol 2023; 180:107683. [PMID: 36574824 DOI: 10.1016/j.ympev.2022.107683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Hybridization and the consequent introgression of genomic elements is an important source of genetic diversity for biological lineages. This is particularly evident in young clades in which hybrid incompatibilities are still incomplete and mixing between species is more likely to occur. Drosophila paulistorum, a representative of the Neotropical Drosophila willistoni subgroup, is a classic model of incipient speciation. The species is divided into six semispecies that show varying degrees of pre- and post-mating incompatibility with each other. In the present study, we investigate the mitochondrial evolutionary history of D. paulistorum and the willistoni subgroup. For that, we perform phylogenetic and comparative analyses of the complete mitochondrial genomes and draft nuclear assemblies of 25 Drosophila lines of the willistoni and saltans species groups. Our results show that the mitochondria of D. paulistorum are polyphyletic and form two non-sister clades that we name α and β. Identification and analyses of nuclear mitochondrial insertions further reveal that the willistoni subgroup has an α-like mitochondrial ancestor and strongly suggest that both the α and β mitochondria of D. paulistorum were acquired through introgression from unknown fly lineages of the willistoni subgroup. We also uncover multiple mitochondrial introgressions across D. paulistorum semispecies and generate novel insight into the evolution of the species.
Collapse
Affiliation(s)
- Guilherme C Baião
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden.
| | - Daniela I Schneider
- Lab Genome Dynamics, Department Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria.
| | - Wolfgang J Miller
- Lab Genome Dynamics, Department Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria.
| | - Lisa Klasson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden.
| |
Collapse
|
2
|
Kyrgiafini MA, Giannoulis T, Moutou KA, Mamuris Z. Investigating the Impact of a Curse: Diseases, Population Isolation, Evolution and the Mother's Curse. Genes (Basel) 2022; 13:2151. [PMID: 36421825 PMCID: PMC9690142 DOI: 10.3390/genes13112151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 09/08/2024] Open
Abstract
The mitochondrion was characterized for years as the energy factory of the cell, but now its role in many more cellular processes is recognized. The mitochondrion and mitochondrial DNA (mtDNA) also possess a set of distinct properties, including maternal inheritance, that creates the Mother's Curse phenomenon. As mtDNA is inherited from females to all offspring, mutations that are harmful to males tend to accumulate more easily. The Mother's Curse is associated with various diseases, and has a significant effect on males, in many cases even affecting their reproductive ability. Sometimes, it even leads to reproductive isolation, as in crosses between different populations, the mitochondrial genome cannot cooperate effectively with the nuclear one resulting in a mito-nuclear incompatibility and reduce the fitness of the hybrids. This phenomenon is observed both in the laboratory and in natural populations, and have the potential to influence their evolution and speciation. Therefore, it turns out that the study of mitochondria is an exciting field that finds many applications, including pest control, and it can shed light on the molecular mechanism of several diseases, improving successful diagnosis and therapeutics. Finally, mito-nuclear co-adaptation, paternal leakage, and kin selection are some mechanisms that can mitigate the impact of the Mother's Curse.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Katerina A. Moutou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
3
|
Mazzucco R, Nolte V, Vijayan T, Schlötterer C. Long-Term Dynamics Among Wolbachia Strains During Thermal Adaptation of Their Drosophila melanogaster Hosts. Front Genet 2020; 11:482. [PMID: 32477411 PMCID: PMC7241558 DOI: 10.3389/fgene.2020.00482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
Climate change is a major evolutionary force triggering thermal adaptation in a broad range of species. While the consequences of global warming are being studied for an increasing number of species, limited attention has been given to the evolutionary dynamics of endosymbionts in response to climate change. Here, we address this question by studying the dynamics of Wolbachia, a well-studied endosymbiont of Drosophila melanogaster. D. melanogaster populations infected with 13 different Wolbachia strains were exposed to novel hot and cold laboratory environments for up to 180 generations. The short-term dynamics suggested a temperature-related fitness difference resulting in the increase of clade V strains in the cold environment only. Our long-term analysis now uncovers that clade V dominates in all replicates after generation 60 irrespective of temperature treatment. We propose that adaptation of the Drosophila host to either temperature or Drosophila C virus (DCV) infection are the cause of the replicated, temporally non-concordant Wolbachia dynamics. Our study provides an interesting case demonstrating that even simple, well-controlled experiments can result in complex, but repeatable evolutionary dynamics, thus providing a cautionary note on too simple interpretations on the impact of climate change.
Collapse
Affiliation(s)
- Rupert Mazzucco
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Wien, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Wien, Austria
| | - Thapasya Vijayan
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Wien, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Wien, Austria
| |
Collapse
|
4
|
Aw WC, Towarnicki SG, Melvin RG, Youngson NA, Garvin MR, Hu Y, Nielsen S, Thomas T, Pickford R, Bustamante S, Vila-Sanjurjo A, Smyth GK, Ballard JWO. Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genet 2018; 14:e1007735. [PMID: 30399141 PMCID: PMC6219761 DOI: 10.1371/journal.pgen.1007735] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023] Open
Abstract
Diet may be modified seasonally or by biogeographic, demographic or cultural shifts. It can differentially influence mitochondrial bioenergetics, retrograde signalling to the nuclear genome, and anterograde signalling to mitochondria. All these interactions have the potential to alter the frequencies of mtDNA haplotypes (mitotypes) in nature and may impact human health. In a model laboratory system, we fed four diets varying in Protein: Carbohydrate (P:C) ratio (1:2, 1:4, 1:8 and 1:16 P:C) to four homoplasmic Drosophila melanogaster mitotypes (nuclear genome standardised) and assayed their frequency in population cages. When fed a high protein 1:2 P:C diet, the frequency of flies harbouring Alstonville mtDNA increased. In contrast, when fed the high carbohydrate 1:16 P:C food the incidence of flies harbouring Dahomey mtDNA increased. This result, driven by differences in larval development, was generalisable to the replacement of the laboratory diet with fruits having high and low P:C ratios, perturbation of the nuclear genome and changes to the microbiome. Structural modelling and cellular assays suggested a V161L mutation in the ND4 subunit of complex I of Dahomey mtDNA was mildly deleterious, reduced mitochondrial functions, increased oxidative stress and resulted in an increase in larval development time on the 1:2 P:C diet. The 1:16 P:C diet triggered a cascade of changes in both mitotypes. In Dahomey larvae, increased feeding fuelled increased β-oxidation and the partial bypass of the complex I mutation. Conversely, Alstonville larvae upregulated genes involved with oxidative phosphorylation, increased glycogen metabolism and they were more physically active. We hypothesise that the increased physical activity diverted energy from growth and cell division and thereby slowed development. These data further question the use of mtDNA as an assumed neutral marker in evolutionary and population genetic studies. Moreover, if humans respond similarly, we posit that individuals with specific mtDNA variations may differentially metabolise carbohydrates, which has implications for a variety of diseases including cardiovascular disease, obesity, and perhaps Parkinson's Disease.
Collapse
Affiliation(s)
- Wen C. Aw
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Samuel G. Towarnicki
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Richard G. Melvin
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Neil A. Youngson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Michael R. Garvin
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Yifang Hu
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Shaun Nielsen
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Torsten Thomas
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Center, The University of New South Wales, Sydney, NSW, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Center, The University of New South Wales, Sydney, NSW, Australia
| | - Antón Vila-Sanjurjo
- Grupo GIBE, Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña (UDC), Campus Zapateira s/n, A Coruña, Spain
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - J. William O. Ballard
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
5
|
Chen YT, Zhang YK, Du WX, Jin PY, Hong XY. Geography has a greater effect than Wolbachia infection on population genetic structure in the spider mite, Tetranychus pueraricola. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:685-694. [PMID: 27296468 DOI: 10.1017/s0007485316000444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Wolbachia is an intracellular symbiotic bacterium that infects various spider mite species and is associated with alterations in host reproduction, which indicates the potential role in mite evolution. However, studies of Wolbachia infections in the spider mite Tetranychus pueraricola, a major agricultural pest, are limited. Here, we used multilocus sequence typing to determine Wolbachia infection status and examined the relationship between Wolbachia infection status and mitochondrial diversity in T. pueraricola from 12 populations in China. The prevalence of Wolbachia ranged from 2.8 to 50%, and three strains (wTpue1, wTpue2, and wTpue3) were identified. We also found double infections (wTpue1 + wTpue3) within the same individuals. Furthermore, the wTpue1 strain caused weak cytoplasmic incompatibility (CI) (egg hatchability ~55%), whereas another widespread strain, wTpue3, did not induce CI. There was no reduction in mitochondrial DNA (mtDNA) or nuclear DNA diversity among infected individuals, and mtDNA haplotypes did not correspond to specific Wolbachia strains. Phylogenetic analysis and analysis of molecular variance revealed that the distribution of mtDNA and nuclear DNA haplotypes were significantly associated with geography. These findings indicate that Wolbachia infection in T. pueraricola is complex, but T. pueraricola genetic differentiation likely resulted from substantial geographic isolation.
