1
|
Diekman BO, Loeser RF. Aging and the emerging role of cellular senescence in osteoarthritis. Osteoarthritis Cartilage 2024; 32:365-371. [PMID: 38049031 PMCID: PMC10984800 DOI: 10.1016/j.joca.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE The correlation between age and incidence of osteoarthritis (OA) is well known but the causal mechanisms involved are not completely understood. This narrative review summarizes selected key findings from the past 30 years that have elucidated key aspects of the relationship between aging and OA. METHODS The peer-reviewed English language literature was searched on PubMed using keywords including senescence, aging, cartilage, and osteoarthritis, for original studies and reviews published from 1993 to 2023 with a major focus on more recent studies. Manuscripts most relevant to aging and OA that examined one or more of the hallmarks of aging were selected for further review. RESULTS All proposed hallmarks of aging have been observed in articular cartilage and some have also been described in other joint tissues. Hallmarks include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, disabled macroautophagy, chronic inflammation, and dysbiosis. There is evidence that these age-related changes contribute to the development of OA in part by promoting cellular senescence. Senescence may therefore serve as a downstream mediator that connects numerous aging hallmarks to OA, likely through the senescence-associated secretory phenotype that is characterized by increased production of proinflammatory cytokines and matrix metalloproteinases. CONCLUSIONS Progress over the past 30 years has provided the foundation for emerging therapies, such as senolytics and senomorphics, that hold promise for OA disease modification. Mechanistic studies utilizing physiologically-aged animals and cadaveric human joint tissues will be important for continued progress.
Collapse
Affiliation(s)
- Brian O Diekman
- Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27599, USA.
| | - Richard F Loeser
- Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
2
|
Guillén-García P, Guillén-Vicente I, Rodríguez-Iñigo E, Guillén-Vicente M, Fernández-Jaén TF, Navarro R, Aboli L, Torres R, Abelow S, López-Alcorocho JM. Cartilage Defect Treatment Using High-Density Autologous Chondrocyte Implantation (HD-ACI). Bioengineering (Basel) 2023; 10:1083. [PMID: 37760185 PMCID: PMC10525711 DOI: 10.3390/bioengineering10091083] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Hyaline cartilage's inability to self-repair can lead to osteoarthritis and joint replacement. Various treatments, including cell therapy, have been developed for cartilage damage. Autologous chondrocyte implantation (ACI) is considered the best option for focal chondral lesions. In this article, we aimed to create a narrative review that highlights the evolution and enhancement of our chondrocyte implantation technique: High-Density-ACI (HD-ACI) Membrane-assisted Autologous Chondrocyte Implantation (MACI) improved ACI using a collagen membrane as a carrier. However, low cell density in MACI resulted in softer regenerated tissue. HD-ACI was developed to improve MACI, implanting 5 million chondrocytes per cm2, providing higher cell density. In animal models, HD-ACI formed hyaline-like cartilage, while other treatments led to fibrocartilage. HD-ACI was further evaluated in patients with knee or ankle defects and expanded to treat hip lesions and bilateral defects. HD-ACI offers a potential solution for cartilage defects, improving outcomes in regenerative medicine and cell therapy. HD-ACI, with its higher cell density, shows promise for treating chondral defects and advancing cartilage repair in regenerative medicine and cell therapy.
Collapse
|
3
|
Chaly Y, Hostager B, Smith S, Hirsch R. The Follistatin-like Protein 1 Pathway Is Important for Maintaining Healthy Articular Cartilage. ACR Open Rheumatol 2020; 2:407-414. [PMID: 32530126 PMCID: PMC7368136 DOI: 10.1002/acr2.11155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE We sought to determine whether follistatin-like protein 1 (FSTL1), a protein produced by articular chondrocytes, promotes healthy articular cartilage and prevents chondrocytes from undergoing terminal differentiation to hypertrophic cells. METHODS In vitro experiments were performed with immortalized human articular chondrocytes. The cells were transduced with a lentivirus encoding human FSTL1 small hairpin RNA or with an adenovirus encoding FSTL1. A quantitative polymerase chain reaction was used for gene expression analysis. Protein expression was assessed by Western blotting. Co-immunoprecipitation was used to identify interacting partners of FSTL1. FSTL1 expression in human articular cartilage was analyzed using confocal microscopy. RESULTS Downregulation of FSTL1 expression in transforming growth factor β (TGFβ)-stimulated chondrocyte pellet cultures led to chondrocyte terminal differentiation characterized by poor production of cartilage extracellular matrix and altered expression of genes and proteins involved in cartilage homeostasis, including MMP13, COL10A1, RUNX2, COL2A1, ACAN, Sox9, and phospho-Smad3. We also showed that FSTL1 interacts with TGFβ receptor proteins, Alk1 and endoglin, suggesting a potential mechanism for its effects on chondrocytes. Transduction of chondrocytes with an FSTL1 transgene increased COL2A1 expression, whereas it did not affect MMP13 expression. FSTL1 protein expression was decreased in human osteoarthritic cartilage in situ. CONCLUSION Our data suggest that FSTL1 plays an important role in maintaining healthy articular cartilage and the FSTL1 pathway may represent a therapeutic target for degenerative diseases of cartilage.
