De Kok J, Slater EC. The respiratory chain in a ubiquinone-deficient mutant of Saccharomyces cerevisiae.
BIOCHIMICA ET BIOPHYSICA ACTA 1975;
376:27-41. [PMID:
235982 DOI:
10.1016/0005-2728(75)90202-9]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. Two allelic mutants of Saccharomyces cerevisiae with a deficiency in the biosynthesis of ubiquinone have been isolated. The properties of one particular mutant strain were investigated. Submitochondrial particles of this strain contain maximally 3% of the amount of ubiquinone in wild-type particles; the amounts of other components of the respiratory chain are essentially normal. 2. The respiratory rates of mutant cells, mitochondria and submitochondrial particles are low with ubiquinone-dependent substrates, but are restored to normal levels by addition of Q-1; the restored respiration is antimycin sensitive. Intact cells and mitochondria show respiratory control both in the absence and presence of Q-1. 3. The NADH:Q-1 oxidoreductase of submitochondrial particles of the mutant followspseudo first-order kinetics in [Q-1]. QH2-1 inhibits competitively with respect to Q-1, the Ki for QH2-1 being equal to the Km for Q-1. 4. Succinate dehydrogenase in both wild-type and mutant submitochondrial particles can be activated by NADH. 5. The turnover number of succinate dehydrogenase in the mutant, measured with phenazine methosulphate as primary electron acceptor, is about one-half that of wild-type particles. The turnover numbers measured with Q-1 as electron acceptor are about the same in the two types of particles. 6. The kinetics of redox changes in cytochrome b, in the presence of antimycin and oxygen, are distinctly different in the mutant and wild-type particles. They indicate that ubiquinone plays an important role in the phenomenon of the increased reducibility of cytochrome b induced by antimycin plus oxygen.
Collapse