1
|
Di Pietro E, Burla R, La Torre M, González-García MP, Dello Ioio R, Saggio I. Telomeres: an organized string linking plants and mammals. Biol Direct 2024; 19:119. [PMID: 39568075 PMCID: PMC11577926 DOI: 10.1186/s13062-024-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Telomeres are pivotal determinants of cell stemness, organismal aging, and lifespan. Herein, we examined similarities in telomeres of Arabidopsis thaliana, mice, and humans. We report the common traits, which include their composition in multimers of TTAGGG sequences and their protection by specialized proteins. Moreover, given the link between telomeres, on the one hand, and cell proliferation and stemness on the other, we discuss the counterintuitive convergence between plants and mammals in this regard, focusing on the impact of niches on cell stemness. Finally, we suggest that tackling the study of telomere function and cell stemness by taking into consideration both plants and mammals can aid in the understanding of interconnections and contribute to research focusing on aging and organismal lifespan determinants.
Collapse
Affiliation(s)
- Edison Di Pietro
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Romina Burla
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- CNR Institute of Biology and Pathology, Rome, Italy
| | - Mattia La Torre
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Mary-Paz González-García
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), UPM-INIA/CSIC. Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy.
| | - Isabella Saggio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Agabekian IA, Abdulkina LR, Lushnenko AY, Young PG, Valeeva LR, Boskovic O, Lilly EG, Sharipova MR, Shippen DE, Juenger TE, Shakirov EV. Arabidopsis AN3 and OLIGOCELLULA genes link telomere maintenance mechanisms with cell division and expansion control. PLANT MOLECULAR BIOLOGY 2024; 114:65. [PMID: 38816532 PMCID: PMC11372841 DOI: 10.1007/s11103-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a -deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.
Collapse
Affiliation(s)
- Inna A Agabekian
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Liliia R Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Alina Y Lushnenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Pierce G Young
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas, 77843-2128, USA
| | - Lia R Valeeva
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA
| | - Olivia Boskovic
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA
| | - Ethan G Lilly
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA
| | - Margarita R Sharipova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas, 77843-2128, USA.
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712, USA.
| | - Eugene V Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA.
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, 25755, USA.
| |
Collapse
|
3
|
Barcenilla BB, Meyers AD, Castillo-González C, Young P, Min JH, Song J, Phadke C, Land E, Canaday E, Perera IY, Bailey SM, Aquilano R, Wyatt SE, Shippen DE. Arabidopsis telomerase takes off by uncoupling enzyme activity from telomere length maintenance in space. Nat Commun 2023; 14:7854. [PMID: 38030615 PMCID: PMC10686995 DOI: 10.1038/s41467-023-41510-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/07/2023] [Indexed: 12/01/2023] Open
Abstract
Spaceflight-induced changes in astronaut telomeres have garnered significant attention in recent years. While plants represent an essential component of future long-duration space travel, the impacts of spaceflight on plant telomeres and telomerase have not been examined. Here we report on the telomere dynamics of Arabidopsis thaliana grown aboard the International Space Station. We observe no changes in telomere length in space-flown Arabidopsis seedlings, despite a dramatic increase in telomerase activity (up to 150-fold in roots), as well as elevated genome oxidation. Ground-based follow up studies provide further evidence that telomerase is induced by different environmental stressors, but its activity is uncoupled from telomere length. Supporting this conclusion, genetically engineered super-telomerase lines with enhanced telomerase activity maintain wildtype telomere length. Finally, genome oxidation is inversely correlated with telomerase activity levels. We propose a redox protective capacity for Arabidopsis telomerase that may promote survivability in harsh environments.