Collapse
Affiliation(s)
- Yury Chaly
- University of Iowa Carver College of MedicineIowa City
| | | | - Sonja Smith
- University of Iowa Carver College of MedicineIowa City
| | | |
Collapse
|
4
|
López-Alcorocho JM, Guillén-Vicente I, Rodríguez-Iñigo E, Guillén-Vicente M, Fernández-Jaén TF, Caballero R, Casqueiro M, Najarro P, Abelow S, Guillén-García P. Study of Telomere Length in Preimplanted Cultured Chondrocytes. Cartilage 2019; 10:36-42. [PMID: 29322876 PMCID: PMC6376562 DOI: 10.1177/1947603517749918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
DESIGN In the process of cell division, the extremes of the eukaryotic chromosomes are progressively shortening, and this phenomenon is related to cell degeneration and senescence. The treatment of cartilage lesions with autologous chondrocytes implies that cells proliferate in an artificial environment. We have studied the viability of cultured chondrocytes after measurement of their telomere length before implantation. METHODS Articular cartilage biopsies (B1, B2, and B3) were obtained from 3 patients (2 males and 1 female) with knee cartilage defects, who were going to be treated with chondrocyte implantation. Chondrocytes were cultured in DMEM with autologous serum. After the third passage, an aliquot of 1 million cells was removed to estimate the telomere length and the remaining cells were implanted. Telomere length was measured by quantitative fluorescent in situ hybridization (Q-FISH). Patients' clinical outcome was determined preoperatively, and 12 and 24 months postimplantation with the International Knee Documentation Committee (IKDC) questionnaire. RESULTS After chondrocyte implantation, IKDC score doubled at 12 and 24 months with regard to the basal value. After 3 passages, chondrocytes were cultured for a mean of 45.67 days, the mean duplication time being 4.53 days and the mean number of cell divisions being 10.04 during the culture period. The 20th percentile of telomere lengths were 6.84, 6.96, and 7.06 kbp and the median telomere lengths 10.30, 10.47, and 10.73 kbp, respectively. No significant correlation was found between IKDC score and telomere length. CONCLUSION Culturing autologous chondrocytes for implantation is not related to cell senescence in terms of telomere length.
Collapse
Affiliation(s)
- Juan Manuel López-Alcorocho
- Research Unit, Clínica Cemtro, Madrid, Spain,Juan Manuel López-Alcorocho, Research Unit, Clínica Cemtro, C/ Ventisquero de la Condesa, 42, 28035 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Immortalisation with hTERT Impacts on Sulphated Glycosaminoglycan Secretion and Immunophenotype in a Variable and Cell Specific Manner. PLoS One 2015. [PMID: 26196672 PMCID: PMC4510558 DOI: 10.1371/journal.pone.0133745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Limited options for the treatment of cartilage damage have driven the development of tissue engineered or cell therapy alternatives reliant on ex vivo cell expansion. The study of chondrogenesis in primary cells is difficult due to progressive cellular aging and senescence. Immortalisation via the reintroduction of the catalytic component of telomerase, hTERT, could allow repeated, longitudinal studies to be performed while bypassing senescent phenotypes. Methods Three human cell types: bone marrow-derived stromal cells (BMA13), embryonic stem cell-derived (1C6) and chondrocytes (OK3) were transduced with hTERT (BMA13H, 1C6H and OK3H) and proliferation, surface marker expression and tri-lineage differentiation capacity determined. The sulphated glycosaminoglycan (sGAG) content of the monolayer and spent media was quantified in maintenance media (MM) and pro-chondrogenic media (PChM) and normalised to DNA. Results hTERT expression was confirmed in transduced cells with proliferation enhancement in 1C6H and OK3H cells but not BMA13H. All cells were negative for leukocyte markers (CD19, CD34, CD45) and CD73 positive. CD14 was expressed at low levels on OK3 and OK3H and HLA-DR on BMA13 (84.8%). CD90 was high for BMA13 (84.9%) and OK3 (97.3%) and moderate for 1C6 (56.7%), expression was reduced in BMA13H (33.7%) and 1C6H (1.6%). CD105 levels varied (BMA13 87.7%, 1C6 8.2%, OK3 43.3%) and underwent reduction in OK3H (25.1%). 1C6 and BMA13 demonstrated osteogenic and adipogenic differentiation but mineralised matrix and lipid accumulation appeared reduced post hTERT transduction. Chondrogenic differentiation resulted in increased monolayer-associated sGAG in all primary cells and 1C6H (p<0.001), and BMA13H (p<0.05). In contrast OK3H demonstrated reduced monolayer-associated sGAG in PChM (p<0.001). Media-associated sGAG accounted for ≥55% (PChM-1C6) and ≥74% (MM-1C6H). Conclusion In conclusion, hTERT transduction could, but did not always, prevent senescence and cell phenotype, including differentiation potential, was affected in a variable manner. As such, these cells are not a direct substitute for primary cells in cartilage regeneration research.
