1
|
Gerbi SA. Non-random chromosome segregation and chromosome eliminations in the fly Bradysia (Sciara). Chromosome Res 2022; 30:273-288. [PMID: 35793056 PMCID: PMC10777868 DOI: 10.1007/s10577-022-09701-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Mendelian inheritance is based upon random segregation of homologous chromosomes during meiosis and perfect duplication and division of chromosomes in mitosis so that the entire genomic content is passed down to the daughter cells. The unusual chromosome mechanics of the fly Bradysia (previously called Sciara) presents many exceptions to the canonical processes. In male meiosis I, there is a monopolar spindle and non-random segregation such that all the paternal homologs move away from the single pole and are eliminated. In male meiosis II, there is a bipolar spindle and segregation of the sister chromatids except for the X dyad that undergoes non-disjunction. The daughter cell that is nullo-X degenerates, whereas the sperm has two copies of the X. Fertilization restores the diploid state, but there are three copies of the X chromosome, of which one or two of the paternally derived X chromosomes will be eliminated in an early cleavage division. Bradysia (Sciara) coprophila also has germ line limited L chromosomes that are eliminated from the soma. Current information and the molecular mechanisms for chromosome imprinting and eliminations, which are just beginning to be studied, will be reviewed here.
Collapse
Affiliation(s)
- Susan A Gerbi
- Department of Molecular Biology, Cell Biology and Biochemistry, Division of Biology and Medicine, Brown University, 185 Meeting Street, Sidney Frank Hall Room 260, Providence, RI, 02912, USA.
| |
Collapse
|
2
|
Amabis JM, Gorab E. Dramatic nucleolar dispersion in the salivary gland of Schwenkfeldina sp. (Diptera: Sciaridae). Sci Rep 2021; 11:8347. [PMID: 33863925 PMCID: PMC8052372 DOI: 10.1038/s41598-021-87012-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
Micronucleoli are among the structures composing the peculiar scenario of the nucleolus in salivary gland nuclei of dipterans representative of Sciaridae. Micronucleolar bodies contain ribosomal DNA and RNA, are transcriptionally active and may appear free in the nucleoplasm or associated with specific chromosome regions in salivary gland nuclei. This report deals with an extreme case of nucleolar fragmentation/dispersion detected in the salivary gland of Schwenkfeldina sp. Such a phenomenon in this species was found to be restricted to cell types undergoing polyteny and seems to be differentially controlled according to the cell type. Furthermore, transcriptional activity was detected in virtually all the micronucleolar bodies generated in the salivary gland. The relative proportion of the rDNA in polytene and diploid tissues showed that rDNA under-replication did not occur in polytene nuclei suggesting that the nucleolar and concomitant rDNA dispersion in Schwenkfeldina sp. may reflect a previously hypothesised process in order to counterbalance the rDNA loss due to the under-replication. The chromosomal distribution of epigenetic markers for the heterochromatin agreed with early cytological observations in this species suggesting that heterochromatin is spread throughout the chromosome length of Schwenkfeldina sp. A comparison made with results from another sciarid species argues for a role played by the heterochromatin in the establishment of the rDNA topology in polytene nuclei of Sciaridae.
Collapse
Affiliation(s)
- José Mariano Amabis
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, São Paulo, SP, 05508-090, Brazil
| | - Eduardo Gorab
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
3
|
Molecular and cytological characterization of repetitive DNA sequences from the centromeric heterochromatin of Sciara coprophila. Chromosoma 2011; 120:387-97. [PMID: 21533987 DOI: 10.1007/s00412-011-0320-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
Sciara coprophila (Diptera, Nematocera) constitutes a classic model to analyze unusual chromosome behavior such as the somatic elimination of paternal X chromosomes, the elimination of the whole paternal, plus non-disjunction of the maternal X chromosome at male meiosis. The molecular organization of the heterochromatin in S. coprophila is mostly unknown except for the ribosomal DNA located in the X chromosome pericentromeric heterochromatin. The characterization of the centromeric regions, thus, is an essential and required step for the establishment of S. coprophila as a model system to study fundamental mechanisms of chromosome segregation. To accomplish such a study, heterochromatic sections of the X chromosome centromeric region from salivary glands polytene chromosomes were microdissected and microcloned. Here, we report the identification and characterization of two tandem repeated DNA sequences from the pericentromeric region of the X chromosome, a pericentromeric RTE element and an AT-rich centromeric satellite. These sequences will be important tools for the cloning of S. coprophila centromeric heterochromatin using libraries of large genomic clones.
