1
|
Kiontke KC, Herrera RA, Mason DA, Woronik A, Vernooy S, Patel Y, Fitch DHA. Tissue-specific RNA-seq defines genes governing male tail tip morphogenesis in C. elegans. Development 2024; 151:dev202787. [PMID: 39253748 PMCID: PMC11449441 DOI: 10.1242/dev.202787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Caenorhabditis elegans males undergo sex-specific tail tip morphogenesis (TTM) under the control of the DM-domain transcription factor DMD-3. To find genes regulated by DMD-3, we performed RNA-seq of laser-dissected tail tips. We identified 564 genes differentially expressed (DE) in wild-type males versus dmd-3(-) males and hermaphrodites. The transcription profile of dmd-3(-) tail tips is similar to that in hermaphrodites. For validation, we analyzed transcriptional reporters for 49 genes and found male-specific or male-biased expression for 26 genes. Only 11 DE genes overlapped with genes found in a previous RNAi screen for defective TTM. GO enrichment analysis of DE genes finds upregulation of genes within the unfolded protein response pathway and downregulation of genes involved in cuticle maintenance. Of the DE genes, 40 are transcription factors, indicating that the gene network downstream of DMD-3 is complex and potentially modular. We propose modules of genes that act together in TTM and are co-regulated by DMD-3, among them the chondroitin synthesis pathway and the hypertonic stress response.
Collapse
Affiliation(s)
- Karin C. Kiontke
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | - D. Adam Mason
- Biology Department, Siena College, 515 Loudon Road, Loudonville, NY 12211, USA
| | - Alyssa Woronik
- Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825, USA
| | - Stephanie Vernooy
- Biology Department, Siena College, 515 Loudon Road, Loudonville, NY 12211, USA
| | - Yash Patel
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - David H. A. Fitch
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| |
Collapse
|
2
|
Fung W, Kolotuev I, Heiman MG. Specialized structure and function of the apical extracellular matrix at sense organs. Cells Dev 2024; 179:203942. [PMID: 39067521 PMCID: PMC11346620 DOI: 10.1016/j.cdev.2024.203942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Apical extracellular matrix (aECM) covers every surface of the body and exhibits tissue-specific structures that carry out specialized functions. This is particularly striking at sense organs, where aECM forms the interface between sensory neurons and the environment, and thus plays critical roles in how sensory stimuli are received. Here, we review the extraordinary adaptations of aECM across sense organs and discuss how differences in protein composition and matrix structure assist in sensing mechanical forces (tactile hairs, campaniform sensilla, and the tectorial membrane of the cochlea); tastes and smells (uniporous gustatory sensilla and multiporous olfactory sensilla in insects, and salivary and olfactory mucus in vertebrates); and light (cuticle-derived lenses in arthropods and mollusks). We summarize the power of using C. elegans, in which defined sense organs associate with distinct aECM, as a model for understanding the tissue-specific structural and functional specializations of aECM. Finally, we synthesize results from recent studies in C. elegans and Drosophila into a conceptual framework for aECM patterning, including mechanisms that involve transient cellular or matrix scaffolds, mechanical pulling or pushing forces, and localized secretion or endocytosis.
Collapse
Affiliation(s)
- Wendy Fung
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Maxwell G Heiman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Serra ND, Darwin CB, Sundaram MV. Caenorhabditis elegans Hedgehog-related proteins are tissue- and substructure-specific components of the cuticle and precuticle. Genetics 2024; 227:iyae081. [PMID: 38739761 PMCID: PMC11304973 DOI: 10.1093/genetics/iyae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
In Caenorhabditis elegans, expanded families of divergent Hedgehog-related and patched-related proteins promote numerous processes ranging from epithelial and sense organ development to pathogen responses to cuticle shedding during the molt cycle. The molecular functions of these proteins have been mysterious since nematodes lack a canonical Hedgehog signaling pathway. Here we show that Hedgehog-related proteins are components of the cuticle and precuticle apical extracellular matrices that coat, shape, and protect external epithelia. Of four Hedgehog-related proteins imaged, two (GRL-2 and GRL-18) stably associated with the cuticles of specific tubes and two (GRL-7 and WRT-10) labeled precuticle substructures such as furrows or alae. We found that wrt-10 mutations disrupt cuticle alae ridges, consistent with a structural role in matrix organization. We hypothesize that most nematode Hedgehog-related proteins are apical extracellular matrix components, a model that could explain many of the reported functions for this family. These results highlight ancient connections between Hedgehog proteins and the extracellular matrix and suggest that any signaling roles of C. elegans Hedgehog-related proteins will be intimately related to their matrix association.