Collapse
|
6
|
Abstract
Context: Articular cartilage has a unique functional architecture capable of providing a lifetime of pain-free joint motion. This tissue, however, undergoes substantial age-related physiologic, mechanical, biochemical, and functional changes that reduce its ability to overcome the effects of mechanical stress and injury. Many factors affect joint function in the maturing athlete—from chondrocyte survival and metabolism to structural composition and genetic/epigenetic factors governing cartilage and synovium. An evaluation of age-related changes for joint homeostasis and risk for osteoarthritis is important to the development of new strategies to rejuvenate aging joints. Objective: This review summarizes the current literature on the biochemical, cellular, and physiologic changes occurring in aging articular cartilage. Data Sources: PubMed (1969-2013) and published books in sports health, cartilage biology, and aging. Study Selection: Keywords included aging, athlete, articular cartilage, epigenetics, and functional performance with age. Study Design: Systematic review. Level of Evidence: Level 3. Data Extraction: To be included, research questions addressed the effect of age-related changes on performance, articular cartilage biology, molecular mechanism, and morphology. Results: The mature athlete faces challenges in maintaining cartilage health and joint function due to age-related changes to articular cartilage biology, morphology, and physiology. These changes include chondrocyte loss and a decline in metabolic response, alterations to matrix and synovial tissue composition, and dysregulation of reparative responses. Conclusion: Although physical decline has been regarded as a normal part of aging, many individuals maintain overall fitness and enjoy targeted improvement to their athletic capacity throughout life. Healthy articular cartilage and joints are needed to maintain athletic performance and general activities. Genetic and potentially reversible epigenetic factors influence cartilage physiology and its response to mechanical and injurious stimuli. Improved understandings of the physical and molecular changes to articular cartilage with aging are important to develop successful strategies for joint rejuvenation.
Collapse
Affiliation(s)
- Ayala Luria
- Department of Orthopaedic Surgery, Stanford School of Medicine, Stanford, California
| | - Constance R Chu
- Department of Orthopaedic Surgery, Stanford School of Medicine, Stanford, California
| |
Collapse
|
7
|
Abstract
The telomeric region of repetitive DNA sequences at the end of chromosomes prevents end-to-end fusion of chromosome terminals and deterioration of the doublestrand free ends. Because of the 'end-replication problem', telomeres shorten with each round of cell division, resulting in cell senescence. The enzyme telomerase compensates for telomere shortening by elongating telomeric sequences, thereby prolonging the lifespan of the cell. Studies of articular cartilage and bone tissues have indicated that telomere shortening limits normal cell function and proliferation, while the telomere maintenance mechanisms of osteosarcoma cells facilitate escape from cell death and promote immortality. This article reviews the literature on this topic and provides an extensive discussion of the basic molecular biology and roles of telomeres and telomerase in musculoskeletal diseases such as osteoarthritis, osteoporosis and osteosarcoma. Findings to date suggest that telomeres and telomerase may become novel therapeutic targets for the diagnosis, treatment and prevention of musculoskeletal disorders.
