1
|
León F, Pizarro E, Noll D, Pertierra LR, Parker P, Espinaze MPA, Luna-Jorquera G, Simeone A, Frere E, Dantas GPM, Cristofari R, Cornejo OE, Bowie RCK, Vianna JA. Comparative Genomics Supports Ecologically Induced Selection as a Putative Driver of Banded Penguin Diversification. Mol Biol Evol 2024; 41:msae166. [PMID: 39150953 PMCID: PMC11371425 DOI: 10.1093/molbev/msae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 08/18/2024] Open
Abstract
The relative importance of genetic drift and local adaptation in facilitating speciation remains unclear. This is particularly true for seabirds, which can disperse over large geographic distances, providing opportunities for intermittent gene flow among distant colonies that span the temperature and salinity gradients of the oceans. Here, we delve into the genomic basis of adaptation and speciation of banded penguins, Galápagos (Spheniscus mendiculus), Humboldt (Spheniscus humboldti), Magellanic (Spheniscus magellanicus), and African penguins (Spheniscus demersus), by analyzing 114 genomes from the main 16 breeding colonies. We aim to identify the molecular mechanism and genomic adaptive traits that have facilitated their diversifications. Through positive selection and gene family expansion analyses, we identified candidate genes that may be related to reproductive isolation processes mediated by ecological thermal niche divergence. We recover signals of positive selection on key loci associated with spermatogenesis, especially during the recent peripatric divergence of the Galápagos penguin from the Humboldt penguin. High temperatures in tropical habitats may have favored selection on loci associated with spermatogenesis to maintain sperm viability, leading to reproductive isolation among young species. Our results suggest that genome-wide selection on loci associated with molecular pathways that underpin thermoregulation, osmoregulation, hypoxia, and social behavior appears to have been crucial in local adaptation of banded penguins. Overall, these results contribute to our understanding of how the complexity of biotic, but especially abiotic, factors, along with the high dispersal capabilities of these marine species, may promote both neutral and adaptive lineage divergence even in the presence of gene flow.
Collapse
Affiliation(s)
- Fabiola León
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| | - Eduardo Pizarro
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| | - Daly Noll
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| | - Luis R Pertierra
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Patricia Parker
- Department of Biology, University of Missouri St. Louis and Saint Louis Zoo, St. Louis, MO 63121-4400, USA
| | - Marcela P A Espinaze
- Department of Conservation Ecology and Entomology, Faculty of AgriScience, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Guillermo Luna-Jorquera
- Center for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Coquimbo, Chile
| | - Alejandro Simeone
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Departamento de Ecología y Biodiversidad, Santiago, Chile
| | - Esteban Frere
- Centro de Investigaciones de Puerto Deseado, Universidad Nacional de la Patagonia Austral, Puerto Deseado, Argentina
| | - Gisele P M Dantas
- PPG Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, MG 30535-901, Brazil
| | - Robin Cristofari
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Omar E Cornejo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720-3160, USA
| | - Juliana A Vianna
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Instituto para el Desarrollo Sustentable, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| |
Collapse
|
2
|
Sin SYW, Ke F, Chen G, Huang PY, Enbody ED, Karubian J, Webster MS, Edwards SV. Genetic Basis and Evolution of Structural Color Polymorphism in an Australian Songbird. Mol Biol Evol 2024; 41:msae046. [PMID: 38415852 PMCID: PMC10962638 DOI: 10.1093/molbev/msae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
Island organisms often evolve phenotypes divergent from their mainland counterparts, providing a useful system for studying adaptation under differential selection. In the white-winged fairywren (Malurus leucopterus), subspecies on two islands have a black nuptial plumage whereas the subspecies on the Australian mainland has a blue nuptial plumage. The black subspecies have a feather nanostructure that could in principle produce a blue structural color, suggesting a blue ancestor. An earlier study proposed independent evolution of melanism on the islands based on the history of subspecies divergence. However, the genetic basis of melanism and the origin of color differentiation in this group are still unknown. Here, we used whole-genome resequencing to investigate the genetic basis of melanism by comparing the blue and black M. leucopterus subspecies to identify highly divergent genomic regions. We identified a well-known pigmentation gene ASIP and four candidate genes that may contribute to feather nanostructure development. Contrary to the prediction of convergent evolution of island melanism, we detected signatures of a selective sweep in genomic regions containing ASIP and SCUBE2 not in the black subspecies but in the blue subspecies, which possesses many derived SNPs in these regions, suggesting that the mainland subspecies has re-evolved a blue plumage from a black ancestor. This proposed re-evolution was likely driven by a preexisting female preference. Our findings provide new insight into the evolution of plumage coloration in island versus continental populations, and, importantly, we identify candidate genes that likely play roles in the development and evolution of feather structural coloration.
