1
|
Xu C, Wang JC, Sun L, Zhuang LH, Guo ZJ, Ding QS, Ma DN, Song LY, Li J, Tang HC, Zhu XY, Zheng HL. Genome-Wide Identification of Pentatricopeptide Repeat (PPR) Gene Family and Multi-Omics Analysis Provide New Insights Into the Albinism Mechanism of Kandelia obovata Propagule Leaves. PLANT, CELL & ENVIRONMENT 2024; 47:5498-5510. [PMID: 39222055 DOI: 10.1111/pce.15132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Pentatricopeptide repeat (PPR) gene family constitutes one of the largest gene families in plants, which mainly participate in RNA editing and RNA splicing of organellar RNAs, thereby affecting the organellar development. Recently, some evidence elucidated the important roles of PPR proteins in the albino process of plant leaves. However, the functions of PPR genes in the woody mangrove species have not been investigated. In this study, using a typical true mangrove Kandelia obovata, we systematically identified 298 PPR genes and characterized their general features and physicochemical properties, including evolutionary relationships, the subcellular localization, PPR motif type, the number of introns and PPR motifs, and isoelectric point, and so forth. Furthermore, we combined genome-wide association studies (GWAS) and transcriptome analysis to identify the genetic architecture and potential PPR genes associated with propagule leaves colour variations of K. obovata. As a result, we prioritized 16 PPR genes related to the albino phenotype using different strategies, including differentially expressed genes analysis and genetic diversity analysis. Further analysis discovered two genes of interest, namely Maker00002998 (PLS-type) and Maker00003187 (P-type), which were differentially expressed genes and causal genes detected by GWAS analysis. Moreover, we successfully predicted downstream target chloroplast genes (rps14, rpoC1 and rpoC2) bound by Maker00002998 PPR proteins. The experimental verification of RNA editing sites of rps14, rpoC1, and rpoC2 in our previous study and the verification of interaction between Maker00002998 and rps14 transcript using in vitro RNA pull-down assays revealed that Maker00002998 PPR protein might be involved in the post-transcriptional process of chloroplast genes. Our result provides new insights into the roles of PPR genes in the albinism mechanism of K. obovata propagule leaves.
Collapse
Affiliation(s)
- Chaoqun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ji-Cheng Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ling Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Li-Han Zhuang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ze-Jun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, China
| | - Qian-Su Ding
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Dong-Na Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ling-Yu Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Han-Chen Tang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xue-Yi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Li C, Zhao J, Liu Z, Yang Y, Lai C, Ma J, Aierxi A. Comparative Transcriptomic Analysis of Gossypium hirsutum Fiber Development in Mutant Materials ( xin w 139) Provides New Insights into Cotton Fiber Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:1127. [PMID: 38674536 PMCID: PMC11054599 DOI: 10.3390/plants13081127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
Cotton is the most widely planted fiber crop in the world, and improving cotton fiber quality has long been a research hotspot. The development of cotton fibers is a complex process that includes four consecutive and overlapping stages, and although many studies on cotton fiber development have been reported, most of the studies have been based on cultivars that are promoted in production or based on lines that are used in breeding. Here, we report a phenotypic evaluation of Gossypium hirsutum based on immature fiber mutant (xin w 139) and wild-type (Xin W 139) lines and a comparative transcriptomic study at seven time points during fiber development. The results of the two-year study showed that the fiber length, fiber strength, single-boll weight and lint percentage of xin w 139 were significantly lower than those of Xin W 139, and there were no significant differences in the other traits. Principal component analysis (PCA) and cluster analysis of the RNA-sequencing (RNA-seq) data revealed that these seven time points could be clearly divided into three different groups corresponding to the initiation, elongation and secondary cell wall (SCW) synthesis stages of fiber development, and the differences in fiber development between the two lines were mainly due to developmental differences after twenty days post anthesis (DPA). Differential expression analysis revealed a total of 5131 unique differentially expressed genes (DEGs), including 290 transcription factors (TFs), between the 2 lines. These DEGs were divided into five clusters. Each cluster functional category was annotated based on the KEGG database, and different clusters could describe different stages of fiber development. In addition, we constructed a gene regulatory network by weighted correlation network analysis (WGCNA) and identified 15 key genes that determined the differences in fiber development between the 2 lines. We also screened seven candidate genes related to cotton fiber development through comparative sequence analysis and qRT-PCR; these genes included three TFs (GH_A08G1821 (bHLH), GH_D05G3074 (Dof), and GH_D13G0161 (C3H)). These results provide a theoretical basis for obtaining an in-depth understanding of the molecular mechanism of cotton fiber development and provide new genetic resources for cotton fiber research.