Collapse
Affiliation(s)
- D Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | | | | |
Collapse
|
8
|
Bonasia DE, Martin JA, Marmotti A, Amendola RL, Buckwalter JA, Rossi R, Blonna D, Adkisson HD, Amendola A. Cocultures of adult and juvenile chondrocytes compared with adult and juvenile chondral fragments: in vitro matrix production. Am J Sports Med 2011; 39:2355-61. [PMID: 21828366 PMCID: PMC3708454 DOI: 10.1177/0363546511417172] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The use of allogenic juvenile chondrocytes or autologous chondral fragments has shown promising laboratory results for the repair of chondral lesions. HYPOTHESIS Juvenile chondrocytes would not affect matrix production when mixed with adult chondrocytes or cartilage fragments. STUDY DESIGN Controlled laboratory study. METHODS Cartilage sources consisted of 3 adult and 3 juvenile (human) donors. In part 1, per each donor, juvenile chondrocytes were mixed with adult chondrocytes in 5 different proportions: 100%, 50%, 25%, 12.5%, and 0%. Three-dimensional cultures in low-melt agarose were performed. At 6 weeks, biochemical and histologic analyses were performed. In part 2, isolated adult, isolated juvenile, and mixed 3-dimensional cultures (1:1) were performed with chondral fragments (<1 mm), both with low-melt agarose and a hyaluronic acid scaffold. At 2 and 6 weeks, cultures were evaluated with biochemical and histologic analyses. RESULTS Part 1: Biochemical and histologic analyses showed that isolated juvenile cultures performed significantly better than mixed and isolated adult cultures. No significant differences were noted between mixed cultures (1:1) and isolated adult cultures. Part 2: Biochemical and histologic results at 6 weeks showed that mixed cartilage fragment cultures performed better than isolated adult cultures in terms of proteoglycans/DNA ratio (P = .014), percentage of safranin O-positive cells (P = .012), Bern score (P = .001), and collagen type II. No statistically significant difference was noted between juvenile and mixed cultures. CONCLUSION Extracellular matrix production of juvenile chondrocytes is inhibited by adult chondrocytes. The addition of juvenile cartilage fragments to adult fragments improves matrix production, with a positive interaction between the 2 sources. CLINICAL RELEVANCE Even if the underlying mechanisms are still unknown, this study describes the behavior of juvenile/adult cocultures using both chondrocytes and cartilage fragments, with potential for new research and clinical applications.
Collapse
Affiliation(s)
- Davide Edoardo Bonasia
- Address correspondence to Davide E. Bonasia, MD, Via Lamarmora, 26, 10128 Turin, Italy ()
| | - James A. Martin
- University of Iowa Hospitals and Clinics, Department of Orthopaedics and Rehabilitation, Iowa City, Iowa
| | - Antongiulio Marmotti
- University of Torino, Department of Orthopaedics and Traumatology, “Umberto I” Hospital, Torino, Italy
| | - Richard L. Amendola
- University of Iowa Hospitals and Clinics, Department of Orthopaedics and Rehabilitation, Iowa City, Iowa
| | - Joseph A. Buckwalter
- University of Iowa Hospitals and Clinics, Department of Orthopaedics and Rehabilitation, Iowa City, Iowa
| | - Roberto Rossi
- University of Torino, Department of Orthopaedics and Traumatology, “Umberto I” Hospital, Torino, Italy
| | - Davide Blonna
- University of Torino, Department of Orthopaedics and Traumatology, “Umberto I” Hospital, Torino, Italy
| | | | - Annunziato Amendola
- University of Iowa Hospitals and Clinics, Department of Orthopaedics and Rehabilitation, Iowa City, Iowa
| |
Collapse
|
9
|
The use of hTERT-immortalized cells in tissue engineering. Cytotechnology 2011; 45:39-46. [PMID: 19003242 DOI: 10.1007/s10616-004-5124-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2004] [Accepted: 09/21/2004] [Indexed: 12/16/2022] Open
Abstract
The use of human telomerase reverse transcriptase (hTERT)-immortalized cells in tissue engineering protocols is a potentially important application of telomere biology. Several human cell types have been created that overexpress the hTERT gene with enhanced telomerase activity, extended life span and maintained or even improved functional activities. Furthermore, some studies have employed the telomerized cells in tissue engineering protocols with very good results. However, high telomerase activity allows extensive cell proliferation that may be associated with genomic instability and risk for cell transformation. Thus, safety issues should be studied carefully before using the telomerized tissues in the clinic. Alternatively, the development of conditional or intermittent telomerase activation protocols is needed.