Collapse
|
4
|
Escribá MC, Giardini MC, Goday C. Histone H3 phosphorylation and non-disjunction of the maternal X chromosome during male meiosis in sciarid flies. J Cell Sci 2011; 124:1715-25. [PMID: 21511731 DOI: 10.1242/jcs.083022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An extremely unorthodox method of chromosome segregation is found in sciarid flies (Diptera, Sciaridae), where at male meiosis, the whole paternal complement is eliminated and the maternal X chromosome undergoes non-disjunction. At meiosis I, a monopolar spindle directs the segregation of maternal chromosomes to the single pole, whereas paternal chromosomes are discarded. At meiosis II, although maternal autosomes segregate normally, the X chromosome remains undivided. A cis-acting locus within the heterochromatin proximal to the centromere is known to regulate X centromere activity. By immunofluorescence analysis in spermatocytes from Sciara ocellaris and Sciara coprophila, we investigated histone H3 phosphorylation at Ser10, Ser28, Thr3 and Thr11 during male meiosis. We found that chromosome condensation and H3 phosphorylation patterns differ between chromosomes of different parental origin at the time of paternal set elimination. Importantly, at meiosis II, the maternal X chromosome differs from the rest of the chromosomes in that its centromeric region does not become phosphorylated at the four histone H3 sites. We provide here the first evidence linking the under-phosphorylated H3 status of the X chromosome centromeric region with its meiotic non-disjunction in sciarid flies. Our findings strongly support the idea that the deficiency in local H3 phosphorylation inactivates the X centromere at the transition from meiosis I to meiosis II.
Collapse
Affiliation(s)
- M Carmen Escribá
- Departamento de Proliferación Celular y Desarrollo, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | |
Collapse
|
5
|
Two new chromodomain-containing proteins that associate with heterochromatin in Sciara coprophila chromosomes. Chromosoma 2009; 118:361-76. [DOI: 10.1007/s00412-009-0203-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 01/13/2009] [Accepted: 01/19/2009] [Indexed: 10/21/2022]
|
6
|
Affiliation(s)
- Susan A Gerbi
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA.
| |
Collapse
|
7
|
Madalena CRG, Amabis JM, Stocker AJ, Gorab E. The localization of ribosomal DNA in Sciaridae (Diptera: Nematocera) reassessed. Chromosome Res 2007; 15:409-16. [PMID: 17364224 DOI: 10.1007/s10577-007-1127-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 01/17/2007] [Accepted: 01/17/2007] [Indexed: 11/28/2022]
Abstract
The chromosomal localization of ribosomal DNA (rDNA) was studied in polytene and diploid tissues of four sciarid species, Trichosia pubescens, Rhynchosciara americana, R. milleri and Schwenkfeldina sp. While hybridization to mitotic chromosomes showed the existence of a single rDNA locus, ribosomal probes hybridized to more than one polytene chromosome region in all the species analyzed as a result of micronucleolar attachment to specific chromosome sites. Micronucleoli are small, round bodies containing transcriptionally active, probably extrachromosomal rDNA. In T. pubescens the rDNA is predominantly localized in chromosome sections X-10 and X-8. In R. americana the rDNA is frequently found associated with centromeric heterochromatin of the chromosomes X, C, B and A, and also with sections X-1 and B-13. Ribosomal probes in R. milleri hybridized with high frequency to pericentric and telomeric regions of its polytene complement. Schwfenkfeldina sp. displays a remarkably unusual distribution of rDNA in polytene nuclei, characterized by the attachment of micronucleoli to many chromosome regions. The results showed that micronucleoli preferentially associate with intercalary or terminal heterochromatin of all sciarid flies analyzed and, depending on the species, are attached to a few (Trichosia), moderate (Rhynchosciara) or a large (Schwenkfeldina sp.) number of polytene chromosome sites.
Collapse
Affiliation(s)
- Christiane Rodriguez Gutierrez Madalena
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
8
|
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
9
|
MATUSZEWSKI B, JAZDOWSKA-ZAGRODZIŃSKA B. Variation of nuclear number in nurse chambers of egg follicles in gall midges (Cecidomyiidae, Diptera). INVERTEBR REPROD DEV 1994. [DOI: 10.1080/07924259.1994.9672366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Park YJ, Fallon AM. Mosquito ribosomal RNA genes: Characterization of gene structure and evidence for changes in copy number during development. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0020-1790(90)90016-n] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Kerrebrock AW, Srivastava R, Gerbi SA. Isolation and characterization of ribosomal DNA variants from Sciara coprophila. J Mol Biol 1989; 210:1-13. [PMID: 2555520 DOI: 10.1016/0022-2836(89)90286-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ribosomal RNA multigene family in the fungus fly Sciara coprophila contains a total of only 65 to 70 repeat units. We explored the types and frequencies of variant repeats in this small multigene family by characterizing different cloned rDNA variants from Sciara. Although we did not observe any intergenic spacer length variants in Sciara, we found a variant due to the insertion of a putative mobile element (lambda Bc11), and variants containing ribosomal insertion elements. By DNA sequence analysis of rDNA/non-rDNA junctions, there are three distinct types of ribosomal insertion elements found in Sciara rDNA: two correspond to the R1 and R2 insertion elements found in other dipterans (clones lambda Bc5 and pBc1L1, respectively), and one is a novel class of ribosomal insertion elements (R3, exemplified by clone pBc6D6) which so far is unique to Sciara. Together, the several different rDNA variants make up from 12 to 20% of the rDNA in Sciara. These results are discussed in the context of evolution of the ribosomal RNA multigene family.
