1
|
Hashimoto M, Goto A, Qiao S, Yamashita H. Aged mice overexpressing cellular repressor of E1A-stimulated genes 1 in adipose tissues exhibited increased liposarcoma incidence and shortened lifespan. Biochem Biophys Res Commun 2025; 753:151454. [PMID: 39978253 DOI: 10.1016/j.bbrc.2025.151454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Cellular repressor of E1A-stimulated genes 1 (CREG1) is a multifunctional secreted glycoprotein that regulates p16-dependent cellular senescence and cell differentiation and accelerates brown adipogenesis. We recently demonstrated that the CREG1 levels in serum, liver, and kidney were significantly increased in aged wild-type (WT) mice, where age-related renal impairment was further aggravated by promoting cellular senescence. Based on these findings, we hypothesized that the constitutive regulation of CREG1 expression in vivo may affect lifespan. In this study, we revealed that the average lifespan of adipocyte P2-CREG1 transgenic (Tg) mice was shorter than that of WT mice. Moreover, we determined that this reduced lifespan was associated with an increased incidence of liposarcoma (LPS). Our findings indicated that the development of LPS in Tg mice may be driven by chronic inflammation induced by the p19Arf-mouse double minute 2 pathway in white adipose tissue (WAT). These findings indicate that long-term alterations in CREG1 expression in vivo may affect tumor development in the WAT.
Collapse
Affiliation(s)
- Michihiro Hashimoto
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, 078-8510, Hokkaido, Japan.
| | - Ayumi Goto
- Department of Physical Therapy, School of Health Science, Toyohashi SOZO University, Toyohashi, 440-8511, Aichi, Japan
| | - Shanlou Qiao
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Aichi, Japan
| | - Hitoshi Yamashita
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Aichi, Japan.
| |
Collapse
|
2
|
Basu R, Boguszewski CL, Kopchick JJ. Growth Hormone Action as a Target in Cancer: Significance, Mechanisms, and Possible Therapies. Endocr Rev 2025; 46:224-280. [PMID: 39657053 DOI: 10.1210/endrev/bnae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/29/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Growth hormone (GH) is a pituitary-derived endocrine hormone required for normal postnatal growth and development. Hypo- or hypersecretion of endocrine GH results in 2 pathologic conditions, namely GH deficiency (GHD) and acromegaly. Additionally, GH is also produced in nonpituitary and tumoral tissues, where it acts rather as a cellular growth factor with an autocrine/paracrine mode of action. An increasingly persuasive and large body of evidence over the last 70 years concurs that GH action is implicit in escalating several cancer-associated events, locally and systemically. This pleiotropy of GH's effects is puzzling, but the association with cancer risk automatically raises a concern for patients with acromegaly and for individuals treated with GH. By careful assessment of the available knowledge on the fundamental concepts of cancer, suggestions from epidemiological and clinical studies, and the evidence from specific reports, in this review we aimed to help clarify the distinction of endocrine vs autocrine/paracrine GH in promoting cancer and to reconcile the discrepancies between experimental and clinical data. Along this discourse, we critically weigh the targetability of GH action in cancer-first by detailing the molecular mechanisms which posit GH as a critical node in tumor circuitry; and second, by enumerating the currently available therapeutic options targeting GH action. On the basis of our discussion, we infer that a targeted intervention on GH action in the appropriate patient population can benefit a sizable subset of current cancer prognoses.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
| | - Cesar L Boguszewski
- SEMPR, Endocrine Division, Department of Internal Medicine, Federal University of Parana, Curitiba 80060-900, Brazil
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
3
|
Barbut D, Perni M, Zasloff M. Anti-aging properties of the aminosterols of the dogfish shark. NPJ AGING 2024; 10:62. [PMID: 39702521 DOI: 10.1038/s41514-024-00188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
The development of anti-aging drugs is challenged by both the apparent complexity of the physiological mechanisms involved in aging and the likelihood that many of these mechanisms remain unknown. As a consequence, the development of anti-aging compounds based on the rational targeting of specific pathways has fallen short of the goal. To date, the most impressive compound is rapamycin, a natural bacterial product initially identified as an antifungal, and only subsequently discovered to have anti-aging properties. In this review, we focus on two aminosterols from the dogfish shark, Squalus acanthias, that we discovered initially as broad-spectrum anti-microbial agents. This review is the first to gather together published studies conducted both in vitro and in numerous vertebrate species to demonstrate that these compounds target aging pathways at the cellular level and provide benefits in multiple aging-associated conditions in relevant animal models and in humans. The dogfish aminosterols should be recognized as potential anti-aging drugs.