Collapse
Affiliation(s)
- Y-T Chen
- Department of Entomology,Nanjing Agricultural University,Nanjing,Jiangsu,China
| | - Y-K Zhang
- Department of Entomology,Nanjing Agricultural University,Nanjing,Jiangsu,China
| | - W-X Du
- Department of Entomology,Nanjing Agricultural University,Nanjing,Jiangsu,China
| | - P-Y Jin
- Department of Entomology,Nanjing Agricultural University,Nanjing,Jiangsu,China
| | - X-Y Hong
- Department of Entomology,Nanjing Agricultural University,Nanjing,Jiangsu,China
| |
Collapse
|
6
|
Turissini DA, Liu G, David JR, Matute DR. The evolution of reproductive isolation in the Drosophila yakuba complex of species. J Evol Biol 2016; 28:557-75. [PMID: 25611516 DOI: 10.1111/jeb.12588] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/15/2015] [Indexed: 01/31/2023]
Abstract
In the Drosophila melanogaster subgroup, the yakuba species complex, D. yakuba, D. santomea and D. teissieri have identical mitochondrial genomes in spite of nuclear differentiation. The first two species can be readily hybridized in the laboratory and produce fertile females and sterile males. They also form hybrids in natural conditions. Nonetheless, the third species, D. teissieri, was thought to be unable to produce hybrids with either D. yakuba or D. santomea. This in turn posed the conundrum of why the three species shared a single mitochondrial genome. In this report, we show that D. teissieri can indeed hybridize with both D. yakuba and D. santomea. The resulting female hybrids from both crosses are fertile, whereas the hybrid males are sterile. We also characterize six isolating mechanisms that might be involved in keeping the three species apart. Our results open the possibility of studying the history of introgression in the yakuba species complex and dissecting the genetic basis of interspecific differences between these three species by genetic mapping.
Collapse
Affiliation(s)
- D A Turissini
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
7
|
Zhu J, Fry JD. Preference for ethanol in feeding and oviposition in temperate and tropical populations of Drosophila melanogaster. ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA 2015; 155:64-70. [PMID: 29398715 PMCID: PMC5796782 DOI: 10.1111/eea.12285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The natural habitat of Drosophila melanogaster Meigen (Diptera: Drosophilidae) is fermenting fruits, which can be rich in ethanol. For unknown reasons, temperate populations of this cosmopolitan species have higher ethanol resistance than tropical populations. To determine whether this difference is accompanied by a parallel difference in preference for ethanol, we compared two European and two tropical African populations in feeding and oviposition preference for ethanol-supplemented medium. Although females of all populations laid significantly more eggs on medium with ethanol than on control medium, preference of European females for ethanol increased as ethanol concentration increased from 2 to 6%, whereas that of African females decreased. In feeding tests, African females preferred control medium over medium with 4% ethanol, whereas European females showed no preference. Males of all populations strongly preferred control medium. The combination of preference for ethanol in oviposition, and avoidance or neutrality in feeding, gives evidence that adults choose breeding sites with ethanol for the benefit of larvae, rather than for their own benefit. The stronger oviposition preference for ethanol of temperate than tropical females suggests that this benefit may be more important in temperate populations. Two possible benefits of ethanol for which there is some experimental evidence are cryoprotection and protection against natural enemies.
Collapse
|
8
|
Mathenge CW, Riegler M, Beattie GAC, Spooner-Hart RN, Holford P. Genetic variation amongst biotypes of Dactylopius tomentosus. INSECT SCIENCE 2015; 22:360-374. [PMID: 24619863 DOI: 10.1111/1744-7917.12120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2014] [Indexed: 06/03/2023]
Abstract
The tomentose cochineal scale insect, Dactylopius tomentosus (Lamarck) (Hemiptera: Dactylopiidae), is an important biological control agent against invasive species of Cylindropuntia (Caryophyllales: Cactaceae). Recent studies have demonstrated that this scale is composed of host-affiliated biotypes with differential host specificity and fitness on particular host species. We investigated genetic variation and phylogenetic relationships among D. tomentosus biotypes and provenances to examine the possibility that genetic diversity may be related to their host-use pattern, and whether their phylogenetic relationships would give insights into taxonomic relatedness of their host plants. Nucleotide sequence comparison was accomplished using sequences of the mitochondrial cytochrome c oxidase I (COI) gene. Sequences of individuals from the same host plant within a region were identical and characterized by a unique haplotype. Individuals belonging to the same biotype but from different regions had similar haplotypes. However, haplotypes were not shared between different biotypes. Phylogenetic analysis grouped the monophyletic D. tomentosus into 3 well-resolved clades of biotypes. The phylogenetic relationships and clustering of biotypes corresponded with known taxonomic relatedness of their hosts. Two biotypes, Fulgida and Mamillata, tested positive for Wolbachia (α-Proteobacteria), a common endosymbiont of insects. The Wolbachia sequences were serendipitously detected by using insect-specific COI DNA barcoding primers and are most similar to Wolbachia Supergroup F strains. This study is the first molecular characterization of cochineal biotypes that, together with Wolbachia sequences, contribute to the better identification of the biotypes of cochineal insects and to the biological control of cacti using host-specific biotypes of the scale.
Collapse
Affiliation(s)
| | - Markus Riegler
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - G Andrew C Beattie
- School of Science and Health, University of Western Sydney (Hawkesbury Campus)
| | | | - Paul Holford
- School of Science and Health, University of Western Sydney (Hawkesbury Campus)
| |
Collapse
|
9
|
Choi JY, Aquadro CF. The coevolutionary period of Wolbachia pipientis infecting Drosophila ananassae and its impact on the evolution of the host germline stem cell regulating genes. Mol Biol Evol 2014; 31:2457-71. [PMID: 24974378 DOI: 10.1093/molbev/msu204] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The endosymbiotic bacteria Wolbachia pipientis is known to infect a wide range of arthropod species yet less is known about the coevolutionary history it has with its hosts. Evidence of highly identical W. pipientis strains in evolutionary divergent hosts suggests horizontal transfer between hosts. For example, Drosophila ananassae is infected with a W. pipientis strain that is nearly identical in sequence to a strain that infects both D. simulans and D. suzukii, suggesting recent horizontal transfer among these three species. However, it is unknown whether the W. pipientis strain had recently invaded all three species or a more complex infectious dynamic underlies the horizontal transfers. Here, we have examined the coevolutionary history of D. ananassae and its resident W. pipientis to infer its period of infection. Phylogenetic analysis of D. ananassae mitochondrial DNA and W. pipientis DNA sequence diversity revealed the current W. pipientis infection is not recent. In addition, we examined the population genetics and molecular evolution of several germline stem cell (GSC) regulating genes of D. ananassae. These studies reveal significant evidence of recent and long-term positive selection at stonewall in D. ananassae, whereas pumillio showed patterns of variation consistent with only recent positive selection. Previous studies had found evidence for adaptive evolution of two key germline differentiation genes, bag of marbles (bam) and benign gonial cell neoplasm (bgcn), in D. melanogaster and D. simulans and proposed that the adaptive evolution at these two genes was driven by arms race between the host GSC and W. pipientis. However, we did not find any statistical departures from a neutral model of evolution for bam and bgcn in D. ananassae despite our new evidence that this species has been infected with W. pipientis for a period longer than the most recent infection in D. melanogaster. In the end, analyzing the GSC regulating genes individually showed two of the seven genes to have evidence of selection. However, combining the data set and fitting a specific population genetic model significant proportion of the nonsynonymous sites across the GSC regulating genes were driven to fixation by positive selection. Clearly the GSC system is under rapid evolution and potentially multiple drivers are causing the rapid evolution.
Collapse
Affiliation(s)
- Jae Young Choi
- Department of Molecular Biology and Genetics, Cornell University
| | | |
Collapse
|
10
|
Dokianakis E, Ladoukakis ED. Different degree of paternal mtDNA leakage between male and female progeny in interspecific Drosophila crosses. Ecol Evol 2014; 4:2633-41. [PMID: 25077015 PMCID: PMC4113288 DOI: 10.1002/ece3.1069] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/15/2013] [Accepted: 11/24/2013] [Indexed: 12/17/2022] Open
Abstract
Maternal transmission of mitochondrial DNA (mtDNA) in animals is thought to prevent the spread of selfish deleterious mtDNA mutations in the population. Various mechanisms have been evolved independently to prevent the entry of sperm mitochondria in the embryo. However, the increasing number of instances of paternal mtDNA leakage suggests that these mechanisms are not very effective. The destruction of sperm mitochondria in mammalian embryos is mediated by nuclear factors. Also, the destruction of paternal mitochondria in intraspecific crosses is more effective than in interspecific ones. These observations have led to the hypothesis that leakage of paternal mtDNA (and consequently mtDNA recombination owing to ensuing heteroplasmy) might be more common in inter- than in intraspecific crosses and that it should increase with phylogenetic distance of hybridizing species. We checked paternal leakage in inter- and intraspecific crosses in Drosophila and found little evidence for this hypothesis. In addition, we have observed a higher level of leakage among male than among female progeny from the same cross. This is the first report of sex-specific leakage of paternal mtDNA. It suggests that paternal mtDNA leakage might not be a stochastic result of an error-prone mechanism, but rather, it may be under complex genetic control.