Collapse
Affiliation(s)
- Chunping Li
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Jieyin Zhao
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China;
| | - Zhongshan Liu
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Yanlong Yang
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Chengxia Lai
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Jun Ma
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| | - Alifu Aierxi
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.L.); (Z.L.); (Y.Y.); (C.L.)
| |
Collapse
|
3
|
Liu Y, Kim HJ. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy with Soft Independent Modeling of Class Analogy-Principal Component Analysis for Classifying Cotton Fiber Maturity Phenotypes of Cotton Population Composed of Various Genotypes. APPLIED SPECTROSCOPY 2024; 78:99-110. [PMID: 37933119 DOI: 10.1177/00037028231211942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Maturity is a major fiber trait that affects the processing and performance of cotton fiber. Rapid and accurate identification of fiber maturity phenotypes and genotypes is of importance to breeders. Previous studies showed that either conventional fiber measurements or attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) analysis discriminated the immature fiber (im) phenotype from the wild type (WT) mature fiber phenotype in a segregating F2 population from a cross between two upland cotton lines differing in fiber maturity. However, both conventional fiber property measurement methods and FT-IR analyses with current algorithms could not detect the subtle differences among the WT fibers composed of two different genotypes, WT homozygosity (WT-homo) and WT heterozygosity (WT-hetero). This research explored the FT-IR method, in combination with soft independent modeling of class analogy of principal component analysis (SIMCA-PCA), for the discrimination of WT fiber phenotypes consisting of two different genotypes (WT-homo and WT-hetero). The new approach enabled the detection of IR spectral intensity differences between WT-homo and WT-hetero fibers. Successful classification originated from a distinctive spectral difference in the low-wavenumber region (<700 cm-1) between WT-hetero fibers and WT-homo fibers. This observation emphasized that ATR FT-IR with a SIMCA-PCA approach would be a sensitive tool for classifying the WT fibers demonstrating minor phenotypic differences. The improved sensitivity of the infrared method may provide a way of dissecting genotype-phenotype interactions of cotton fibers rapidly and efficiently.
Collapse
Affiliation(s)
- Yongliang Liu
- USDA, ARS, Southern Regional Research Center, Cotton Structure and Quality Research Unit, New Orleans, Louisiana, USA
| | - Hee-Jin Kim
- USDA, ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, Louisiana, USA
| |
Collapse
|
4
|
Kushanov FN, Komilov DJ, Turaev OS, Ernazarova DK, Amanboyeva RS, Gapparov BM, Yu JZ. Genetic Analysis of Mutagenesis That Induces the Photoperiod Insensitivity of Wild Cotton Gossypium hirsutum Subsp. purpurascens. PLANTS (BASEL, SWITZERLAND) 2022; 11:3012. [PMID: 36432741 PMCID: PMC9698681 DOI: 10.3390/plants11223012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Cotton genus Gossypium L., especially its wild species, is rich in genetic diversity. However, this valuable genetic resource is barely used in cotton breeding programs. In part, due to photoperiod sensitivities, the genetic diversity of Gossypium remains largely untapped. Herein, we present a genetic analysis of morphological, cytological, and genomic changes from radiation-mediated mutagenesis that induced plant photoperiod insensitivity in the wild cotton of Gossypium hirsutum. Several morphological and agronomical traits were found to be highly inheritable using the progeny between the wild-type G. hirsutum subsp. purpurascens (El-Salvador) and its mutant line (Kupaysin). An analysis of pollen mother cells (PMCs) revealed quadrivalents that had an open ring shape and an adjoining type of divergence of chromosomes from translocation complexes. Using 336 SSR markers and 157 F2 progenies that were grown with parental genotypes and F1 hybrids in long day and short night conditions, five quantitative trait loci (QTLs) associated with cotton flowering were located on chromosomes At-05, At-11, and Dt-07. Nineteen candidate genes related to the flowering traits were suggested through molecular and in silico analysis. The DNA markers associated with the candidate genes, upon future functional analysis, would provide useful tools in marker-assisted selection (MAS) in cotton breeding programs for early flowering and maturity.