Collapse
Affiliation(s)
- A W Kerrebrock
- Division of Biology and Medicine, Brown University, Providence, RI 02912
| | | | | |
Collapse
|
12
|
|
13
|
Renkawitz-Pohl R, Matsumoto L, Gerbi SA. Two distinct intervening sequences in different ribosomal DNA repeat units of Sciara coprophila. Nucleic Acids Res 1981; 9:3747-64. [PMID: 7279671 PMCID: PMC327389 DOI: 10.1093/nar/9.15.3747] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We have prepared a partial gene library of sheared DNA from the fungus fly, Sciara coprophila, by dA-T tailing and insertion into pBR322. Two ribosomal DNA clones which differ from the usual ribosomal DNA organization in this organism were studied in detail. Clone pBc 1L-1 has an intervening sequence of 1.4 kb, and clone pBc 6D-6 has an intervening sequence of 0.9 kb. These intervening sequences occur in about the same position in 28S rDNA, but do not appear to share sequence homology with one another. Previously we found that 90% of Sciara ribosomal DNA is homogenous and lacks an intervening sequence, and our present data explains the size heterogeneity found in most of the remaining 10%. We have found no evidence of size heterogeneity in the nontranscribed spacer.
Collapse
|
14
|
Zegarelli-Schmidt EC, Goodman R. The diptera as a model system in cell and molecular biology. INTERNATIONAL REVIEW OF CYTOLOGY 1981; 71:245-363. [PMID: 7016803 DOI: 10.1016/s0074-7696(08)61184-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Abstract
Members of a group of Australian Chironomus species in the pseudothummi complex show wide variation in number and location of nucleolar organizing regions (NORs). The structure of these regions has been examined by phase contrast microscopy and silver banding of salivary gland polytene chromosomes. Presence of nucleoli was also checked on other types of chromosomes in some species. The contribution of the silver banding technique to nucleolar studies in these chironomid chromosomes is discussed. Nucleoli often seem to emerge from groups of (up to 9) bands. Further studies are necessary to confirm the presence of rRNA cistrons in all of these bands. Banding differences, in particular absence of bands from homologous regions of some species which have smaller nucleoli or lack particular nucleoli, have been found. In the case of Ch. tepperi, however, little banding difference is apparent in the 16B region between the N(IV)+ and N(IV)- chromosomes, although in situ hybridization (Eigenbrod 1978) shows a deletion of rRNA cistrons in the N(IV)- stock. Differences in heterochromatin amount have also been observed at different NORs. A scheme for the evolution of nucleolar-producing regions in this Chironomus group in terms of these and other known chromosomal changes is presented and discussed.
Collapse
|
16
|
Renkawitz R, Gerbi SA, Glätzer KH. Ribosomal DNA of fly Sciara coprophila has a very small and homogeneous repeat unit. MOLECULAR & GENERAL GENETICS : MGG 1979; 173:1-13. [PMID: 288964 DOI: 10.1007/bf00267685] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this report we show by hybridization of restriction fragments and by Miller spreads that the unit repeat of the fly Sciara coprophila is only 8.4 kb which is the smallest known for a multicellular eukaryote. The 8.4 kb EcoR1 fragment containing a complete unit of Sciara rDNA was cloned in pBR322, and mapped by the method of Parker (1977) and also by double digestions. The coding regions for 28S, 18S, and 5.8S RNA were localized by the method of Berk and Sharp (1977). From these data we conclude that the nontranscribed spacer, external transcribed spacer, and internal transcribed spacer are all shorter than in other organisms, thereby giving rise to the shorter overall rDNA repeat unit of Sciara. At least 90% of the Sciara rDNA repeats are homogeneous, with a length of 8.4 kb, but a 700 bp ladder of minor bands can also be found in digestions of total genome DNA. This profile of major and minor bands is identical between the X and X' chromosomes, as seen by a comparison of several genotypes. There are only 45 rRNA genes per X chromosome of Sciara (Gerbi and Crouse, 1976). These can easily be counted by low magnification Miller spreads which show that virtually all gene copies are actively being transcribed in the stage of spermatogenesis examined. This is the first demonstration for any reiterated gene family where all copies are shown to be simultaneously active.
Collapse
|
17
|
X heterochromatin subdivision and cytogenetic analysis in Sciara coprophila (diptera, sciaridae). Chromosoma 1979. [DOI: 10.1007/bf00292274] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Spring H, Grierson D, Hemleben V, Stöhr M, Krohne G, Stadler J, Franke WW. DNA contents and numbers of nucleoli and pre-rRNA-genes in nuclei of gametes and vegetative cells of Acetabularia mediterranea. Exp Cell Res 1978; 114:203-15. [PMID: 658155 DOI: 10.1016/0014-4827(78)90054-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Crouse HV, Gerbi SA, Liang CM, Magnus L, Mercer IM. Localization of ribosomal DNA within the proximal X heterochromatin of Sciara coprophila (Diptera, Sciaridae). Chromosoma 1977; 64:305-18. [PMID: 563785 DOI: 10.1007/bf00294938] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
X heterochromatin subdivision and cytogenetic analysis in Sciara coprophila (Diptera, Sciaridae). Chromosoma 1977. [DOI: 10.1007/bf00292941] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|