Collapse
|
11
|
Zabal-Aguirre M, Arroyo F, García-Hurtado J, de la Torre J, Hewitt GM, Bella JL. Wolbachia effects in natural populations of Chorthippus parallelus from the Pyrenean hybrid zone. J Evol Biol 2014; 27:1136-48. [PMID: 24819964 DOI: 10.1111/jeb.12389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/11/2014] [Accepted: 03/28/2014] [Indexed: 01/21/2023]
Abstract
We evaluate for the first time the effect of Wolbachia infection, involving two different supergroups, on the structure and dynamics of the hybrid zone between two subspecies of Chorthippus parallelus (Orthoptera) in the Pyrenees. Wolbachia infection showed no effects on female fecundity or a slight increment in females infected by F supergroup, although in the last case it has to be well established. Cytoplasmic incompatibility (CI) is confirmed in crosses carried out in the field between individuals from a natural hybrid population. This CI, registered as the relative reduction in embryo production (sh ), was of sh = 0.355 and sh = 0.286 in unidirectional crosses involving B and F supergroups, respectively. CI also occurred in bidirectional crosses (sh = 0.147) but with a weaker intensity. The transmission rates of the two Wolbachia strains (B and F) were estimated by the optimization of a theoretical model to reach the infection frequencies observed in certain population. To fit this scenario, both supergroups should present transmission rates close to 1. Further, we have simulated the infection dynamics, and hence, the capacity of Wolbachia to structure the population of the host insects and to affect to reproduction and genetic introgression in the hybrid zone. This represents a first example of the influence of Wolbachia in an insect natural hybrid zone.
Collapse
Affiliation(s)
- M Zabal-Aguirre
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Correa CC, Ballard JWO. What can symbiont titres tell us about co-evolution of Wolbachia and their host? J Invertebr Pathol 2014; 118:20-7. [PMID: 24594301 DOI: 10.1016/j.jip.2014.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 12/17/2013] [Accepted: 02/16/2014] [Indexed: 10/25/2022]
Abstract
There is a long-standing prediction that associations with vertically transmitted symbionts evolve towards maximisation of host reproductive success, eventually leading to mutualist symbiosis and coadaptation. Under this scenario, the regulation of symbiont titres in host tissues would be expected to be greater when partners have coevolved for a long time than when they have recently met. Wolbachia pipientis, a common vertically transmitted symbiont of invertebrates, often has the capacity to spread through the host population without being beneficial to the hosts, by means of reducing the hatch rate in crosses between uninfected females and infected males. This manipulation, namely cytoplasmic incompatibility (CI), may exert strong selection on the accuracy of infection transmission from mother to offspring, and therefore, on regulation of symbiont titres in the ova. Here, we examined the symbiont density dynamics in gonads of Drosophila simulans infected with the wMa strain of Wolbachia, known to cause mild CI and likely to be the oldest Wolbachia infection known to this fly species. Further, we compared these results with those obtained for the more recent association between D. simulans and the potent CI-inducer wHa (Correa and Ballard, 2012). We aimed to determine if the regulation of Wolbachia density in fly gonads is greater in the older association, as would be predicted solely by gradual coadaptation, or if the selection exerted by CI on reproductive fitness could also play a role, therefore showing tighter regulation on flies with the stronger CI-inducing strain. We observed that Wolbachia density in gonads of wMa infected flies changed with laboratory adaptation and were disturbed by environmental challenges, which contrasted with the stability of ovarian wHa density to the same treatments. Our observations are in line with the prediction that selection on reproductive fitness influences the evolution symbiont density regulation in Drosophila, and may provide insights into the evolutionary processes involved in the maintenance or loss of Wolbachia.
Collapse
Affiliation(s)
- C Carolina Correa
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia.
| | - J William O Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
13
|
Zhang KJ, Zhu WC, Rong X, Zhang YK, Ding XL, Liu J, Chen DS, Du Y, Hong XY. The complete mitochondrial genomes of two rice planthoppers, Nilaparvata lugens and Laodelphax striatellus: conserved genome rearrangement in Delphacidae and discovery of new characteristics of atp8 and tRNA genes. BMC Genomics 2013; 14:417. [PMID: 23799924 PMCID: PMC3701526 DOI: 10.1186/1471-2164-14-417] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 06/19/2013] [Indexed: 11/29/2022] Open
Abstract
Background Nilaparvata lugens (the brown planthopper, BPH) and Laodelphax striatellus (the small brown planthopper, SBPH) are two of the most important pests of rice. Up to now, there was only one mitochondrial genome of rice planthopper has been sequenced and very few dependable information of mitochondria could be used for research on population genetics, phylogeographics and phylogenetic evolution of these pests. To get more valuable information from the mitochondria, we sequenced the complete mitochondrial genomes of BPH and SBPH. These two planthoppers were infected with two different functional Wolbachia (intracellular endosymbiont) strains (wLug and wStri). Since both mitochondria and Wolbachia are transmitted by cytoplasmic inheritance and it was difficult to separate them when purified the Wolbachia particles, concomitantly sequencing the genome of Wolbachia using next generation sequencing method, we also got nearly complete mitochondrial genome sequences of these two rice planthoppers. After gap closing, we present high quality and reliable complete mitochondrial genomes of these two planthoppers. Results The mitogenomes of N. lugens (BPH) and L. striatellus (SBPH) are 17, 619 bp and 16, 431 bp long with A + T contents of 76.95% and 77.17%, respectively. Both species have typical circular mitochondrial genomes that encode the complete set of 37 genes which are usually found in metazoans. However, the BPH mitogenome also possesses two additional copies of the trnC gene. In both mitochondrial genomes, the lengths of the atp8 gene were conspicuously shorter than that of all other known insect mitochondrial genomes (99 bp for BPH, 102 bp for SBPH). That two rearrangement regions (trnC-trnW and nad6-trnP-trnT) of mitochondrial genomes differing from other known insect were found in these two distantly related planthoppers revealed that the gene order of mitochondria might be conservative in Delphacidae. The large non-coding fragment (the A+T-rich region) putatively corresponding responsible for the control of replication and transcription of mitochondria contained a variable number of tandem repeats (VNTRs) block in different natural individuals of these two planthoppers. Comparison with a previously sequenced individual of SBPH revealed that the mitochondrial genetic variation within a species exists not only in the sequence and secondary structure of genes, but also in the gene order (the different location of trnH gene). Conclusion The mitochondrial genome arrangement pattern found in planthoppers was involved in rearrangements of both tRNA genes and protein-coding genes (PCGs). Different species from different genera of Delphacidae possessing the same mitochondrial gene rearrangement suggests that gene rearrangements of mitochondrial genome probably occurred before the differentiation of this family. After comparatively analyzing the gene order of different species of Hemiptera, we propose that except for some specific taxonomical group (e.g. the whiteflies) the gene order might have diversified in family level of this order. The VNTRs detected in the control region might provide additional genetic markers for studying population genetics, individual difference and phylogeographics of planthoppers.
Collapse
Affiliation(s)
- Kai-Jun Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wolff JN, Sutovsky P, Ballard JWO. Mitochondrial DNA content of mature spermatozoa and oocytes in the genetic model Drosophila. Cell Tissue Res 2013; 353:195-200. [PMID: 23686567 DOI: 10.1007/s00441-013-1628-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/05/2013] [Indexed: 01/09/2023]
Abstract
Although crucial to the success of fertilization and embryogenesis, little is known about the mitochondrial DNA (mtDNA) content of mature spermatozoa and oocytes across taxa and across different fertilization systems. Oocytes are assumed to hold a large population of mtDNAs that populate emerging cells during early embryogenesis, whereas spermatozoa harbor only a limited pool of mtDNAs that is believed to sustain functionality but fails to contribute paternal mtDNA to the zygote. Recent work suggests that mature sperm of the genetic model Drosophila melanogaster lack mtDNA, questioning the significance of zygotic mechanisms for the selective elimination of paternal mtDNA and their necessity for fertilization success. This finding further contradicts previous observations of the inheritance of paternal mtDNA in drosophilids. Using quantitative polymerase chain reaction, we estimate the mtDNA content of several laboratory strains of D. melanogaster and D. simulans to shed light on this discrepancy and to describe the mitochondrial/mtDNA load of gametes within this system. These measurements led to an average estimate of 22.91±4.61 mtDNA molecules/copies per spermatozoon across both species and to 1.07E+07±2.71E+06 molecules/copies per oocyte for D. simulans. As a consequence, the ratio of paternal and maternal mtDNA in the zygote was estimated at 1:4.65E+05.