Collapse
Affiliation(s)
- Nicholas D Serra
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | - Chelsea B Darwin
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, 415 Curie Blvd, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
5
|
Kiontke K, Herrera RA, Mason DA, Woronik A, Vernooy S, Patel Y, Fitch DHA. Tissue-specific RNA-seq defines genes governing male tail tip morphogenesis in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575210. [PMID: 38260477 PMCID: PMC10802606 DOI: 10.1101/2024.01.12.575210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Caenorhabditis elegans males undergo sex-specific tail tip morphogenesis (TTM) under the control of the transcription factor DMD-3. To find genes regulated by DMD-3, We performed RNA-seq of laser-dissected tail tips. We identified 564 genes differentially expressed (DE) in wild-type males vs. dmd-3(-) males and hermaphrodites. The transcription profile of dmd-3(-) tail tips is similar to that in hermaphrodites. For validation, we analyzed transcriptional reporters for 49 genes and found male-specific or male-biased expression for 26 genes. Only 11 DE genes overlapped with genes found in a previous RNAi screen for defective TTM. GO enrichment analysis of DE genes finds upregulation of genes within the UPR (unfolded protein response) pathway and downregulation of genes involved in cuticle maintenance. Of the DE genes, 40 are transcription factors, indicating that the gene network downstream of DMD-3 is complex and potentially modular. We propose modules of genes that act together in TTM and are coregulated by DMD-3, among them the chondroitin synthesis pathway and the hypertonic stress response.
Collapse
Affiliation(s)
- Karin Kiontke
- Department of Biology, New York University, 100 Washington Square E., New York, NY 10003
| | | | - D Adam Mason
- Biology Department, Siena College, 515 Loudon Road, Loudonville, NY 12211
| | - Alyssa Woronik
- Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825
| | - Stephanie Vernooy
- Biology Department, Siena College, 515 Loudon Road, Loudonville, NY 12211
| | - Yash Patel
- Department of Biology, New York University, 100 Washington Square E., New York, NY 10003
| | - David H A Fitch
- Department of Biology, New York University, 100 Washington Square E., New York, NY 10003
| |
Collapse
|
6
|
Serra ND, Darwin CB, Sundaram MV. C. elegans Hedgehog-related proteins are tissue- and substructure-specific components of the cuticle and pre-cuticle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573316. [PMID: 38234847 PMCID: PMC10793445 DOI: 10.1101/2023.12.26.573316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
In C. elegans, divergent Hedgehog-related (Hh-r) and Patched-related (PTR) proteins promote numerous processes ranging from epithelial and sense organ development to pathogen responses to cuticle shedding during the molt cycle. Here we show that Hh-r proteins are actual components of the cuticle and pre-cuticle apical extracellular matrices (aECMs) that coat, shape, and protect external epithelia. Different Hh-r proteins stably associate with the aECMs of specific tissues and with specific substructures such as furrows and alae. Hh-r mutations can disrupt matrix structure. These results provide a unifying model for the function of nematode Hh-r proteins and highlight ancient connections between Hh proteins and the extracellular matrix.
Collapse
Affiliation(s)
- Nicholas D. Serra
- Dept. of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA
| | - Chelsea B. Darwin
- Dept. of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA
| | - Meera V. Sundaram
- Dept. of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA
| |
Collapse
|
7
|
Emans SW, Yerevanian A, Ahsan FM, Rotti JF, Zhou Y, Cedillo L, Soukas AA. GRD-1/PTR-11, the C. elegans hedgehog/patched-like morphogen-receptor pair, modulates developmental rate. Development 2023; 150:dev201974. [PMID: 37982457 PMCID: PMC10753586 DOI: 10.1242/dev.201974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
Both hedgehog (Hh) and target of rapamycin complex 2 (TORC2) are central, evolutionarily conserved signaling pathways that regulate development and metabolism. In C. elegans, loss of the essential TORC2 component RICTOR (rict-1) causes delayed development, shortened lifespan, reduced brood, small size and increased fat. Here, we report that knockdown of both the hedgehog-related morphogen grd-1 and its patched-related receptor ptr-11 rescues delayed development in TORC2 loss-of-function mutants, and grd-1 and ptr-11 overexpression delays wild-type development to a similar level to that in TORC2 loss-of-function animals. These findings potentially indicate an unexpected role for grd-1 and ptr-11 in slowing developmental rate downstream of a nutrient-sensing pathway. Furthermore, we implicate the chronic stress transcription factor pqm-1 as a key transcriptional effector in this slowing of whole-organism growth by grd-1 and ptr-11. We propose that TORC2, grd-1 and ptr-11 may act linearly or converge on pqm-1 to delay organismal development.