Collapse
Affiliation(s)
- Fakhriddin N. Kushanov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Qibray QFY, Yuqori-Yuz, Qibray District, Tashkent 111226, Uzbekistan
- Department of Biology, National University of Uzbekistan, University Street-4, Olmazor District, Tashkent 100174, Uzbekistan
- Department of Biotechnology, Namangan State University, Uychi Street-316, Namangan 160100, Uzbekistan
| | - Doniyor J. Komilov
- Department of Biotechnology, Namangan State University, Uychi Street-316, Namangan 160100, Uzbekistan
- Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, University Street-2, Qibray District, Tashkent 111215, Uzbekistan
| | - Ozod S. Turaev
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Qibray QFY, Yuqori-Yuz, Qibray District, Tashkent 111226, Uzbekistan
- Department of Biology, National University of Uzbekistan, University Street-4, Olmazor District, Tashkent 100174, Uzbekistan
| | - Dilrabo K. Ernazarova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Qibray QFY, Yuqori-Yuz, Qibray District, Tashkent 111226, Uzbekistan
- Department of Biology, National University of Uzbekistan, University Street-4, Olmazor District, Tashkent 100174, Uzbekistan
| | - Roza S. Amanboyeva
- Department of Biology, National University of Uzbekistan, University Street-4, Olmazor District, Tashkent 100174, Uzbekistan
- Faculty of Natural Sciences, Gulistan State University, 4th Microregion, Gulistan 120100, Uzbekistan
| | - Bunyod M. Gapparov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Qibray QFY, Yuqori-Yuz, Qibray District, Tashkent 111226, Uzbekistan
| | - John Z. Yu
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845, USA
| |
Collapse
|
5
|
Comparison of Mitochondrial Genomes between a Cytoplasmic Male-Sterile Line and Its Restorer Line for Identifying Candidate CMS Genes in Gossypium hirsutum. Int J Mol Sci 2022; 23:ijms23169198. [PMID: 36012463 PMCID: PMC9409232 DOI: 10.3390/ijms23169198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
As the core of heterosis utilization, cytoplasmic male sterility (CMS) has been widely used in hybrid seed production. Previous studies have shown that CMS is always closely related to the altered programming of mitochondrial genes. To explore candidate CMS genes in cotton (Gossypium hirsutum), sequencing and de novo assembly were performed on the mitochondrial genome of the G. hirsutum CMS line SI3A, with G. harknessii CMS-D2 cytoplasm, and the corresponding G. hirsutum restorer line 0-613-2R. Remarkable variations in genome structure and gene transcripts were detected. The mitochondrial genome of SI3A has three circle molecules, including one main circle and two sub-circles, while 0-613-2R only has one. RNA-seq and RT-qPCR analysis proved that orf606a and orf109a, which have a chimeric structure and transmembrane domain, were highly expressed in abortive anthers of SI3A. In addition, comparative analysis of RNA-seq and full-length transcripts revealed the complex I gene nad4 to be expressed at a lower level in SI3A than in its restorer and that it featured an intron retention splicing pattern. These two novel chimeric ORFs and nad4 are potential candidates that confer CMS character in SI3A. This study provides new insight into the molecular basis of the nuclear–cytoplasmic interaction mechanism, and that putative CMS genes might be important sources for future precise design cross-breeding of cotton.