Collapse
Affiliation(s)
- Jonci Nikolai Wolff
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | | | | |
Collapse
|
15
|
Nunes MDS, Dolezal M, Schlötterer C. Extensive paternal mtDNA leakage in natural populations of Drosophila melanogaster. Mol Ecol 2013; 22:2106-17. [PMID: 23452233 PMCID: PMC3659417 DOI: 10.1111/mec.12256] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/04/2013] [Accepted: 01/09/2013] [Indexed: 12/01/2022]
Abstract
Strict maternal inheritance is considered a hallmark of animal mtDNA. Although recent reports suggest that paternal leakage occurs in a broad range of species, it is still considered an exceptionally rare event. To evaluate the impact of paternal leakage on the evolution of mtDNA, it is essential to reliably estimate the frequency of paternal leakage in natural populations. Using allele-specific real-time quantitative PCR (RT-qPCR), we show that heteroplasmy is common in natural populations with at least 14% of the individuals carrying multiple mitochondrial haplotypes. However, the average frequency of the minor mtDNA haplotype is low (0.8%), which suggests that this pervasive heteroplasmy has not been noticed before due to a lack of power in sequencing surveys. Based on the distribution of mtDNA haplotypes in the offspring of heteroplasmic mothers, we found no evidence for strong selection against one of the haplotypes. We estimated that the rate of paternal leakage is 6% and that at least 100 generations are required for complete sorting of mtDNA haplotypes. Despite the high proportion of heteroplasmic individuals in natural populations, we found no evidence for recombination between mtDNA molecules, suggesting that either recombination is rare or recombinant haplotypes are counter-selected. Our results indicate that evolutionary studies using mtDNA as a marker might be biased by paternal leakage in this species.
Collapse
Affiliation(s)
- Maria D S Nunes
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | | | | |
Collapse
|
16
|
Puerma E, Aguadé M. Polymorphism at genes involved in salt tolerance in Arabidopsis thaliana (Brassicaceae). AMERICAN JOURNAL OF BOTANY 2013; 100:384-390. [PMID: 23345415 DOI: 10.3732/ajb.1200332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PREMISE OF THE STUDY Genes involved in relevant functions for environmental adaptation can be considered primary candidates for their variation having been shaped by natural selection. Detecting recent selective events through their footprint on nucleotide variation constitutes a challenging task in species with a complex demographic history such as Arabidopsis thaliana. We have surveyed nucleotide variation in this species at nine genes involved in salt tolerance. The available genomewide information for this species has allowed us to contrast the levels and patterns of variation detected at the candidate genes with empirical distributions obtained from noncandidate regions. METHODS We sequenced nine genes involved in salt tolerance (~32 kb) in 20 ecotypes of A. thaliana and analyzed polymorphism and divergence at the individual gene and multilocus levels. KEY RESULTS Variation at the nine genes studied was characterized by a generalized skew toward polymorphisms with low-frequency variants. Except for genes RCD1 and NHX8, this pattern was similar to that generally detected in the A. thaliana genome and could thus be primarily explained by the species demographic history. The more extreme deviation at the NHX8 gene and its excess of polymorphism relative to divergence points to the recent action of selection on this gene. CONCLUSIONS The analysis of nucleotide polymorphism and divergence at nine genes involved in salt tolerance provided little evidence for the recent action of positive selection. Only the signals detected at NHX8 from both polymorphism and divergence were suggestive of the putative contribution of this gene to local adaptation.
Collapse
Affiliation(s)
- Eva Puerma
- Departament de Genètica, Facultat de Biologia, i Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | | |
Collapse
|
17
|
Kvie KS, Hogner S, Aarvik L, Lifjeld JT, Johnsen A. Deep sympatric mtDNA divergence in the autumnal moth (Epirrita autumnata). Ecol Evol 2012; 3:126-44. [PMID: 23404314 PMCID: PMC3568849 DOI: 10.1002/ece3.434] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 10/29/2012] [Accepted: 11/01/2012] [Indexed: 02/01/2023] Open
Abstract
Deep sympatric intraspecific divergence in mtDNA may reflect cryptic species or formerly distinct lineages in the process of remerging. Preliminary results from DNA barcoding of Scandinavian butterflies and moths showed high intraspecific sequence variation in the autumnal moth, Epirrita autumnata. In this study, specimens from different localities in Norway and some samples from Finland and Scotland, with two congeneric species as outgroups, were sequenced with mitochondrial and nuclear markers to resolve the discrepancy found between mtDNA divergence and present species-level taxonomy. We found five COI sub-clades within the E. autumnata complex, most of which were sympatric and with little geographic structure. Nuclear markers (ITS2 and Wingless) showed little variation and gave no indications that E. autumnata comprises more than one species. The samples were screened with primers for Wolbachia outer surface gene (wsp) and 12% of the samples tested positive. Two Wolbachia strains were associated with different mtDNA sub-clades within E. autumnata, which may indicate indirect selection/selective sweeps on haplotypes. Our results demonstrate that deep mtDNA divergences are not synonymous with cryptic speciation and this has important implications for the use of mtDNA in species delimitation, like in DNA barcoding.
Collapse
Affiliation(s)
- Kjersti S Kvie
- Natural History Museum, University of Oslo P.O. Box 1172, Blindern, N-0318, Oslo, Norway ; Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science P.O. Box 8146 Dep, N-0033, Oslo, Norway
| | | | | | | | | |
Collapse
|
18
|
Pichaud N, Ballard JWO, Tanguay RM, Blier PU. Mitochondrial haplotype divergences affect specific temperature sensitivity of mitochondrial respiration. J Bioenerg Biomembr 2012; 45:25-35. [DOI: 10.1007/s10863-012-9473-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
|
19
|
Paternal transmission of mitochondrial DNA as an integral part of mitochondrial inheritance in metapopulations of Drosophila simulans. Heredity (Edinb) 2012; 110:57-62. [PMID: 23010820 DOI: 10.1038/hdy.2012.60] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Maternal inheritance is one of the hallmarks of animal mitochondrial DNA (mtDNA) and central to its success as a molecular marker. This mode of inheritance and subsequent lack of heterologous recombination allows us to retrace evolutionary relationships unambiguously down the matriline and without the confounding effects of recombinant genetic information. Accumulating evidence of biparental inheritance of mtDNA (paternal leakage), however, challenges our current understanding of how this molecule is inherited. Here, using Drosophila simulans collected from an East African metapopulation exhibiting recurring mitochondrial heteroplasmy, we conducted single fly matings and screened F1 offspring for the presence of paternal mtDNA using allele-specific PCR assays (AS-PCR). In all, 27 out of 4092 offspring were identified as harboring paternal mtDNA, suggesting a frequency of 0.66% paternal leakage in this species. Our findings strongly suggest that recurring mtDNA heteroplasmy as observed in natural populations of Drosophila simulans is most likely caused by repeated paternal leakage. Our findings further suggest that this phenomenon to potentially be an integral part of mtDNA inheritance in these populations and consequently of significance for mtDNA as a molecular marker.
Collapse
|
20
|
Pichaud N, Ballard JWO, Tanguay RM, Blier PU. Naturally occurring mitochondrial DNA haplotypes exhibit metabolic differences: insight into functional properties of mitochondria. Evolution 2012; 66:3189-97. [PMID: 23025608 DOI: 10.1111/j.1558-5646.2012.01683.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Linking the mitochondrial genotype and the organismal phenotype is of paramount importance in evolution of mitochondria. In this study, we determined the differences in catalytic properties of mitochondria dictated by divergences in the siII and siIII haplogroups of Drosophila simulans using introgressions of siII mtDNA type into the siIII nuclear background. We used a novel in situ method (permeabilized fibers) that allowed us to accurately measure the consumption of oxygen by mitochondria in constructed siII-introgressed flies and in siIII-control flies. Our results showed that the catalytic capacity of the electron transport system is not impaired by introgressions, suggesting that the functional properties of mitochondria are tightly related to the mtDNA haplogroup and not to the nuclear DNA or to the mito-nuclear interactions. This is the first study, to our knowledge, that demonstrates a naturally occurring haplogroup can confer specific functional differences in aspects of mitochondrial metabolism. This study illustrates the importance of mtDNA changes on organelle evolution and highlights the potential bioenergetic and metabolic impacts that divergent mitochondrial haplogroups may have upon a wide variety of species including humans.
