1
|
Iasi LNM, Chintalapati M, Skov L, Mesa AB, Hajdinjak M, Peter BM, Moorjani P. Neanderthal ancestry through time: Insights from genomes of ancient and present-day humans. Science 2024; 386:eadq3010. [PMID: 39666853 DOI: 10.1126/science.adq3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024]
Abstract
Gene flow from Neanderthals has shaped genetic and phenotypic variation in modern humans. We generated a catalog of Neanderthal ancestry segments in more than 300 genomes spanning the past 50,000 years. We examined how Neanderthal ancestry is shared among individuals over time. Our analysis revealed that the vast majority of Neanderthal gene flow is attributable to a single, shared extended period of gene flow that occurred between 50,500 to 43,500 years ago, as evidenced by ancestry correlation, colocalization of Neanderthal segments across individuals, and divergence from the sequenced Neanderthals. Most natural selection-positive and negative-on Neanderthal variants occurred rapidly after the gene flow. Our findings provide new insights into how contact with Neanderthals shaped modern human origins and adaptation.
Collapse
Affiliation(s)
- Leonardo N M Iasi
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Manjusha Chintalapati
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Laurits Skov
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Alba Bossoms Mesa
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mateja Hajdinjak
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- The Francis Crick Institute, London, UK
| | - Benjamin M Peter
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Biology, University of Rochester, Rochester NY, USA
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
2
|
Aneli S, Ceccatelli Berti C, Gilea AI, Birolo G, Mutti G, Pavesi A, Baruffini E, Goffrini P, Capelli C. Functional characterization of archaic-specific variants in mitonuclear genes: insights from comparative analysis in S. cerevisiae. Hum Mol Genet 2024; 33:1152-1163. [PMID: 38558123 DOI: 10.1093/hmg/ddae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Neanderthal and Denisovan hybridisation with modern humans has generated a non-random genomic distribution of introgressed regions, the result of drift and selection dynamics. Cross-species genomic incompatibility and more efficient removal of slightly deleterious archaic variants have been proposed as selection-based processes involved in the post-hybridisation purge of archaic introgressed regions. Both scenarios require the presence of functionally different alleles across Homo species onto which selection operated differently according to which populations hosted them, but only a few of these variants have been pinpointed so far. In order to identify functionally divergent archaic variants removed in humans, we focused on mitonuclear genes, which are underrepresented in the genomic landscape of archaic humans. We searched for non-synonymous, fixed, archaic-derived variants present in mitonuclear genes, rare or absent in human populations. We then compared the functional impact of archaic and human variants in the model organism Saccharomyces cerevisiae. Notably, a variant within the mitochondrial tyrosyl-tRNA synthetase 2 (YARS2) gene exhibited a significant decrease in respiratory activity and a substantial reduction of Cox2 levels, a proxy for mitochondrial protein biosynthesis, coupled with the accumulation of the YARS2 protein precursor and a lower amount of mature enzyme. Our work suggests that this variant is associated with mitochondrial functionality impairment, thus contributing to the purging of archaic introgression in YARS2. While different molecular mechanisms may have impacted other mitonuclear genes, our approach can be extended to the functional screening of mitonuclear genetic variants present across species and populations.
Collapse
Affiliation(s)
- Serena Aneli
- Department of Public Health Sciences and Pediatrics, University of Turin, C.so Galileo Galilei 22, Turin 10126, Italy
| | - Camilla Ceccatelli Berti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, Parma 43124, Italy
| | - Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, Parma 43124, Italy
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, Via Santena 5, Turin 10126, Italy
| | - Giacomo Mutti
- Barcelona Supercomputing Centre (BSC-CNS), Department of Life Sciences, Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Department of Mechanisms of Disease, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Angelo Pavesi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, Parma 43124, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, Parma 43124, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, Parma 43124, Italy
| | - Cristian Capelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, Parma 43124, Italy
- Department of Biology, University of Oxford, 11a Mansfield Rd, Oxford OX1 3SZ, United Kingdom
| |
Collapse
|
3
|
Iasi LNM, Chintalapati M, Skov L, Mesa AB, Hajdinjak M, Peter BM, Moorjani P. Neandertal ancestry through time: Insights from genomes of ancient and present-day humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593955. [PMID: 38798350 PMCID: PMC11118355 DOI: 10.1101/2024.05.13.593955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Gene flow from Neandertals has shaped the landscape of genetic and phenotypic variation in modern humans. We identify the location and size of introgressed Neandertal ancestry segments in more than 300 genomes spanning the last 50,000 years. We study how Neandertal ancestry is shared among individuals to infer the time and duration of the Neandertal gene flow. We find the correlation of Neandertal segment locations across individuals and their divergence to sequenced Neandertals, both support a model of single major Neandertal gene flow. Our catalog of introgressed segments through time confirms that most natural selection-positive and negative-on Neandertal ancestry variants occurred immediately after the gene flow, and provides new insights into how the contact with Neandertals shaped human origins and adaptation.