Collapse
|
6
|
Kim HJ, Kato N, Ndathe R, Thyssen GN, Jones DC, Ratnayaka HH. Evidence for thermosensitivity of the cotton (Gossypium hirsutum L.) immature fiber (im) mutant via hypersensitive stomatal activity. PLoS One 2021; 16:e0259562. [PMID: 34898615 PMCID: PMC8668099 DOI: 10.1371/journal.pone.0259562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
Thickness of cotton fiber, referred to as fiber maturity, is a key determinant of fiber quality, lint yield, and textile performance. The cotton immature fiber (im) mutant has been used to study fiber maturity since its fiber is thinner than the wild type near isogeneic line (NIL), Texas Marker-1 (TM-1). The im phenotype is caused by a single recessive mutation of a pentatricopeptide repeat (PPR) gene that reduces the activity of mitochondrial complex I and up-regulates stress responsive genes. However, the mechanisms altering the stress responses in im mutant are not well understood. Thus, we characterized growth and gas exchange in im and TM-1 under no stress and also investigated their stress responses by comparing gas exchange and transcriptomic profiles under high temperature. Phenotypic differences were detected between the NILs in non-fiber tissues although less pronounced than the variation in fibers. At near optimum temperature (28±3°C), im maintained the same photosynthetic performance as TM-1 by means of greater stomatal conductance. In contrast, under high temperature stress (>34°C), im leaves reduced photosynthesis by decreasing the stomatal conductance disproportionately more than TM-1. Transcriptomic analyses showed that the genes involved in heat stress responses were differentially expressed between the NIL leaves. These results indicate that the im mutant previously reported to have low activity of mitochondrial complex I displays increased thermosensitivity by impacting stomatal conductance. They also support a notion that mitochondrial complex I activity is required for maintenance of optimal photosynthetic performance and acclimation of plants to high temperature stress. These findings may be useful in the future efforts to understand how physiological mechanisms play a role in determining cotton fiber maturity and may influence stress responses in other crops.
Collapse
Affiliation(s)
- Hee Jin Kim
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, United States of America
- * E-mail: (HJK); (HHR)
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Ruth Ndathe
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Gregory N. Thyssen
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, United States of America
| | - Don C. Jones
- Cotton Incorporated, Cary, NC, United States of America
| | - Harish H. Ratnayaka
- Department of Biology, Xavier University of Louisiana, New Orleans, LA, United States of America
- * E-mail: (HJK); (HHR)
| |
Collapse
|
7
|
Qin T, Zhao P, Sun J, Zhao Y, Zhang Y, Yang Q, Wang W, Chen Z, Mai T, Zou Y, Liu G, Hao W. Research Progress of PPR Proteins in RNA Editing, Stress Response, Plant Growth and Development. Front Genet 2021; 12:765580. [PMID: 34733319 PMCID: PMC8559896 DOI: 10.3389/fgene.2021.765580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
RNA editing is a posttranscriptional phenomenon that includes gene processing and modification at specific nucleotide sites. RNA editing mainly occurs in the genomes of mitochondria and chloroplasts in higher plants. In recent years, pentatricopeptide repeat (PPR) proteins, which may act as trans-acting factors of RNA editing have been identified, and the study of PPR proteins has become a research focus in molecular biology. The molecular functions of these proteins and their physiological roles throughout plant growth and development are widely studied. In this minireview, we summarize the current knowledge of the PPR family, hoping to provide some theoretical reference for future research and applications.
Collapse
Affiliation(s)
- Tengfei Qin
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Pei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jialiang Sun
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Yuping Zhao
- Beijing River and Lake Management Office, Beijing, China
| | - Yaxin Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Qiuyue Yang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Weipeng Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Zhuanqing Chen
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Tengfei Mai
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Yingying Zou
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Guoxiang Liu
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wei Hao
- College of Medical Technology, Beihua University, Jilin City, China
| |
Collapse
|