Collapse
Affiliation(s)
- Nicolas Pichaud
- Laboratoire de biologie intégrative, Département de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, Canada G5L 3A1.
| | | | | | | |
Collapse
|
21
|
VERNE S, JOHNSON M, BOUCHON D, GRANDJEAN F. Effects of parasitic sex-ratio distorters on host genetic structure in the Armadillidium vulgare-Wolbachia association. J Evol Biol 2011; 25:264-76. [DOI: 10.1111/j.1420-9101.2011.02413.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Müller MJ, von Mühlen C, Valiati VH, da Silva Valente VL. Wolbachia pipientis is associated with different mitochondrial haplotypes in natural populations of Drosophila willistoni. J Invertebr Pathol 2011; 109:152-5. [PMID: 21945051 DOI: 10.1016/j.jip.2011.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 12/28/2022]
Abstract
The prevalence of the endosymbiont Wolbachia pipientis and its effects on mitochondrial genetic diversity were analyzed in natural populations of Drosophila willistoni, a neotropical species recently infected. Total infection rate was 55% and no evidence was found that the Wolbachia infection decreased the diversity of mtDNA. Wolbachia was seen to be associated with different mitochondria, suggesting multiple horizontal transmission events and/or transmission paternal leakage of mitochondrial and/or Wolbachia. These hypotheses are evaluated in the context of the present study and other research.
Collapse
Affiliation(s)
- Mário Josias Müller
- Laboratório de Drosophila, Departamento de Genética, Programa de Pós Graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | | | |
Collapse
|
23
|
Alvarez-Ponce D, Guirao-Rico S, Orengo DJ, Segarra C, Rozas J, Aguade M. Molecular Population Genetics of the Insulin/TOR Signal Transduction Pathway: A Network-Level Analysis in Drosophila melanogaster. Mol Biol Evol 2011; 29:123-32. [DOI: 10.1093/molbev/msr160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
24
|
Yu MZ, Zhang KJ, Xue XF, Hong XY. Effects of Wolbachia on mtDNA variation and evolution in natural populations of Tetranychus urticae Koch. INSECT MOLECULAR BIOLOGY 2011; 20:311-321. [PMID: 21199022 DOI: 10.1111/j.1365-2583.2010.01066.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We investigated the effects of Wolbachia infection on mtDNA variation in spider mites by sequencing a portion of the mitochondrial cytochrome oxidase I (COI) gene from 198 individuals of known infection status. Four Wolbachia strains were described in the current study, namely wUrtOri1, wUrtOri2, wUrtOri3 and wUrtCon1. As predicted, the haplotype and nucleotide diversity were lower in infected individuals than in uninfected individuals. However, these mtDNA haplotype data are not entirely concordant with the surface protein of wolbachia (wsp) sequence data and both infected and uninfected individuals were found of the same haplotype. Although values of Tajima's D and Fu & Li's F were consistently less than zero for most infected groups, McDonald-Kreitman tests suggested that the patterns of variation were different from those expected under neutrality in only the uninfected group. Thus, the neutrality tests do not show a clear effect of Wolbachia infection on patterns of mtDNA variation and substitution in spider mites.
Collapse
Affiliation(s)
- M-Z Yu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | | | | |
Collapse
|
25
|
Pichaud N, Ballard JWO, Tanguay RM, Blier PU. Thermal sensitivity of mitochondrial functions in permeabilized muscle fibers from two populations of Drosophila simulans with divergent mitotypes. Am J Physiol Regul Integr Comp Physiol 2011; 301:R48-59. [PMID: 21451139 DOI: 10.1152/ajpregu.00542.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In ectotherms, the external temperature is experienced by the mitochondria, and the mitochondrial respiration of different genotypes is likely to change as a result. Using high-resolution respirometry with permeabilized fibers (an in situ approach), we tried to identify differences in mitochondrial performance and thermal sensitivity of two Drosophila simulans populations with two different mitochondrial types (siII and siIII) and geographical distributions. Maximal state 3 respiration rates obtained with electrons converging at the Q junction of the electron transport system (ETS) differed between the mitotypes at 24°C. Catalytic capacities were higher in flies harboring siII than in those harboring siIII mitochondrial DNA (2,129 vs. 1,390 pmol O(2)·s(-1)·mg protein(-1)). The cytochrome c oxidase activity was also higher in siII than siIII flies (3,712 vs. 2,688 pmol O(2)·s(-1)·mg protein(-1)). The higher catalytic capacity detected in the siII mitotype could provide an advantage in terms of intensity of aerobic activity, endurance, or both, if the intensity of exercise that can be aerobically performed is partly dictated by the aerobic capacity of the tissue. Moreover, thermal sensitivity results showed that even if temperature affects the catalytic capacity of the different enzymes of the ETS, both mitotypes revealed high tolerance to temperature variation. Previous in vitro study failed to detect any consistent functional mitochondrial differences between the same mitotypes. We conclude that the in situ approach is more sensitive and that the ETS is a robust system in terms of functional and regulatory properties across a wide range of temperatures.
Collapse
Affiliation(s)
- Nicolas Pichaud
- Laboratoire de biologie intégrative, Département de biologie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, QC, Canada
| | | | | | | |
Collapse
|
26
|
Chatelain ÉH, Pichaud N, Ballard JWO, Tanguay RM, Morrow G, Blier PU. Functional conservatism among Drosophila simulans flies experiencing different thermal regimes and mitochondrial DNA introgression. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 316B:188-98. [DOI: 10.1002/jez.b.21389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 09/14/2010] [Accepted: 10/12/2010] [Indexed: 11/07/2022]
|
27
|
Nunes MDS, Wengel POT, Kreissl M, Schlötterer C. Multiple hybridization events between Drosophila simulans and Drosophila mauritiana are supported by mtDNA introgression. Mol Ecol 2010; 19:4695-707. [PMID: 20958812 PMCID: PMC3035818 DOI: 10.1111/j.1365-294x.2010.04838.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 06/17/2010] [Accepted: 06/19/2010] [Indexed: 11/30/2022]
Abstract
The study of speciation has advanced considerably in the last decades because of the increased application of molecular tools. In particular, the quantification of gene flow between recently diverged species could be addressed. Drosophila simulans and Drosophila mauritiana diverged, probably allopatrically, from a common ancestor approximately 250,000 years ago. However, these species share one mitochondrial DNA (mtDNA) haplotype indicative of a recent episode of introgression. To study the extent of gene flow between these species, we took advantage of a large sample of D. mauritiana and employed a range of different markers, i.e. nuclear and mitochondrial sequences, and microsatellites. This allowed us to detect two new mtDNA haplotypes (MAU3 and MAU4). These haplotypes diverged quite recently from haplotypes of the siII group present in cosmopolitan populations of D. simulans. The mean divergence time of the most diverged haplotype (MAU4) is approximately 127,000 years, which is more than 100,000 years before the assumed speciation time. Interestingly, we also found some evidence for gene flow at the nuclear level because an excess of putatively neutral loci shows significantly reduced differentiation between D. simulans and D. mauritiana. Our results suggest that these species are exchanging genes more frequently than previously thought.
Collapse
Affiliation(s)
- Maria D S Nunes
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Vienna, Austria
| | | | | | | |
Collapse
|
28
|
Conceição IC, Aguadé M. Odorant receptor (Or) genes: polymorphism and divergence in the D. melanogaster and D. pseudoobscura lineages. PLoS One 2010; 5:e13389. [PMID: 20967126 PMCID: PMC2954185 DOI: 10.1371/journal.pone.0013389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 09/21/2010] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In insects, like in most invertebrates, olfaction is the principal sensory modality, which provides animals with essential information for survival and reproduction. Odorant receptors are involved in this response, mediating interactions between an individual and its environment, as well as between individuals of the same or different species. The adaptive importance of odorant receptors renders them good candidates for having their variation shaped by natural selection. METHODOLOGY/PRINCIPAL FINDINGS We analyzed nucleotide variation in a subset of eight Or genes located on the 3L chromosomal arm of Drosophila melanogaster in a derived population of this species and also in a population of Drosophila pseudoobscura. Some heterogeneity in the silent polymorphism to divergence ratio was detected in the D. melanogaster/D. simulans comparison, with a single gene (Or67b) contributing ∼37% to the test statistic. However, no other signals of a very recent selective event were detected at this gene. In contrast, at the speciation timescale, the MK test uncovered the footprint of positive selection driving the evolution of two of the encoded proteins in both D. melanogaster--OR65c and OR67a--and D. pseudoobscura--OR65b1 and OR67c. CONCLUSIONS The powerful polymorphism/divergence approach provided evidence for adaptive evolution at a rather high proportion of the Or genes studied after relatively recent speciation events. It did not provide, however, clear evidence for very recent selective events in either D. melanogaster or D. pseudoobscura.
