1
|
Mohr SE, Kim AR, Hu Y, Perrimon N. Finding information about uncharacterized Drosophila melanogaster genes. Genetics 2023; 225:iyad187. [PMID: 37933691 PMCID: PMC10697813 DOI: 10.1093/genetics/iyad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/02/2023] [Indexed: 11/08/2023] Open
Abstract
Genes that have been identified in the genome but remain uncharacterized with regards to function offer an opportunity to uncover novel biological information. Novelty is exciting but can also be a barrier. If nothing is known, how does one start planning and executing experiments? Here, we provide a recommended information-mining workflow and a corresponding guide to accessing information about uncharacterized Drosophila melanogaster genes, such as those assigned only a systematic coding gene identifier. The available information can provide insights into where and when the gene is expressed, what the function of the gene might be, whether there are similar genes in other species, whether there are known relationships to other genes, and whether any other features have already been determined. In addition, available information about relevant reagents can inspire and facilitate experimental studies. Altogether, mining available information can help prioritize genes for further study, as well as provide starting points for experimental assays and other analyses.
Collapse
Affiliation(s)
- Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ah-Ram Kim
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
2
|
Ma D, Herndon N, Le JQ, Abruzzi KC, Zinn K, Rosbash M. Neural connectivity molecules best identify the heterogeneous clock and dopaminergic cell types in the Drosophila adult brain. SCIENCE ADVANCES 2023; 9:eade8500. [PMID: 36812309 PMCID: PMC9946362 DOI: 10.1126/sciadv.ade8500] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/26/2023] [Indexed: 05/25/2023]
Abstract
Our recent single-cell sequencing of most adult Drosophila circadian neurons indicated notable and unexpected heterogeneity. To address whether other populations are similar, we sequenced a large subset of adult brain dopaminergic neurons. Their gene expression heterogeneity is similar to that of clock neurons, i.e., both populations have two to three cells per neuron group. There was also unexpected cell-specific expression of neuron communication molecule messenger RNAs: G protein-coupled receptor or cell surface molecule (CSM) transcripts alone can define adult brain dopaminergic and circadian neuron cell type. Moreover, the adult expression of the CSM DIP-beta in a small group of clock neurons is important for sleep. We suggest that the common features of circadian and dopaminergic neurons are general, essential for neuronal identity and connectivity of the adult brain, and that these features underlie the complex behavioral repertoire of Drosophila.
Collapse
Affiliation(s)
- Dingbang Ma
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Nicholas Herndon
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Jasmine Quynh Le
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Katharine C. Abruzzi
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
3
|
Kim AR, Xu J, Cheloha R, Mohr SE, Zirin J, Ploegh HL, Perrimon N. NanoTag Nanobody Tools for Drosophila In Vitro and In Vivo Studies. Curr Protoc 2022; 2:e628. [PMID: 36571722 PMCID: PMC9811555 DOI: 10.1002/cpz1.628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nanobodies have emerged as powerful protein-binding tools to uncover protein functions. Using functionalized protein binders, proteins of interest can be visualized, degraded, delocalized, or post-translationally modified in vivo. We recently reported the use of two short peptide tags, 10-aa 127D01 and 14-aa VHH05, and their corresponding nanobodies, Nb127D01 and NbVHH05, for both in vitro and in vivo studies in Drosophila. Here, we provide detailed protocols for nanobody production and for visualization of proteins of interest in either fixed or live samples. In addition, we include protocols for endogenous protein tagging using CRISPR-mediated genome engineering. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Nanobody production in S2 cells Basic Protocol 2: Nanobody expression and purification in bacterial cells Basic Protocol 3: Immunostaining with nanobodies Basic Protocol 4: Immunoblotting with nanobodies Basic Protocol 5: Immunoprecipitation with nanobodies prepared from S2 cells Basic Protocol 6: Immunoprecipitation with nanobodies prepared from bacteria Basic Protocol 7: NbVHH05 and Nb127D01 used as chromobodies Basic Protocol 8: NanoTag trap as a method to alter protein localization Support Protocol: CRISPR-mediated tagging of endogenous genes with NanoTags.
Collapse
Affiliation(s)
- Ah-Ram Kim
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jun Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, China
| | - Ross Cheloha
- Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Zirin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Hidde L Ploegh
- Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Xu J, Kim AR, Cheloha RW, Fischer FA, Li JSS, Feng Y, Stoneburner E, Binari R, Mohr SE, Zirin J, Ploegh HL, Perrimon N. Protein visualization and manipulation in Drosophila through the use of epitope tags recognized by nanobodies. eLife 2022; 11:74326. [PMID: 35076390 PMCID: PMC8853664 DOI: 10.7554/elife.74326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Expansion of the available repertoire of reagents for visualization and manipulation of proteins will help understand their function. Short epitope tags linked to proteins of interest and recognized by existing binders such as nanobodies facilitate protein studies by obviating the need to isolate new antibodies directed against them. Nanobodies have several advantages over conventional antibodies, as they can be expressed and used as tools for visualization and manipulation of proteins in vivo. Here, we characterize two short (<15aa) NanoTag epitopes, 127D01 and VHH05, and their corresponding high-affinity nanobodies. We demonstrate their use in Drosophila for in vivo protein detection and re-localization, direct and indirect immunofluorescence, immunoblotting, and immunoprecipitation. We further show that CRISPR-mediated gene targeting provides a straightforward approach to tagging endogenous proteins with the NanoTags. Single copies of the NanoTags, regardless of their location, suffice for detection. This versatile and validated toolbox of tags and nanobodies will serve as a resource for a wide array of applications, including functional studies in Drosophila and beyond.
Collapse
Affiliation(s)
- Jun Xu
- Department of Genetics, Harvard Medical School
| | - Ah-Ram Kim
- Department of Genetics, Harvard Medical School
| | | | | | | | - Yuan Feng
- Department of Genetics, Harvard Medical School
| | | | | | | | | | | | | |
Collapse
|