Collapse
Affiliation(s)
- Leonardo N. M. Iasi
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
| | - Manjusha Chintalapati
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA 94720, USA
| | - Laurits Skov
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA 94720, USA
| | - Alba Bossoms Mesa
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
| | - Mateja Hajdinjak
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
- The Francis Crick Institute; London, NW1 1AT, UK
| | - Benjamin M. Peter
- Department for Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, 04301, Germany
- Department of Biology, University of Rochester; Rochester NY, 14620,USA
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA 94720, USA
- Center for Computational Biology, University of California Berkeley; Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Groh JS, Coop G. The temporal and genomic scale of selection following hybridization. Proc Natl Acad Sci U S A 2024; 121:e2309168121. [PMID: 38489387 PMCID: PMC10962946 DOI: 10.1073/pnas.2309168121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024] Open
Abstract
Genomic evidence supports an important role for selection in shaping patterns of introgression along the genome, but frameworks for understanding the evolutionary dynamics within hybrid populations that underlie these patterns have been lacking. Due to the clock-like effect of recombination in hybrids breaking up parental haplotypes, drift and selection produce predictable patterns of ancestry variation at varying spatial genomic scales through time. Here, we develop methods based on the Discrete Wavelet Transform to study the genomic scale of local ancestry variation and its association with recombination rates and show that these methods capture temporal dynamics of drift and genome-wide selection after hybridization. We apply these methods to published datasets from hybrid populations of swordtail fish (Xiphophorus) and baboons (Papio) and to inferred Neanderthal introgression in modern humans. Across systems, upward of 20% of variation in local ancestry at the broadest genomic scales can be attributed to systematic selection against introgressed alleles, consistent with strong selection acting on early-generation hybrids. Signatures of selection at fine genomic scales suggest selection over longer time scales; however, we suggest that our ability to confidently infer selection at fine scales is likely limited by inherent biases in current methods for estimating local ancestry from contiguous segments of genomic similarity. Wavelet approaches will become widely applicable as genomic data from systems with introgression become increasingly available and can help shed light on generalities of the genomic consequences of interspecific hybridization.
Collapse
Affiliation(s)
- Jeffrey S. Groh
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA95616
| | - Graham Coop
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA95616
| |
Collapse
|
5
|
Groh J, Coop G. The temporal and genomic scale of selection following hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542345. [PMID: 37337589 PMCID: PMC10276902 DOI: 10.1101/2023.05.25.542345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Genomic evidence supports an important role for selection in shaping patterns of introgression along the genome, but frameworks for understanding the dynamics underlying these patterns within hybrid populations have been lacking. Here, we develop methods based on the Wavelet Transform to understand the spatial genomic scale of local ancestry variation and its association with recombination rates. We present theory and use simulations to show how wavelet-based decompositions of ancestry variance along the genome and the correlation between ancestry and recombination reflect the joint effects of recombination, genetic drift, and genome-wide selection against introgressed alleles. Due to the clock-like effect of recombination in hybrids breaking up parental haplotypes, drift and selection produce predictable patterns of local ancestry variation at varying spatial genomic scales through time. Using wavelet approaches to identify the genomic scale of variance in ancestry and its correlates, we show that these methods can detect temporally localized effects of drift and selection. We apply these methods to previously published datasets from hybrid populations of swordtail fish (Xiphophorus) and baboons (Papio), and to inferred Neanderthal introgression in modern humans. Across systems, we find that upwards of 20% of the variation in local ancestry at the broadest genomic scales can be attributed to systematic selection against introgressed alleles, consistent with strong selection acting on early-generation hybrids. We also see signals of selection at fine genomic scales and much longer time scales. However, we show that our ability to confidently infer selection at fine scales is likely limited by inherent biases in current methods for estimating local ancestry from genomic similarity. Wavelet approaches will become widely applicable as genomic data from systems with introgression become increasingly available, and can help shed light on generalities of the genomic consequences of interspecific hybridization.