Collapse
|
10
|
Williams R, Khan IM, Richardson K, Nelson L, McCarthy HE, Analbelsi T, Singhrao SK, Dowthwaite GP, Jones RE, Baird DM, Lewis H, Roberts S, Shaw HM, Dudhia J, Fairclough J, Briggs T, Archer CW. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One 2010; 5:e13246. [PMID: 20976230 PMCID: PMC2954799 DOI: 10.1371/journal.pone.0013246] [Citation(s) in RCA: 271] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 09/10/2010] [Indexed: 01/09/2023] Open
Abstract
Background Articular cartilage displays a poor repair capacity. The aim of cell-based therapies for cartilage defects is to repair damaged joint surfaces with a functional replacement tissue. Currently, chondrocytes removed from a healthy region of the cartilage are used but they are unable to retain their phenotype in expanded culture. The resulting repair tissue is fibrocartilaginous rather than hyaline, potentially compromising long-term repair. Mesenchymal stem cells, particularly bone marrow stromal cells (BMSC), are of interest for cartilage repair due to their inherent replicative potential. However, chondrocyte differentiated BMSCs display an endochondral phenotype, that is, can terminally differentiate and form a calcified matrix, leading to failure in long-term defect repair. Here, we investigate the isolation and characterisation of a human cartilage progenitor population that is resident within permanent adult articular cartilage. Methods and Findings Human articular cartilage samples were digested and clonal populations isolated using a differential adhesion assay to fibronectin. Clonal cell lines were expanded in growth media to high population doublings and karyotype analysis performed. We present data to show that this cell population demonstrates a restricted differential potential during chondrogenic induction in a 3D pellet culture system. Furthermore, evidence of high telomerase activity and maintenance of telomere length, characteristic of a mesenchymal stem cell population, were observed in this clonal cell population. Lastly, as proof of principle, we carried out a pilot repair study in a goat in vivo model demonstrating the ability of goat cartilage progenitors to form a cartilage-like repair tissue in a chondral defect. Conclusions In conclusion, we propose that we have identified and characterised a novel cartilage progenitor population resident in human articular cartilage which will greatly benefit future cell-based cartilage repair therapies due to its ability to maintain chondrogenicity upon extensive expansion unlike full-depth chondrocytes that lose this ability at only seven population doublings.
Collapse
Affiliation(s)
- Rebecca Williams
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ilyas M. Khan
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Kirsty Richardson
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Larissa Nelson
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Helen E. McCarthy
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Talal Analbelsi
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Sim K. Singhrao
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Gary P. Dowthwaite
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Rhiannon E. Jones
- Department of Pathology, Cardiff University, Cardiff, United Kingdom
| | - Duncan M. Baird
- Department of Pathology, Cardiff University, Cardiff, United Kingdom
| | - Holly Lewis
- Cytogenetics Department, University Hospital of Wales, Cardiff, United Kingdom
| | - Selwyn Roberts
- Cytogenetics Department, University Hospital of Wales, Cardiff, United Kingdom
| | - Hannah M. Shaw
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jayesh Dudhia
- Department of Veterinary Clinical Sciences, The Royal Veterinary College, North Mymms, United Kingdom
| | - John Fairclough
- Department of Orthopaedics, University Hospital of Wales, Cardiff, United Kingdom
| | - Timothy Briggs
- Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Charles W. Archer
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Lightfoot A, Martin J, Amendola A. Fluorescent viability stains overestimate chondrocyte viability in osteoarticular allografts. Am J Sports Med 2007; 35:1817-23. [PMID: 17702999 DOI: 10.1177/0363546507305010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Allografts from many tissue banks are carefully processed and stored with the goal of preserving chondrocyte viability. However, the importance of living chondrocytes for graft stability is unclear, in part because actual viabilities of individual allografts at the time of placement are seldom known. HYPOTHESES Cell yields from allograft and fresh cartilage differ significantly if chondrocyte viability in allografts is lower than indicated by fluorescence staining with conventional viability probes. In addition, transmission electron microscopy will show significant differences in the percentage of morphologically abnormal chondrocytes in allograft and fresh cartilage. STUDY DESIGN Controlled laboratory study. METHODS Fluorescence viability staining, chondrocyte yield, and chondrocyte characteristics were studied in 8 commercial osteochondral allografts (7 hemicondyles, 1 talus) and 4 freshly harvested cartilage samples from an adult distal femur (age, 46 years), from an adult talus (age, 51 years), and from an adult tibial plateau (age, 29 years) and from a juvenile distal tibia (age, 9 years). Selected fresh and allograft specimens were repeatedly frozen and thawed to deliberately kill chondrocytes by membrane disruption. The findings were analyzed to determine if allograft and fresh cartilage were significantly different with respect to each of the 3 different outcome measures. RESULTS Although fluorescent staining indicated that approximately 75% of chondrocytes were viable (calcein AM-labeled) in allograft cartilage, counterstaining with 4,'6-diamidino-2-phenylindole showed that fewer than 30% contained identifiable nuclei. In contrast, 100% of cells labeled as viable contained nuclei in fresh cartilage. Killing chondrocytes by freeze-thawing before staining did not diminish calcein AM staining in allograft cartilage but caused a significant reduction in fresh cartilage. The average yield of chondrocytes from allograft cartilage was less than 200,000/100 mg tissue, significantly lower than in fresh cartilage, which averaged more than 1.5 million/100 mg tissue. The yield from freeze-thawed controls was less than 24,000/100 mg. Cell numbers increased after 7 days of culture in all cases except for chondrocytes from freeze-thawed cartilage, an indication that the isolated cells were viable. Morphologic analysis by transmission electron microscopy revealed significant increases in the numbers of chondrocytes with pyknotic or absent nuclei or with disintegrated plasma membranes in allograft versus fresh cartilage. CONCLUSION Conventional fluorescence probes are unreliable for analyzing chondrocyte viability in osteoarticular allografts. Alternative methods for assessment of viability, such as cell culture and ultrastructural imaging, may provide more accurate assessment of viability in allografts. CLINICAL RELEVANCE Conventional staining methods that overestimate chondrocyte viability in osteoarticular allografts may mislead investigators attempting to assess the effects of chondrocyte viability on graft stability following implantation. A more reliable means to measure chondrocyte viability will be required to accurately assess these effects.