Collapse
Affiliation(s)
- Inês C. Conceição
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Aguadé
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Pichaud N, Chatelain EH, Ballard JWO, Tanguay R, Morrow G, Blier PU. Thermal sensitivity of mitochondrial metabolism in two distinct mitotypes of Drosophila simulans: evaluation of mitochondrial plasticity. J Exp Biol 2010; 213:1665-75. [DOI: 10.1242/jeb.040261] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The overall aim of this study was to (1) evaluate the adaptive value of mitochondrial DNA by comparing mitochondrial performance in populations possessing different haplotypes and distribution, and to (2) evaluate the sensitivity of different enzymes of the electron transport system (ETS) during temperature-induced changes. We measured the impact of temperature of mitochondrial respiration and several key enzymes of mitochondrial metabolism in two mitotypes (siII and siIII) of Drosophila simulans. The temperature dependencies of oxygen consumption for mitochondria isolated from flight muscle was assessed with complex I substrates (pyruvate + malate + proline) and with sn glycerol-3-phosphate (to reduce complex III via glycerophosphate dehydrogenase) in both coupled and uncoupled states. Activities of citrate synthase, cytochrome c oxidase (COX), catalase and aconitase, and the excess capacity of COX at high convergent pathway flux were also measured as a function of temperature. Overall, our results showed that functional differences between the two mitotypes are few. Results suggest that differences between the two mitotypes could hardly explain the temperature-specific differences measured in mitochondria performances. It suggests that some other factor(s) may be driving the maintenance of mitotypes. We also show that the different enzymes of the ETS have different thermal sensitivities. The catalytic capacities of these enzymes vary with temperature changes, and the corresponding involvement of the different steps on mitochondrial regulation probably varies with temperature. For example, the excess COX capacity is low, even non-existent, at high and intermediate temperatures (18°C, 24°C and 28°C) whereas it is quite high at a lower temperature (12°C), suggesting release of respiration control by COX at low temperature.
Collapse
Affiliation(s)
- Nicolas Pichaud
- Laboratoire de biologie intégrative, Département de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, Canada, G5L 3A1
| | - Etienne Hébert Chatelain
- Laboratoire de biologie intégrative, Département de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, Canada, G5L 3A1
| | - J. William O. Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia
| | - Robert Tanguay
- Laboratoire de Génétique Cellulaire et développementale, Département de Médecine, Institut de Biologie intégrative et des systèmes, 1030 ave de la Médecine, Université Laval, Québec, Canada, G1V 0A6
| | - Geneviève Morrow
- Laboratoire de Génétique Cellulaire et développementale, Département de Médecine, Institut de Biologie intégrative et des systèmes, 1030 ave de la Médecine, Université Laval, Québec, Canada, G1V 0A6
| | - Pierre U. Blier
- Laboratoire de biologie intégrative, Département de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, Canada, G5L 3A1
| |
Collapse
|
30
|
|
31
|
Orengo DJ, Aguadé M. Uncovering the footprint of positive selection on the X chromosome of Drosophila melanogaster. Mol Biol Evol 2010; 27:153-60. [PMID: 19759233 DOI: 10.1093/molbev/msp220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A usual approach to detect the spatial footprint left by recent adaptive events has been to follow up putative candidates emerging from multilocus scans of variation by sequencing additional fragments. We have used a similar experimental and analytical approach to study variation at 15 independently evolving and randomly chosen regions of the X chromosome of Drosophila melanogaster. These incompletely sequenced regions, each extending over approximately 40 kb, were subjected to two tests of positive selection that take into account the spatial distribution of nucleotide variation. Our analysis of variation at these genomic regions in a European population of D. melanogaster has allowed us to uncover a candidate region for positive selection and to empirically evaluate the comparative performance of the two tests of selection under a bottleneck scenario. Moreover, the boundaries here estimated for both the rate of adaptive substitution (delta) and the average selection coefficient (s) would support previous estimates obtained by maximum likelihood that suggest rather strong but uncommon positive selection.
Collapse
Affiliation(s)
- Dorcas J Orengo
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
32
|
Zabal-Aguirre M, Arroyo F, Bella JL. Distribution of Wolbachia infection in Chorthippus parallelus populations within and beyond a Pyrenean hybrid zone. Heredity (Edinb) 2009; 104:174-84. [PMID: 19738635 DOI: 10.1038/hdy.2009.106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Two subspecies of the meadow grasshopper Chorthippus parallelus meet in a secondary hybrid zone in the Pyrenees. We have recently detected Wolbachia infection in this extensively studied species. C. p. parallelus (Cpp) and C. p. erythropus (Cpe) harbour bacteria from the B and F supergroups, but they differ noticeably in the incidence and type of infection present in their populations. We can distinguish different regional infection patterns that are associated with the distribution of pure and hybrid C. parallelus individuals. The northern pattern of low-level infection characterizes Cpp populations, whereas the southern pattern of high-level infection affects Cpe locations. These patterns converge in the hybrid zone and generate a third infection pattern featuring an extremely high degree of co-infection with the two Wolbachia types in hybrids. The distribution of Wolbachia among the studied populations encourages us to consider the possibility that this bacterium has a significant influence on the origin, maintenance and dynamics of this hybrid zone, given the reproductive alterations that are often associated with Wolbachia.
Collapse
Affiliation(s)
- M Zabal-Aguirre
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | |
Collapse
|
33
|
Linares MC, Soto-Calderón ID, Lees DC, Anthony NM. High mitochondrial diversity in geographically widespread butterflies of Madagascar: A test of the DNA barcoding approach. Mol Phylogenet Evol 2009; 50:485-95. [DOI: 10.1016/j.ympev.2008.11.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 11/06/2008] [Accepted: 11/11/2008] [Indexed: 12/14/2022]
|
34
|
Baldo L, Ayoub NA, Hayashi CY, Russell JA, Stahlhut JK, Werren JH. Insight into the routes of Wolbachia invasion: high levels of horizontal transfer in the spider genus Agelenopsis revealed by Wolbachia strain and mitochondrial DNA diversity. Mol Ecol 2007; 17:557-69. [PMID: 18179432 DOI: 10.1111/j.1365-294x.2007.03608.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pandemic distribution of Wolbachia (alpha-proteobacteria) across arthropods is largely due to the ability of these maternally inherited endosymbionts to successfully shift hosts across species boundaries. Yet it remains unclear whether Wolbachia has preferential routes of transfer among species. Here, we examined populations of eight species of the North American funnel-web spider genus Agelenopsis to evaluate whether Wolbachia show evidence for host specificity and the relative contribution of horizontal vs. vertical transmission of strains within and among related host species. Wolbachia strains were characterized by multilocus sequence typing (MLST) and Wolbachia surface protein (WSP) sequences, and analysed in relation to host phylogeny, mitochondrial diversity and geographical range. Results indicate that at least three sets of divergent Wolbachia strains invaded the genus Agelenopsis. After each invasion, the Wolbachia strains preferentially shuffled across species of this host genus by horizontal transfer rather than cospeciation. Decoupling of Wolbachia and host mitochondrial haplotype (mitotypes) evolutionary histories within single species reveals an extensive contribution of horizontal transfer also in the rapid dispersal of Wolbachia among conspecific host populations. These findings provide some of the strongest evidence to support the association of related Wolbachia strains with related hosts by means of both vertical and horizontal strain transmission. Similar analyses across a broader range of invertebrate taxa are needed, using sensitive methods for strain typing such as MLST, to determine if this pattern of Wolbachia dispersal is peculiar to Agelenopsis (or spiders), or is in fact a general pattern in arthropods.
Collapse
Affiliation(s)
- Laura Baldo
- Department of Biology, University of California, 900 University Avenue, Riverside, CA 92521, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Ballard JWO, Melvin RG, Katewa SD, Maas K. Mitochondrial DNA variation is associated with measurable differences in life-history traits and mitochondrial metabolism in Drosophila simulans. Evolution 2007; 61:1735-47. [PMID: 17598752 DOI: 10.1111/j.1558-5646.2007.00133.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies have used a variety of theoretical arguments to show that mitochondrial (mt) DNA rarely evolves as a strictly neutral marker and that selection operates on the mtDNA of many species. However, the vast majority of researchers are not convinced by these arguments because data linking mtDNA variation with phenotypic differences are limited. We investigated sequence variation in the three mtDNA and nine nuclear genes (including all isoforms) that encode the 12 subunits of cytochrome c oxidase of the electron transport chain in Drosophila. We then studied cytochrome c oxidase activity as a key aspect of mitochondrial bioenergetics and four life-history traits. In Drosophila simulans, sequence data from the three mtDNA encoded cytochrome c oxidase genes show that there are 76 synonymous and two nonsynonymous fixed differences among flies harboring siII compared with siIII mtDNA. In contrast, 13 nuclear encoded genes show no evidence of genetic subdivision associated with the mtDNA. Flies with siIII mtDNA had higher cytochrome c oxidase activity and were more starvation resistant. Flies harboring siII mtDNA had greater egg size and fecundity, and recovered faster from cold coma. These data are consistent with a causative role for mtDNA variation in these phenotypic differences, but we cannot completely rule out the involvement of nuclear genes. The results of this study have significant implications for the use of mtDNA as an assumed neutral marker and show that evolutionary shifts can involve changes in mtDNA despite the small number of genes encoded in the organelle genome.