Collapse
Affiliation(s)
- Sinclair W. Emans
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Biological and Biomedical Sciences, Division of Medical Science, Harvard Medical School, Boston, MA 02115, USA
| | - Armen Yerevanian
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Fasih M. Ahsan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Biological and Biomedical Sciences, Division of Medical Science, Harvard Medical School, Boston, MA 02115, USA
| | - Jen F. Rotti
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yifei Zhou
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lucydalila Cedillo
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Biological and Biomedical Sciences, Division of Medical Science, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander A. Soukas
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
8
|
Clancy JC, Vo AA, Myles KM, Levenson MT, Ragle JM, Ward JD. Experimental considerations for study of C. elegans lysosomal proteins. G3 (BETHESDA, MD.) 2023; 13:jkad032. [PMID: 36748711 PMCID: PMC10085801 DOI: 10.1093/g3journal/jkad032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/20/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023]
Abstract
Lysosomes are an important organelle required for the degradation of a range of cellular components. Lysosome function is critical for development and homeostasis as dysfunction can lead to inherited genetic disorders, cancer, and neurodegenerative and metabolic diseases. The acidic and protease-rich environment of lysosomes poses experimental challenges. Many fluorescent proteins are quenched or degraded, while specific red fluorescent proteins can be cleaved from translational fusion partners and accumulate. While studying MLT-11, a Caenorhabditis elegans molting factor that localizes to lysosomes and the cuticle, we sought to optimize several experimental parameters. We found that, in contrast to mNeonGreen fusions, mScarlet fusions to MLT-11 missed cuticular and rectal epithelial localization. Rapid sample lysis and denaturation were critical for preventing MLT-11 fragmentation while preparing lysates for western blots. Using a model lysosomal substrate (NUC-1), we found that rigid polyproline linkers and truncated mCherry constructs do not prevent cleavage of mCherry from NUC-1. We provide evidence that extended localization in lysosomal environments prevents the detection of FLAG epitopes in western blots. Finally, we optimize an acid-tolerant green fluorescent protein (Gamillus) for use in C. elegans. These experiments provide important experimental considerations and new reagents for the study of C. elegans lysosomal proteins.
Collapse
Affiliation(s)
- John C Clancy
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - An A Vo
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Krista M Myles
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Max T Levenson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
9
|
Zárate-Potes A, Ali I, Ribeiro Camacho M, Brownless H, Benedetto A. Meta-Analysis of Caenorhabditis elegans Transcriptomics Implicates Hedgehog-Like Signaling in Host-Microbe Interactions. Front Microbiol 2022; 13:853629. [PMID: 35620104 PMCID: PMC9127769 DOI: 10.3389/fmicb.2022.853629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Controlling nematode-caused diseases that affect cattle and crops world-wide remains a critical economic issue, owing to the lack of effective sustainable interventions. The interdependence of roundworms and their environmental microbes, including their microbiota, offers an opportunity for developing more targeted anthelminthic strategies. However, paucity of information and a currently narrow understanding of nematode-microbe interactions limited to specific infection contexts has precluded us from exploiting it. With the advent of omics approaches to map host-microbe genetic interactions, particularly in the model roundworm Caenorhabditis elegans, large datasets are now available across multiple models, that enable identification of nematode-microbe-specific pathways. In this work we collected 20 transcriptomic datasets documenting gene expression changes of C. elegans exposed to 20 different commensal and pathogenic microbes, performing gene enrichment analyses followed by functional testing using RNA interference directed toward genes of interest, before contrasting results from transcriptomic meta-analyses and phenomics. Differential expression analyses revealed a broad enrichment in signaling, innate immune response and (lipid) metabolism genes. Amongst signaling gene families, the nematode-divergent and expanded Hedgehog-like signaling (HHLS) pathway featured prominently. Indeed, 24/60 C. elegans Hedgehog-like proteins (HRPs) and 15/27 Patched-related receptors (PTRs) were differentially expressed in at least four microbial contexts, while up to 32/60 HRPs could be differentially expressed in a single context. interestingly, differentially expressed genes followed a microbe-specific pattern, suggestive of an adaptive microbe-specific response. To investigate this further, we knocked-down 96 individual HHLS genes by RNAi, using high-throughput assays to assess their impact on three worm-gut infection models (Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis) and two worm-commensal paradigms (Comamonas sp., and Bacillus subtilis). We notably identified new putative infection response genes whose upregulation was required for normal pathogen resistance (i.e., grl-21 and ptr-18 protective against E. faecalis), as well as commensal-specific host-gene expression changes that are required for normal host stress handling. Importantly, interactions appeared more microbe-specific than shared. Our results thus implicate the Hedgehog-like signaling pathway in the modulation and possibly fine-tuning of nematode-microbe interactions and support the idea that interventions targeting this pathway may provide a new avenue for anthelmintic development.
Collapse
|