Collapse
Affiliation(s)
- Andrew Lightfoot
- University of Iowa Sports Medicine Center, Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, 200 Hawkins Drive 01018JPP, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
12
|
Lin Y, Luo E, Chen X, Liu L, Qiao J, Yan Z, Li Z, Tang W, Zheng X, Tian W. Molecular and cellular characterization during chondrogenic differentiation of adipose tissue-derived stromal cells in vitro and cartilage formation in vivo. J Cell Mol Med 2006; 9:929-39. [PMID: 16364200 PMCID: PMC6740126 DOI: 10.1111/j.1582-4934.2005.tb00389.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human adipose tissue is a viable source of mesenchymal stem cells (MSCs) with wide differentiation potential for musculoskeletal tissue engineering research. The stem cell population, termed processed lipoaspirate (PLA) cells, can be isolated from human lipoaspirates and expanded in vitro easily. This study was to determine molecular and cellular characterization of PLA cells during chondrogenic differentiation in vitro and cartilage formation in vivo. When cultured in vitro with chondrogenic medium as monolayers in high density, they could be induced toward the chondrogenic lineages. To determine their ability of cartilage formation in vivo, the induced cells in alginate gel were implanted in nude mice subcutaneously for up to 20 weeks. Histological and immunohistochemical analysis of the induced cells and retrieved specimens from nude mice at various intervals showed obviously cartilaginous phenotype with positive staining of specific extracellular matrix (ECM). Correlatively, results of RT-PCR and Western Blot confirmed the expression of characteristic molecules during chondrogenic differentiation namely collagen type II, SOX9, cartilage oligomeric protein (COMP) and the cartilage-specific proteoglycan aggrecan. Meanwhile, there was low level synthesis of collagen type X and decreasing production of collagen type I during induction in vitro and formation of cartilaginous tissue in vivo. These cells induced to form engineered cartilage can maintain the stable phenotype and indicate no sign of hypertrophy in 20 weeks in vivo, however, when they cultured as monolayers, they showed prehypertrophic alteration in late stage about 10 weeks after induction. Therefore, it is suggested that human adipose tissue may represent a novel plentiful source of multipotential stem cells capable of undergoing chondrogenesis and forming engineered cartilage.
Collapse
Affiliation(s)
- Yunfeng Lin
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Aigner T, Rose J, Martin J, Buckwalter J. Aging theories of primary osteoarthritis: from epidemiology to molecular biology. Rejuvenation Res 2004; 7:134-45. [PMID: 15312300 DOI: 10.1089/1549168041552964] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is the most common disabling condition of humans in the western world. It has been known for a very long time that aging is the most prominent risk factor for the initiation and progression of the disease, but the explanations for this phenomenon have changed over time. The most longstanding theory is that osteoarthritis develops because of continuous mechanical wear and tear. However, osteoarthritis can also be the result of time/age-related modifications to cartilage matrix components. One of the simplest biological explanations for the initiation and progression of osteoarthritic cartilage degeneration is a mere loss of viable cells, due to apoptosis or other mechanisms. Overall, the most likely scenario is that the cells and the matrix of articular cartilage get older over time, and eventually the tissue enters a senescence-like state that makes it more prone to enter the osteoarthritic degeneration pathway. Thus, patients with osteoarthritis might progress more quickly to the senescence phenotype compared to others. Moreover, stressful conditions associated with the osteoarthritic disease process might further promote chondrocyte senescence. Primary osteoarthritis in this model would be a "premature" degeneration of the joint due to a premature chondrocyte senescence. By analogy to neurodegenerative disorders, one could refer to osteoarthritis as the "M. Alzheimer" of articular cartilage. One of the most important implications of this hypothesis is that it points to issues of cellular degeneration as the basis for understanding the initiation and progression of osteoarthritis. Equally important, it emphasizes that whatever treatment we envisage for osteoarthritis, we must take into account that we are dealing with aged/(pre)senescent cells that no longer have the ability of their juvenile counterparts to counteract the many mechanical, inflammatory, and/or other assaults to the tissue.