Collapse
Affiliation(s)
- Jeffrey Groh
- Department of Evolution and Ecology, and Center for Population Biology, University of California, Davis, CA 95616
| | - Graham Coop
- Department of Evolution and Ecology, and Center for Population Biology, University of California, Davis, CA 95616
| |
Collapse
|
6
|
Fluctuating selection and the determinants of genetic variation. Trends Genet 2023; 39:491-504. [PMID: 36890036 DOI: 10.1016/j.tig.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 03/08/2023]
Abstract
Recent studies of cosmopolitan Drosophila populations have found hundreds to thousands of genetic loci with seasonally fluctuating allele frequencies, bringing temporally fluctuating selection to the forefront of the historical debate surrounding the maintenance of genetic variation in natural populations. Numerous mechanisms have been explored in this longstanding area of research, but these exciting empirical findings have prompted several recent theoretical and experimental studies that seek to better understand the drivers, dynamics, and genome-wide influence of fluctuating selection. In this review, we evaluate the latest evidence for multilocus fluctuating selection in Drosophila and other taxa, highlighting the role of potential genetic and ecological mechanisms in maintaining these loci and their impacts on neutral genetic variation.
Collapse
|
7
|
Souilmi Y, Tobler R, Johar A, Williams M, Grey ST, Schmidt J, Teixeira JC, Rohrlach A, Tuke J, Johnson O, Gower G, Turney C, Cox M, Cooper A, Huber CD. Admixture has obscured signals of historical hard sweeps in humans. Nat Ecol Evol 2022; 6:2003-2015. [PMID: 36316412 PMCID: PMC9715430 DOI: 10.1038/s41559-022-01914-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
The role of natural selection in shaping biological diversity is an area of intense interest in modern biology. To date, studies of positive selection have primarily relied on genomic datasets from contemporary populations, which are susceptible to confounding factors associated with complex and often unknown aspects of population history. In particular, admixture between diverged populations can distort or hide prior selection events in modern genomes, though this process is not explicitly accounted for in most selection studies despite its apparent ubiquity in humans and other species. Through analyses of ancient and modern human genomes, we show that previously reported Holocene-era admixture has masked more than 50 historic hard sweeps in modern European genomes. Our results imply that this canonical mode of selection has probably been underappreciated in the evolutionary history of humans and suggest that our current understanding of the tempo and mode of selection in natural populations may be inaccurate.
Collapse
Affiliation(s)
- Yassine Souilmi
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Raymond Tobler
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
- Evolution of Cultural Diversity Initiative, Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Angad Johar
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| | - Matthew Williams
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shane T Grey
- Transplantation Immunology Group, Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, New South Wales, Australia
| | - Joshua Schmidt
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - João C Teixeira
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Adam Rohrlach
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Jonathan Tuke
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, South Australia, Australia
- School of Mathematical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Olivia Johnson
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Graham Gower
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Chris Turney
- Chronos 14Carbon-Cycle Facility and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Murray Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Alan Cooper
- South Australian Museum, Adelaide, South Australia, Australia.
- BlueSky Genetics, Ashton, South Australia, Australia.
| | - Christian D Huber
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
- Department of Biology, Penn State University, University Park, PA, USA.