Collapse
Affiliation(s)
- J William O Ballard
- Ramaciotti Centre for Gene Function Analysis, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia.
| | | | | | | |
Collapse
|
36
|
Katewa SD, Ballard JWO. Sympatric Drosophila simulans flies with distinct mtDNA show age related differences in mitochondrial metabolism. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:923-32. [PMID: 17681231 PMCID: PMC2881225 DOI: 10.1016/j.ibmb.2007.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Revised: 04/16/2007] [Accepted: 04/22/2007] [Indexed: 05/09/2023]
Abstract
The primary causes of age-related changes in mitochondrial metabolism are not known. The goal of this study is to document the influence of naturally occurring mtDNA variation on age dependent changes in mitochondrial respiration, hydrogen peroxide (H(2)O(2)) generation and antioxidant defenses in the fly Drosophila simulans. Possible changes include an increase in rates of reactive oxygen species production with age and/or an age dependent decrease in antioxidant response. For this study we have used flies harboring distinct siII and siIII mtDNA types. Previously we have shown that males harboring siII mtDNA had higher rates of mitochondrial H(2)O(2) production from complex III at 11d compared to males with the siIII mtDNA type. Here, we corroborate those results and show that Drosophila harboring the siII and siIII mtDNA types exhibit significantly different patterns of pro-oxidant and antioxidant activities as they age. Flies harboring siII mtDNA had higher rates of mitochondrial H(2)O(2) production and manganese superoxide dismutase activity at 11 and 18d of age than siIII mtDNA harboring flies. Copper-zinc superoxide dismutase activity increased from 11 to 25d in siII flies while the accumulation of oxidized glutathione did not change between 11 and 25d. In contrast, siIII harboring flies showed an age dependent increase in H(2)O(2) production, reaching higher production rates on day 25 than that observed in siII flies. Copper-zinc superoxide dismutase activities did not change between 11 and 25d while the oxidized glutathione accumulation increased with age. The results show antioxidant levels correlate with pro-oxidant levels in siII but not siIII flies. These results demonstrate our ability to correlate mtDNA variation with differences in whole mitochondrial physiology and individual complex biochemistry.
Collapse
Affiliation(s)
- Subhash D Katewa
- Ramaciotti Centre for Gene Function Analysis, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia.
| | | |
Collapse
|
37
|
Katewa SD, Ballard JWO. Sympatric Drosophila simulans flies with distinct mtDNA show difference in mitochondrial respiration and electron transport. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:213-22. [PMID: 17296496 DOI: 10.1016/j.ibmb.2006.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 11/08/2006] [Accepted: 11/09/2006] [Indexed: 05/13/2023]
Abstract
The role of mitochondrial DNA (mtDNA) in mitochondrial metabolism is understudied yet humans harboring specific mtDNA types age at dissimilar rates, are unequally susceptible to various diseases, and differentially adapt to various environmental conditions. This study compares mitochondrial respiration, proton leak and electron transport of Drosophila simulans males with distinct mtDNA haplogroups (siII and -III) that were collected in sympatry in Kenya. Despite the large divergence among haplogroups there is very low intrahaplogroup variation and no correlated variation in the nuclear genome has been detected. We show that repeatable bioenergetic differences exist between 11d old males harboring siII and siIII mtDNA. Males with siIII mtDNA showed higher (i) state 3 respiration rates from isolated mitochondria for both complex I and complex III based substrates, and (ii) complex IV (cytochrome c oxidase) activity. Males harboring siIII mtDNA had lower (i) hydrogen peroxide formation by both complexes I and III, (ii) proton leak from isolated mitochondria, (iii) mitochondrial ATPase activity, and (iv) mitochondrial cytochrome content. In combination, the results suggest that mitochondria isolated from siIII mtDNA harboring males have more efficient metabolism than siII mtDNA harboring males.
Collapse
Affiliation(s)
- Subhash D Katewa
- Ramaciotti Centre for Gene Function Analysis, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia
| | | |
Collapse
|
38
|
Narita S, Nomura M, Kato Y, Yata O, Kageyama D. Molecular phylogeography of two sibling species of Eurema butterflies. Genetica 2007; 131:241-53. [PMID: 17216550 DOI: 10.1007/s10709-006-9134-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
The common yellow butterfly Eurema hecabe is widely distributed in East Asia, and is one of the most burdensome species for taxonomists due to the numerous geographic and seasonal wing colour patterns. Moreover, within this species, individuals with a yellow wing fringe that occur in temperate regions of Japan (Y type) proved to be biologically different from others that occur widely in subtropical regions of Japan and all over East Asia (B type). To unveil the genetic variation within and between the two types, a total of 50 butterflies collected at 18 geographic localities in East Asia were examined for nucleotide sequence variation of three mitochondrial regions: cytochrome c oxidase subunit I (COI), cytochrome c oxidase subunit III (COIII) and NADH dehydrogenase subunit 5 (ND5). In addition, they were also examined for infection status with the endosymbiotic bacteria Wolbachia. The three mitochondrial sequences consistently showed that (i) Y type and B type were highly divergent, (ii) nucleotide variation within B type was very small although sampled from a geographically wide range, and (iii) a weak association existed between mitochondrial DNA haplotypes and Wolbachia infection status.
Collapse
Affiliation(s)
- Satoko Narita
- Laboratory of Applied Entomology and Zoology, Faculty of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | | | | | | | | |
Collapse
|
39
|
Mateos M, Castrezana SJ, Nankivell BJ, Estes AM, Markow TA, Moran NA. Heritable endosymbionts of Drosophila. Genetics 2006; 174:363-76. [PMID: 16783009 PMCID: PMC1569794 DOI: 10.1534/genetics.106.058818] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 06/04/2006] [Indexed: 11/18/2022] Open
Abstract
Although heritable microorganisms are increasingly recognized as widespread in insects, no systematic screens for such symbionts have been conducted in Drosophila species (the primary insect genetic models for studies of evolution, development, and innate immunity). Previous efforts screened relatively few Drosophila lineages, mainly for Wolbachia. We conducted an extensive survey of potentially heritable endosymbionts from any bacterial lineage via PCR screens of mature ovaries in 181 recently collected fly strains representing 35 species from 11 species groups. Due to our fly sampling methods, however, we are likely to have missed fly strains infected with sex ratio-distorting endosymbionts. Only Wolbachia and Spiroplasma, both widespread in insects, were confirmed as symbionts. These findings indicate that in contrast to some other insect groups, other heritable symbionts are uncommon in Drosophila species, possibly reflecting a robust innate immune response that eliminates many bacteria. A more extensive survey targeted these two symbiont types through diagnostic PCR in 1225 strains representing 225 species from 32 species groups. Of these, 19 species were infected by Wolbachia while only 3 species had Spiroplasma. Several new strains of Wolbachia and Spiroplasma were discovered, including ones divergent from any reported to date. The phylogenetic distribution of Wolbachia and Spiroplasma in Drosophila is discussed.
Collapse
Affiliation(s)
- Mariana Mateos
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Dean MD. A Wolbachia-associated fitness benefit depends on genetic background in Drosophila simulans. Proc Biol Sci 2006; 273:1415-20. [PMID: 16777731 PMCID: PMC1560295 DOI: 10.1098/rspb.2005.3453] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The alpha-proteobacteria Wolbachia infect a number of insect species and influence host reproduction to favour the spread of infected females through a population. The fitness effect of this infection is important in understanding the spread and maintenance of Wolbachia within and among host populations. However, a full elucidation of fitness effect requires careful control of host genetic background. Here, I transferred a single clone of Wolbachia (the wHa strain) into three genetically distinct isofemale lines of the fly Drosophila simulans using microinjection methodology. These lines carried one of the three described mitochondrial haplogroups (siI, siII or siIII) and differ in nuclear genome as well. Population cage assays showed that wHa-infected siIII flies enjoyed a dramatic fitness benefit compared to uninfected siIII. In contrast, wHa did not affect the fitness of siI or siII flies. This study points to the importance of host-by-symbiont interaction terms that may play an important role in organismal-fitness.
Collapse
Affiliation(s)
- Matthew D Dean
- University of Iowa, 202 Biology Building, Iowa City, IA 52242, USA.
| |
Collapse
|
41
|
Narita S, Nomura M, Kato Y, Fukatsu T. Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: evolutionary and biogeographical implications. Mol Ecol 2006; 15:1095-108. [PMID: 16599969 DOI: 10.1111/j.1365-294x.2006.02857.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It was recently recognized that in Japan, the common yellow butterfly, Eurema hecabe, consists of two sibling species, which have been unnamed yet and tentatively called yellow (Y) type and brown (B) type. We investigated the diversity of nuclear and mitochondrial genes in Japanese populations of Y type and B type of E. hecabe. The phylogeny based on nuclear genes agreed with the distinction between Y type and B type, which had been also supported by a wide array of biological data. However, the phylogeny based on mitochondrial genes did not reflect the distinction. PCR survey of Wolbachia revealed that B-type populations were all infected while Y-type populations contained both infected and uninfected individuals. A single genotype of Wolbachia, which was inferred to be a CI-inducing strain from their wsp gene sequence, was prevalent in these populations. Notably, the mitochondrial phylogeny was in perfect agreement with the pattern of Wolbachia infection, suggesting that the Wolbachia infection had affected the mitochondrial genetic structure of the host insects. Probably, the Wolbachia strain and the associated mitochondrial genomes have been occasionally introduced from B-type populations to Y-type populations through migration and subsequent interspecific hybridization, and CI-driven population sweep has been spreading the Wolbachia strain and the particular mitochondrial haplotypes, which originated from B-type populations, into Y-type populations. On the basis of these results together with the geological and biogeographical knowledge of the Japanese Archipelago, we proposed an evolutionary hypothesis on the invasion and spread of Wolbachia infection in B-type and Y-type of E. hecabe.