Collapse
Affiliation(s)
- T Aigner
- Osteoarticular and Arthritis Research Group, Department of Pathology, University of Erlangen-Nürnberg, Germany.
| | | | | | | |
Collapse
|
14
|
Abstract
Telomeres, the ends of linear chromosomes, shorten with each round of DNA replication. Loss of telomeric DNA can lead to senescence, a state in which cells no longer divide, and crisis, which triggers cell death. To prevent these phenomena, cancer and stem cells must maintain their telomeres, for example, by expressing telomerase, an enzyme that can extend telomeres. As our knowledge of telomere maintenance increases, opportunities arise for translating telomere biology into clinical medicine. Areas of current investigation include the development of diagnostic and prognostic markers for cancer; the development of chemotherapeutic agents based on telomerase inhibition, an immune response to telomerase, or telomerase-based gene therapy; and engineering rejuvenated tissues by restoring telomerase expression.
Collapse
Affiliation(s)
- Gary A Ulaner
- Medical Service, VA Palo Alto Health Care System, CA 94304, USA.
| |
Collapse
|
15
|
Abstract
Complementary and alternative medicine has flourished since the beginning of time because of a human need to postpone the aging process and to reverse disease. Complementary and alternative medicine sells, because in some cases it works as well or better than mainstream medicine. In addition, many practitioners of complementary medicine understand Hippocrates' aphorism: "It is more important to know the person that has the disease than the disease the person has." It is important to recognize that spending time with the patient is often as therapeutic as drugs. CAM offers patients the time, touch, attention, and level of personal interaction that are increasingly uncommon in contemporary medical care. There is a major need for large and appropriately designed studies to test the effectiveness of complementary techniques. As in other areas of health care, studies in the elderly are consistently lacking. With the growing interest in CAM, it is important for medical providers to keep an open mind--to both the potential benefits and potential harms of alternative treatments. When treatments are shown to be dangerous or ineffective, we must educate the public and work to remove these therapies from the market place. When treatments are proven effective, Western and Eastern medical providers must work together with patients to provide the most appropriate and comprehensive health care.
Collapse
Affiliation(s)
- Julie K Gammack
- Division of Geriatric Medicine, Saint Louis University Health Sciences Center, MO 63104, USA.
| | | |
Collapse
|
16
|
Martin JA, Buckwalter JA. The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair. J Bone Joint Surg Am 2003; 85-A Suppl 2:106-10. [PMID: 12721352 DOI: 10.2106/00004623-200300002-00014] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND With increasing age, the prevalence of osteoarthritis increases and the efficacy of articular cartilage repair decreases. As chondrocytes age, they synthesize smaller, less uniform aggrecan molecules and less functional link proteins, their mitotic and synthetic activity decline, and their responsiveness to anabolic mechanical stimuli and growth factors decreases. These observations led us to hypothesize that progressive cell senescence decreases the ability of chondrocytes to maintain and to restore articular cartilage. METHODS To test this hypothesis, we measured cell senescence markers (beta-galactosidase expression, mitotic activity, and telomere length) in human articular cartilage chondrocytes from twenty-seven donors ranging in age from one to eighty-seven years. We also assessed mitochondrial DNA, membrane potential, and numerical density. To determine if chondrocyte age changes are reversible, we transfected human articular cartilage chondrocytes with the human telomerase gene (hTERT) and human papilloma virus oncogenes (E6 and E7). RESULTS Beta-galactosidase expression increased with age (r = 0.84, p = 0.0001), while mitotic activity and telomere length declined (r = -0.77, p = 0.001 and r = -0.71, p = 0.0004, respectively). Decreasing telomere length was closely correlated with increasing expression of beta-galactosidase and decreasing mitotic activity. As the number of population doublings increased, mitochondrial DNA was degraded, mitochondrial membrane potential was lost, and the number of mitochondria per cell declined. Transfection of human articular cartilage chondrocytes from a forty-seven-year-old donor with hTERT and human papilloma virus proto-oncogenes E6 and E7 created a cell line that has completed more than 300 population doublings as compared with an upper limit of twenty-five population doublings for normal cells. Telomere length increased in cells transduced with hTERT. CONCLUSIONS These findings help to explain the previously reported age-related declines in chondrocyte synthetic activity, mitotic activity, and responsiveness to anabolic cytokines and mechanical stimuli. They also suggest that in vivo chondrocyte senescence contributes to the age-related increase in the prevalence of osteoarthritis and decrease in the efficacy of cartilage repair. The creation of immortal cells with increased telomere length suggests that the progression of human chondrocytes toward senescence is not inevitable.