| |
Collapse
|
8
|
Jagoda E, Xue JR, Reilly SK, Dannemann M, Racimo F, Huerta-Sanchez E, Sankararaman S, Kelso J, Pagani L, Sabeti PC, Capellini TD. Detection of Neanderthal Adaptively Introgressed Genetic Variants That Modulate Reporter Gene Expression in Human Immune Cells. Mol Biol Evol 2022; 39:msab304. [PMID: 34662402 PMCID: PMC8760939 DOI: 10.1093/molbev/msab304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although some variation introgressed from Neanderthals has undergone selective sweeps, little is known about its functional significance. We used a Massively Parallel Reporter Assay (MPRA) to assay 5,353 high-frequency introgressed variants for their ability to modulate the gene expression within 170 bp of endogenous sequence. We identified 2,548 variants in active putative cis-regulatory elements (CREs) and 292 expression-modulating variants (emVars). These emVars are predicted to alter the binding motifs of important immune transcription factors, are enriched for associations with neutrophil and white blood cell count, and are associated with the expression of genes that function in innate immune pathways including inflammatory response and antiviral defense. We combined the MPRA data with other data sets to identify strong candidates to be driver variants of positive selection including an emVar that may contribute to protection against severe COVID-19 response. We endogenously deleted two CREs containing expression-modulation variants linked to immune function, rs11624425 and rs80317430, identifying their primary genic targets as ELMSAN1, and PAN2 and STAT2, respectively, three genes differentially expressed during influenza infection. Overall, we present the first database of experimentally identified expression-modulating Neanderthal-introgressed alleles contributing to potential immune response in modern humans.
Collapse
Affiliation(s)
- Evelyn Jagoda
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - James R Xue
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven K Reilly
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Dannemann
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fernando Racimo
- Lundbeck GeoGenetics Centre, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Emilia Huerta-Sanchez
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Sriram Sankararaman
- Department of Computer Science, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, UCLA, Los Angeles, CA, USA
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biology, University of Padova, Padova, Italy
| | - Pardis C Sabeti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
9
|
Yan SM, Sherman RM, Taylor DJ, Nair DR, Bortvin AN, Schatz MC, McCoy RC. Local adaptation and archaic introgression shape global diversity at human structural variant loci. eLife 2021; 10:e67615. [PMID: 34528508 PMCID: PMC8492059 DOI: 10.7554/elife.67615] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Large genomic insertions and deletions are a potent source of functional variation, but are challenging to resolve with short-read sequencing, limiting knowledge of the role of such structural variants (SVs) in human evolution. Here, we used a graph-based method to genotype long-read-discovered SVs in short-read data from diverse human genomes. We then applied an admixture-aware method to identify 220 SVs exhibiting extreme patterns of frequency differentiation - a signature of local adaptation. The top two variants traced to the immunoglobulin heavy chain locus, tagging a haplotype that swept to near fixation in certain southeast Asian populations, but is rare in other global populations. Further investigation revealed evidence that the haplotype traces to gene flow from Neanderthals, corroborating the role of immune-related genes as prominent targets of adaptive introgression. Our study demonstrates how recent technical advances can help resolve signatures of key evolutionary events that remained obscured within technically challenging regions of the genome.
Collapse
Affiliation(s)
- Stephanie M Yan
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Rachel M Sherman
- Department of Computer Science, Johns Hopkins UniversityBaltimoreUnited States
| | - Dylan J Taylor
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Divya R Nair
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Andrew N Bortvin
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| | - Michael C Schatz
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
- Department of Computer Science, Johns Hopkins UniversityBaltimoreUnited States
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, BaltimoreBaltimoreUnited States
| |
Collapse
|
10
|
Spitzer M. Unsere Vorfahren. NERVENHEILKUNDE 2021; 40:492-510. [DOI: 10.1055/a-1389-6941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
11
|
Abstract
Recent studies suggest that admixture with archaic hominins played an important role in facilitating biological adaptations to new environments. For example, interbreeding with Denisovans facilitated the adaptation to high-altitude environments on the Tibetan Plateau. Specifically, the EPAS1 gene, a transcription factor that regulates the response to hypoxia, exhibits strong signatures of both positive selection and introgression from Denisovans in Tibetan individuals. Interestingly, despite being geographically closer to the Denisova Cave, East Asian populations do not harbor as much Denisovan ancestry as populations from Melanesia. Recently, two studies have suggested two independent waves of Denisovan admixture into East Asians, one of which is shared with South Asians and Oceanians. Here, we leverage data from EPAS1 in 78 Tibetan individuals to interrogate which of these two introgression events introduced the EPAS1 beneficial sequence into the ancestral population of Tibetans, and we use the distribution of introgressed segment lengths at this locus to infer the timing of the introgression and selection event. We find that the introgression event unique to East Asians most likely introduced the beneficial haplotype into the ancestral population of Tibetans around 48,700 (16,000-59,500) y ago, and selection started around 9,000 (2,500-42,000) y ago. Our estimates suggest that one of the most convincing examples of adaptive introgression is in fact selection acting on standing archaic variation.
Collapse
|