Collapse
Affiliation(s)
- Borja Barbero Barcenilla
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Alexander D Meyers
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
- NASA Postdoctoral Program, Oak Ridge Associated Universities, Kennedy Space Center FL, Merritt Island, FL, 32899, USA
| | - Claudia Castillo-González
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Pierce Young
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Ji-Hee Min
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Jiarui Song
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Chinmay Phadke
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Eric Land
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Emma Canaday
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| | - Imara Y Perera
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Roberto Aquilano
- National Technological University, Rosario Regional Faculty, Zeballos 1341, S2000, Rosario, Argentina
| | - Sarah E Wyatt
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Pazhenkova EA, Lukhtanov VA. Chromosomal conservatism vs chromosomal megaevolution: enigma of karyotypic evolution in Lepidoptera. Chromosome Res 2023; 31:16. [PMID: 37300756 DOI: 10.1007/s10577-023-09725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
In the evolution of many organisms, periods of slow genome reorganization (= chromosomal conservatism) are interrupted by bursts of numerous chromosomal changes (= chromosomal megaevolution). Using comparative analysis of chromosome-level genome assemblies, we investigated these processes in blue butterflies (Lycaenidae). We demonstrate that the phase of chromosome number conservatism is characterized by the stability of most autosomes and dynamic evolution of the sex chromosome Z, resulting in multiple variants of NeoZ chromosomes due to autosome-sex chromosome fusions. In contrast during the phase of rapid chromosomal evolution, the explosive increase in chromosome number occurs mainly through simple chromosomal fissions. We show that chromosomal megaevolution is a highly non-random canalized process, and in two phylogenetically independent Lysandra lineages, the drastic parallel increase in number of fragmented chromosomes was achieved, at least partially, through reuse of the same ancestral chromosomal breakpoints. In species showing chromosome number doubling, we found no blocks of duplicated sequences or duplicated chromosomes, thus refuting the hypothesis of polyploidy. In the studied taxa, long blocks of interstitial telomere sequences (ITSs) consist of (TTAGG)n arrays interspersed with telomere-specific retrotransposons. ITSs are sporadically present in rapidly evolving Lysandra karyotypes, but not in the species with ancestral chromosome number. Therefore, we hypothesize that the transposition of telomeric sequences may be triggers of the rapid chromosome number increase. Finally, we discuss the hypothetical genomic and population mechanisms of chromosomal megaevolution and argue that the disproportionally high evolutionary role of the Z sex chromosome can be additionally reinforced by sex chromosome-autosome fusions and Z-chromosome inversions.
Collapse
Affiliation(s)
- Elena A Pazhenkova
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, 1000, Ljubljana, Slovenia.
| | - Vladimir A Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya Nab. 1, 199034, St. Petersburg, Russia.
| |
Collapse
|
5
|
Shakirov EV, Chen JJL, Shippen DE. Plant telomere biology: The green solution to the end-replication problem. THE PLANT CELL 2022; 34:2492-2504. [PMID: 35511166 PMCID: PMC9252485 DOI: 10.1093/plcell/koac122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/14/2022] [Indexed: 05/04/2023]
Abstract
Telomere maintenance is a fundamental cellular process conserved across all eukaryotic lineages. Although plants and animals diverged over 1.5 billion years ago, lessons learned from plants continue to push the boundaries of science, revealing detailed molecular mechanisms in telomere biology with broad implications for human health, aging biology, and stress responses. Recent studies of plant telomeres have unveiled unexpected divergence in telomere sequence and architecture, and the proteins that engage telomeric DNA and telomerase. The discovery of telomerase RNA components in the plant kingdom and some algae groups revealed new insight into the divergent evolution and the universal core of telomerase across major eukaryotic kingdoms. In addition, resources cataloging the abundant natural variation in Arabidopsis thaliana, maize (Zea mays), and other plants are providing unparalleled opportunities to understand the genetic networks that govern telomere length polymorphism and, as a result, are uncovering unanticipated crosstalk between telomeres, environmental factors, organismal fitness, and plant physiology. Here we recap current advances in plant telomere biology and put this field in perspective relative to telomere and telomerase research in other eukaryotic lineages.
Collapse
Affiliation(s)
- Eugene V Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia 25701, USA
| | - Julian J -L Chen
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | | |
Collapse
|
6
|
Castillo-González C, Barbero Barcenilla B, Young PG, Hall E, Shippen DE. Quantification of 8-oxoG in Plant Telomeres. Int J Mol Sci 2022; 23:ijms23094990. [PMID: 35563379 PMCID: PMC9102096 DOI: 10.3390/ijms23094990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Chemical modifications in DNA impact gene regulation and chromatin structure. DNA oxidation, for example, alters gene expression, DNA synthesis and cell cycle progression. Modification of telomeric DNA by oxidation is emerging as a marker of genotoxic damage and is associated with reduced genome integrity and changes in telomere length and telomerase activity. 8-oxoguanine (8-oxoG) is the most studied and common outcome of oxidative damage in DNA. The G-rich nature of telomeric DNA is proposed to make it a hotspot for oxidation, but because telomeres make up only a tiny fraction of the genome, it has been difficult to directly test this hypothesis by studying dynamic DNA modifications specific to this region in vivo. Here, we present a new, robust method to differentially enrich telomeric DNA in solution, coupled with downstream methods for determination of chemical modification. Specifically, we measure 8-oxoG in Arabidopsis thaliana telomeres under normal and oxidative stress conditions. We show that telomere length is unchanged in response to oxidative stress in three different wild-type accessions. Furthermore, we report that while telomeric DNA comprises only 0.02–0.07% of the total genome, telomeres contribute between 0.2 and 15% of the total 8-oxoG. That is, plant telomeres accumulate 8-oxoG at levels approximately 100-fold higher than the rest of the genome under standard growth conditions. Moreover, they are the primary targets of further damage upon oxidative stress. Interestingly, the accumulation of 8-oxoG in the chromosome body seems to be inversely proportional to telomere length. These findings support the hypothesis that telomeres are hotspots of 8-oxoG and may function as sentinels of oxidative stress in plants.
Collapse
|