Collapse
Affiliation(s)
- Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fushi Ke
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Guoling Chen
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Pei-Yu Huang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Erik D Enbody
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Michael S Webster
- Cornell Lab of Ornithology and Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Ferreira JS, Bruschi DP. Tracking the Diversity and Chromosomal Distribution of the Olfactory Receptor Gene Repertoires of Three Anurans Species. J Mol Evol 2023; 91:793-805. [PMID: 37906255 DOI: 10.1007/s00239-023-10135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Olfaction is a crucial capability for most vertebrates and is realized through olfactory receptors in the nasal cavity. The enormous diversity of olfactory receptors has been created by gene duplication, following a birth-and-death model of evolution. The olfactory receptor genes of the amphibians have received relatively little attention up to now, although recent studies have increased the number of species for which data are available. This study analyzed the diversity and chromosomal distribution of the OR genes of three anuran species (Engystomops pustulosus, Bufo bufo and Hymenochirus boettgeri). The OR genes were identified through searches for homologies, and sequence filtering and alignment using bioinformatic tools and scripts. A high diversity of OR genes was found in all three species, ranging from 917 in B. bufo to 1194 in H. boettgeri, and a total of 2076 OR genes in E. pustulosus. Six OR groups were recognized using an evolutionary gene tree analysis. While E. pustulosus has one of the highest numbers of genes of the gamma group (which detect airborne odorants) yet recorded in an anuran, B. bufo presented the smallest number of pseudogene sequences ever identified, with no pseudogenes in either the beta or epsilon groups. Although H. boettgeri shares many morphological adaptations for an aquatic lifestyle with Xenopus, and presented a similar number of genes related to the detection of water-soluble odorants, it had comparatively far fewer genes related to the detection of airborne odorants. This study is the first to describe the complete OR repertoire of the three study species and represents an important contribution to the understanding of the evolution and function of the sense of smell in vertebrates.
Collapse
Affiliation(s)
- Johnny Sousa Ferreira
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Paraná, Brazil
| | - Daniel Pacheco Bruschi
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Paraná, Brazil.
| |
Collapse
|
4
|
Huynh S, Cloutier A, Sin SYW. Museomics and phylogenomics of lovebirds (Psittaciformes, Psittaculidae, Agapornis) using low-coverage whole-genome sequencing. Mol Phylogenet Evol 2023; 185:107822. [PMID: 37220800 DOI: 10.1016/j.ympev.2023.107822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/07/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
Natural history collections contain specimens that provide important insights into studies of ecology and evolution. With the advancement of high-throughput sequencing, historical DNA (hDNA) from museum specimens has become a valuable source of genomic data to study the evolutionary history of organisms. Low-coverage whole genome sequencing (WGS) has been increasingly applied to museum specimens for analyzing organelle genomes, but is still uncommon for genotyping the nuclear DNA fraction. In this study, we applied low-coverage WGS to phylogenomic analyses of parrots in the genus Agapornis by including both modern samples and historical specimens of ∼100-year-old. Agapornis are small-sized African and Malagasy parrots with diverse characters. Earlier phylogenetic studies failed to resolve the positions of some key lineages, prohibiting a robust interpretation of the biogeography and evolution of these African parrots. Here, we demonstrated the use of low-coverage WGS for generating both mitochondrial and nuclear genomic data, and evaluated data quality differences between modern and historical samples. Our resolved Agapornis phylogeny indicates the ancestor of Agapornis likely colonized Madagascar from Australasia by trans-oceanic dispersal events before dispersing to the African continent. Genome-wide SNPs also allowed us to identify the parental origins of hybrid Agapornis individuals. This study demonstrates the potential of applying low-coverage WGS to phylogenomics and population genomics analyses and illustrates how including historical museum specimens can address outstanding questions regarding the evolutionary history of contemporary lineages.
Collapse
Affiliation(s)
- Stella Huynh
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Alison Cloutier
- Department of Organismic and Evolutionary Biology, Mueum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China.
| |
Collapse
|
5
|
Luo H, Luo S, Fang W, Lin Q, Chen X, Zhou X. Genomic insight into the nocturnal adaptation of the black-crowned night heron (Nycticorax nycticorax). BMC Genomics 2022; 23:683. [PMID: 36192687 PMCID: PMC9531477 DOI: 10.1186/s12864-022-08904-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The black-crowned night heron (Nycticorax nycticorax) is an ardeid bird successfully adapted to the nocturnal environment. Previous studies had indicated that the eyes of the night herons have evolved several specialized morphological traits favoring nocturnal vision. However, the molecular mechanisms of the nocturnal vision adaptation of night herons remained inattentions. In this study, the whole genome of N. nycticorax was sequenced and comparative analyses were performed on the vision-related and olfactory receptor (OR) genes to understand the molecular mechanisms of the visual and olfactory adaptation of night herons. RESULTS The results indicated that a number of vision genes were under positive or relaxed selection in N. nycticorax, whereas a number of other vision genes were under relaxed or intensified selection in the boat-billed heron (Cochlearius cochlearius), which suggested that the two species adapt to nocturnality with different genetic mechanisms. The different selections acting on vision genes are probably associated with the enlargement of eye size and the enhancement of visual sensitivity in night herons. The analyses on olfactory receptor (OR) genes indicated that the total number of OR genes in the genomes of N. nycticorax and C. cochlearius were about half those in the little egret (Egretta garzetta), whereas the diversity of their OR genes was not remarkably different. Additionally, the number of expressed OR genes in the transcriptomes of N. nycticorax was also fewer than that in E. garzetta. These results suggest a reduced olfactory capability in night herons compared with E. garzetta. CONCLUSIONS Our results provided evidence that several vision genes of the night herons were subjected to different natural selections, which can contribute to a better understanding of the genetic mechanisms of visual adaptions of the night heron. In addition, the finding of the reduced number of total and expressed OR genes in night herons may reflect a trade-off between olfaction and vision.