Collapse
Affiliation(s)
- Satoko Narita
- Faculty of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | | | | | | |
Collapse
|
42
|
Hurst GDD, Jiggins FM. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc Biol Sci 2005; 272:1525-34. [PMID: 16048766 PMCID: PMC1559843 DOI: 10.1098/rspb.2005.3056] [Citation(s) in RCA: 471] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial DNA (mtDNA) has been a marker of choice for reconstructing historical patterns of population demography, admixture, biogeography and speciation. However, it has recently been suggested that the pervasive nature of direct and indirect selection on this molecule renders any conclusion derived from it ambiguous. We review here the evidence for indirect selection on mtDNA in arthropods arising from linkage disequilibrium with maternally inherited symbionts. We note first that these symbionts are very common in arthropods and then review studies that reveal the extent to which they shape mtDNA evolution. mtDNA diversity patterns are compatible with neutral expectations for an uninfected population in only 2 of 19 cases. The remaining 17 studies revealed cases of symbiont-driven reduction in mtDNA diversity, symbiont-driven increases in diversity, symbiont-driven changes in mtDNA variation over space and symbiont-associated paraphyly of mtDNA. We therefore conclude that these elements often confound the inference of an organism's evolutionary history from mtDNA data and that mtDNA on its own is an unsuitable marker for the study of recent historical events in arthropods. We also discuss the impact of these studies on the current programme of taxonomy based on DNA bar-coding.
Collapse
Affiliation(s)
- Gregory D D Hurst
- Department of Biology, University College London, 4 Stephenson Way, London NW1 2HE, UK.
| | | |
Collapse
|
43
|
Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics 2005; 168:2049-58. [PMID: 15611174 DOI: 10.1534/genetics.104.030890] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A substantial fraction of insects and other terrestrial arthropods are infected with parasitic, maternally transmitted endosymbiotic bacteria that manipulate host reproduction. In addition to imposing direct selection on the host to resist these effects, endosymbionts may also have indirect effects on the evolution of the mtDNA with which they are cotransmitted. Patterns of mtDNA diversity and evolution were examined in Drosophila recens, which is infected with the endosymbiont Wolbachia, and its uninfected sister species D. subquinaria. The level of mitochondrial, but not nuclear, DNA diversity is much lower in D. recens than in D. subquinaria, consistent with the hypothesized diversity-purging effects of an evolutionarily recent Wolbachia sweep. The d(N)/d(S) ratio in mtDNA is significantly greater in D. recens, suggesting that Muller's ratchet has brought about an increased rate of substitution of slightly deleterious mutations. The data also reveal elevated rates of synonymous substitutions in D. recens, suggesting that these sites may experience weak selection. These findings show that maternally transmitted endosymbionts can severely depress levels of mtDNA diversity within an infected host species, while accelerating the rate of divergence among mtDNA lineages in different species.
Collapse
|
44
|
Ahrens ME, Shoemaker D. Evolutionary history of Wolbachia infections in the fire ant Solenopsis invicta. BMC Evol Biol 2005; 5:35. [PMID: 15927071 PMCID: PMC1175846 DOI: 10.1186/1471-2148-5-35] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 05/31/2005] [Indexed: 11/30/2022] Open
Abstract
Background Wolbachia are endosymbiotic bacteria that commonly infect numerous arthropods. Despite their broad taxonomic distribution, the transmission patterns of these bacteria within and among host species are not well understood. We sequenced a portion of the wsp gene from the Wolbachia genome infecting 138 individuals from eleven geographically distributed native populations of the fire ant Solenopsis invicta. We then compared these wsp sequence data to patterns of mitochondrial DNA (mtDNA) variation of both infected and uninfected host individuals to infer the transmission patterns of Wolbachia in S. invicta. Results Three different Wolbachia (wsp) variants occur within S. invicta, all of which are identical to previously described strains in fire ants. A comparison of the distribution of Wolbachia variants within S. invicta to a phylogeny of mtDNA haplotypes suggests S. invicta has acquired Wolbachia infections on at least three independent occasions. One common Wolbachia variant in S. invicta (wSinvictaB) is associated with two divergent mtDNA haplotype clades. Further, within each of these clades, Wolbachia-infected and uninfected individuals possess virtually identical subsets of mtDNA haplotypes, including both putative derived and ancestral mtDNA haplotypes. The same pattern also holds for wSinvictaA, where at least one and as many as three invasions into S. invicta have occurred. These data suggest that the initial invasions of Wolbachia into host ant populations may be relatively ancient and have been followed by multiple secondary losses of Wolbachia in different infected lineages over time. Finally, our data also provide additional insights into the factors responsible for previously reported variation in Wolbachia prevalence among S. invicta populations. Conclusion The history of Wolbachia infections in S. invicta is rather complex and involves multiple invasions or horizontal transmission events of Wolbachia into this species. Although these Wolbachia infections apparently have been present for relatively long time periods, these data clearly indicate that Wolbachia infections frequently have been secondarily lost within different lineages. Importantly, the uncoupled transmission of the Wolbachia and mtDNA genomes suggests that the presumed effects of Wolbachia on mtDNA evolution within S. invicta are less severe than originally predicted. Thus, the common concern that use of mtDNA markers for studying the evolutionary history of insects is confounded by maternally inherited endosymbionts such as Wolbachia may be somewhat unwarranted in the case of S. invicta.
Collapse
Affiliation(s)
- Michael E Ahrens
- Department of Entomology, 643 Russell Labs, 1630 Linden Drive, University of Wisconsin, Madison, WI 53706 USA
| | - Dewayne Shoemaker
- Department of Entomology, 643 Russell Labs, 1630 Linden Drive, University of Wisconsin, Madison, WI 53706 USA
| |
Collapse
|
45
|
Ballard JWO, James AC. Differential fitness of mitochondrial DNA in perturbation cage studies correlates with global abundance and population history in Drosophila simulans. Proc Biol Sci 2004; 271:1197-201. [PMID: 15306370 PMCID: PMC1691713 DOI: 10.1098/rspb.2004.2709] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondria are often referred to as the powerhouse of the cell. However, research linking intraspecific differences in organismal fitness with genotypic mitochondrial DNA (mtDNA) variation has been hampered by the lack of variation in experimentally tractable species. This study examines whether fly lines harbouring three distinct Drosophila simulans mtDNA types (siI, -II and -III) exhibit differential fitness in laboratory perturbation cages. Comparison of the pre-perturbation and post-perturbation data shows that both the mtDNA and mitonuclear interactions have a significant and repeatable effect on the frequency of flies with specific genotypes in population cages (siII > -III > -I) and that coadapted mitonuclear interactions are greatest in the siI type. The rank order of mtDNA frequency correlates with the observed worldwide distribution of the haplogroups while mitonuclear interactions are most significant in the siI haplogroup that is likely to have been subject to repeated population bottlenecks. One possible explanation for the maintenance of the least fit siI haplogroup on Pacific islands is that it is protected from extinction by Wolbachia infection.
Collapse
Affiliation(s)
- J William O Ballard
- Department of Biological Science, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
46
|
Dean MD, Ballard JWO. Linking phylogenetics with population genetics to reconstruct the geographic origin of a species. Mol Phylogenet Evol 2004; 32:998-1009. [PMID: 15288072 DOI: 10.1016/j.ympev.2004.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 03/18/2004] [Indexed: 10/26/2022]
Abstract
Reconstructing ancestral geographic origins is critical for understanding the long-term evolution of a species. Bayesian methods have been proposed to test biogeographic hypotheses while accommodating uncertainty in phylogenetic reconstruction. However, the problem that certain taxa may have a disproportionate influence on conclusions has not been addressed. Here, we infer the geographic origin of Drosophila simulans using 2,014 bp of the period locus from 63 lines collected from 18 countries. We also analyze two previously published datasets, alcohol dehydrogenase related and NADH:ubiquinone reductase 75 kDa subunit precursor. Phylogenetic inferences of all three loci support Madagascar as the geographic origin of D. simulans. Our phylogenetic conclusions are robust to taxon resampling and to the potentially confounding effects of recombination. To test our phylogenetically derived hypothesis we develop a randomization test of the population genetics prediction that sequences from the geographic origin should contain more genetic polymorphism than those from derived populations. We find that the Madagascar population has elevated genetic polymorphism relative to non-Madagascar sequences. These data are corroborated by mitochondrial DNA sequence data.
Collapse
Affiliation(s)
- Matthew D Dean
- University of Iowa, 202 Biology Building, Iowa City, IA 52242, USA.
| | | |
Collapse
|