Collapse
Affiliation(s)
- James A Martin
- Department of Orthopaedics, University of Iowa College of Medicine, Iowa City 52242, USA
| | | |
Collapse
|
17
|
Parsch D, Brümmendorf TH, Richter W, Fellenberg J. Replicative aging of human articular chondrocytes during ex vivo expansion. ARTHRITIS AND RHEUMATISM 2002; 46:2911-6. [PMID: 12428231 DOI: 10.1002/art.10626] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate the contribution of clinical ex vivo expansion protocols to replicative aging of human chondrocytes. METHODS Primary human chondrocytes were cultured as monolayers after isolation from 7 articular cartilage specimens. Cells were passaged corresponding to 12-19 cell population doublings (cpd). Aliquots of the cells were collected from each passage and analyzed for telomere length and telomerase activity. RESULTS The rate of telomere shortening was heterogeneous, ranging from 147 to 431 bp/cpd (mean +/- SD 305 +/- 122). Telomerase activity was detected at various time points during passaging in 5 of 7 primary chondrocytes analyzed, but not in native human articular cartilage specimens. According to our data, an 8-10-fold ( approximately 3 cpd) ex vivo expansion of articular chondrocytes, as typically performed for transplantation procedures, leads to telomere erosion in the range of 900 bp. This is comparable with 30 years of aging based on the in vivo rate of telomere shortening of 30 bp/year recently found in chondrocytes. CONCLUSION If telomere shortening is an important determinant of aging in human articular cartilage, an additional telomere loss due to ex vivo expansion might affect the incidence or time of onset of age-related cartilage disorders. However, given the limited extent of expansion performed in the clinical setting to date, a significant telomere-mediated increase in the risk of malignant transformation or replicative exhaustion of the transplanted cells seems unlikely.
Collapse
|
18
|
Price JS, Waters JG, Darrah C, Pennington C, Edwards DR, Donell ST, Clark IM. The role of chondrocyte senescence in osteoarthritis. Aging Cell 2002; 1:57-65. [PMID: 12882354 DOI: 10.1046/j.1474-9728.2002.00008.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replicative senescence occurs when normal somatic cells stop dividing. Senescent cells remain viable, but show alterations in phenotype, e.g. altered expression of matrix metalloproteinases (MMPs); these enzymes are known to be involved in cartilage destruction. It is assumed that cells deplete their replicative potential during aging, and age is a major risk factor for osteoarthritis (OA). Therefore, we hypothesized that chondrocytes in aging or diseased cartilage become senescent with associated phenotypic changes contributing to development or progression of OA. Articular cartilage was obtained from OA patients undergoing arthroplasty, with 'normal' cartilage from trauma surgery for hip fracture. Senescent cells were identified using the senescence-associated beta-galactosidase (SA-beta-gal) marker. Telomere length was assessed using Southern blot. MMP expression was measured at the mRNA level using Taqman RT-PCR. No SA-beta-gal staining was observed in control cartilage regardless of patient age. In contrast, SA-beta-gal staining was observed in damaged OA cartilage adjacent to the lesion. Cultured chondrocytes isolated from sites near a lesion contained a greater percentage of SA-beta-gal positive cells than cultures isolated from distal sites or normal cartilage. Mean telomere length was shorter in cells near the lesion compared to distal sites in the same joint; thus the former population has undergone cell division. The expression of collagenases MMP-1, -8 and -13 and tissue inhibitor of metalloproteinases (TIMP)-1 was altered in OA cartilage, but no difference was detected between lesion and distal sites in the same joint (i.e. no correlation was found between senescent cells and proteinase/ inhibitor expression).
Collapse
Affiliation(s)
- Jo S Price
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | | | | | |
Collapse
|