Collapse
Affiliation(s)
- Haoran Luo
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Site Luo
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Wenzhen Fang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Qingxian Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Xiaolin Chen
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Xiaoping Zhou
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China.
| |
Collapse
|
6
|
Wong ATC, Lam DK, Poon ESK, Chan DTC, Sin SYW. Intra-specific copy number variation of MHC class II genes in the Siamese fighting fish. Immunogenetics 2022; 74:327-346. [PMID: 35229174 DOI: 10.1007/s00251-022-01255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
Duplicates of genes for major histocompatibility complex (MHC) molecules can be subjected to selection independently and vary markedly in their evolutionary rates, sequence polymorphism, and functional roles. Therefore, without a thorough understanding of their copy number variation (CNV) in the genome, the MHC-dependent fitness consequences within a species could be misinterpreted. Studying the intra-specific CNV of this highly polymorphic gene, however, has long been hindered by the difficulties in assigning alleles to loci and the lack of high-quality genomic data. Here, using the high-quality genome of the Siamese fighting fish (Betta splendens), a model for mate choice studies, and the whole-genome sequencing (WGS) data of 17 Betta species, we achieved locus-specific amplification of their three classical MHC class II genes - DAB1, DAB2, and DAB3. By performing quantitative PCR and depth-of-coverage analysis using the WGS data, we revealed intra-specific CNV at the DAB3 locus. We identified individuals that had two allelic copies (i.e., heterozygous or homozygous) or one allele (i.e., hemizygous) and individuals without this gene. The CNV was due to the deletion of a 20-kb-long genomic region harboring both the DAA3 and DAB3 genes. We further showed that the three DAB genes were under different modes of selection, which also applies to their corresponding DAA genes that share similar pattern of polymorphism. Our study demonstrates a combined approach to study CNV within a species, which is crucial for the understanding of multigene family evolution and the fitness consequences of CNV.
Collapse
Affiliation(s)
- Anson Tsz Chun Wong
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Derek Kong Lam
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Emily Shui Kei Poon
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - David Tsz Chung Chan
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China.
| |
Collapse
|
7
|
Cuevas-Caballé C, Ferrer Obiol J, Vizueta J, Genovart M, Gonzalez-Solís J, Riutort M, Rozas J. The First Genome of the Balearic Shearwater (Puffinus mauretanicus) Provides a Valuable Resource for Conservation Genomics and Sheds Light on Adaptation to a Pelagic lifestyle. Genome Biol Evol 2022; 14:evac067. [PMID: 35524941 PMCID: PMC9117697 DOI: 10.1093/gbe/evac067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 11/27/2022] Open
Abstract
The Balearic shearwater (Puffinus mauretanicus) is the most threatened seabird in Europe and a member of the most speciose group of pelagic seabirds, the order Procellariiformes, which exhibit extreme adaptations to a pelagic lifestyle. The fossil record suggests that human colonisation of the Balearic Islands resulted in a sharp decrease of the Balearic shearwater population size. Currently, populations of the species continue to be decimated mainly due to predation by introduced mammals and bycatch in longline fisheries, with some studies predicting its extinction by 2070. Here, using a combination of short and long reads, we generate the first high-quality reference genome for the Balearic shearwater, with a completeness amongst the highest across available avian species. We used this reference genome to study critical aspects relevant to the conservation status of the species and to gain insights into the adaptation to a pelagic lifestyle of the order Procellariiformes. We detected relatively high levels of genome-wide heterozygosity in the Balearic shearwater despite its reduced population size. However, the reconstruction of its historical demography uncovered an abrupt population decline potentially linked to a reduction of the neritic zone during the Penultimate Glacial Period (∼194-135 ka). Comparative genomics analyses uncover a set of candidate genes that may have played an important role into the adaptation to a pelagic lifestyle of Procellariiformes, including those for the enhancement of fishing capabilities, night vision, and the development of natriuresis. The reference genome obtained will be the crucial in the future development of genetic tools in conservation efforts for this Critically Endangered species.
Collapse
Affiliation(s)
- Cristian Cuevas-Caballé
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Joan Ferrer Obiol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
- Department of Environmental Science and Policy, Università degli Studi di Milano (UniMi), Milan, Italy
| | - Joel Vizueta
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Meritxell Genovart
- Mediterranean Institute for Advanced Studies (IMEDEA), CSIC-UIB & Centre for Advanced Studies of Blanes (CEAB), CSIC, Esporles, Spain
| | - Jacob Gonzalez-Solís
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| |
Collapse
|