Collapse
Affiliation(s)
- Denise Barbut
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA
| | - Michele Perni
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA
| | - Michael Zasloff
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA.
- MedStar Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, 20010, USA.
| |
Collapse
|
4
|
Zaczek A, Lewiński A, Karbownik-Lewińska M, Lehoczki A, Gesing A. Impact of visceral adipose tissue on longevity and metabolic health: a comparative study of gene expression in perirenal and epididymal fat of Ames dwarf mice. GeroScience 2024; 46:5925-5938. [PMID: 38517641 PMCID: PMC11493907 DOI: 10.1007/s11357-024-01131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024] Open
Abstract
Emerging research underscores the pivotal role of adipose tissue in regulating systemic aging processes, particularly when viewed through the lens of the endocrine hypotheses of aging. This study delves into the unique adipose characteristics in an important animal model of aging - the long-lived Ames dwarf (df/df) mice. Characterized by a Prop1df gene mutation, these mice exhibit a deficiency in growth hormone (GH), prolactin, and TSH, alongside extremely low circulating IGF-1 levels. Intriguingly, while surgical removal of visceral fat (VFR) enhances insulin sensitivity in normal mice, it paradoxically increases insulin resistance in Ames dwarfs. This suggests an altered profile of factors produced in visceral fat in the absence of GH, indicating a unique interplay between adipose tissue function and hormonal influences in these models. Our aim was to analyze the gene expression related to lipid and glucose metabolism, insulin pathways, inflammation, thermoregulation, mitochondrial biogenesis, and epigenetic regulation in the visceral (perirenal and epididymal) adipose tissue of Ames dwarf and normal mice. Our findings reveal an upregulation in the expression of key genes such as Lpl, Adrβ3, Rstn, Foxo1, Foxo3a, Irs1, Cfd, Aldh2, Il6, Tnfα, Pgc1α, Ucp2, and Ezh2 in perirenal and Akt1, Foxo3a, PI3k, Ir, Acly, Il6, Ring1a, and Ring 1b in epididymal fat in df/df mice. These results suggest that the longevity phenotype in Ames dwarfs, which is determined by peripubertal GH/IGF-1 levels, may also involve epigenetic reprogramming of adipose tissue influenced by hormonal changes. The increased expression of genes involved in metabolic regulation, tumor suppression, mitochondrial biogenesis, and insulin pathways in Ames dwarf mice highlights potentially beneficial aspects of this model, opening new avenues for understanding the molecular underpinnings of longevity and aging.
Collapse
Affiliation(s)
- Agnieszka Zaczek
- Department of Endocrinology of Ageing, Medical University of Lodz, Lodz, Poland
| | - Andrzej Lewiński
- Department of Paediatric Endocrinology, Medical University of Lodz, Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland
| | - Małgorzata Karbownik-Lewińska
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland
| | - Andrea Lehoczki
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Doctoral School, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Haematology and Stem Cell Transplantation, National Institute for Haematology and Infectious Diseases, South Pest Central Hospital, 1097, Budapest, Hungary
| | - Adam Gesing
- Department of Endocrinology of Ageing, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
5
|
List EO, Basu R, Berryman DE, Duran-Ortiz S, Martos-Moreno GÁ, Kopchick JJ. Common and Uncommon Mouse Models of Growth Hormone Deficiency. Endocr Rev 2024; 45:818-842. [PMID: 38853618 PMCID: PMC12102728 DOI: 10.1210/endrev/bnae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Mouse models of growth hormone deficiency (GHD) have provided important tools for uncovering the various actions of GH. Nearly 100 years of research using these mouse lines has greatly enhanced our knowledge of the GH/IGF-1 axis. Some of the shared phenotypes of the 5 "common" mouse models of GHD include reduced body size, delayed sexual maturation, decreased fertility, reduced muscle mass, increased adiposity, and enhanced insulin sensitivity. Since these common mouse lines outlive their normal-sized littermates-and have protection from age-associated disease-they have become important fixtures in the aging field. On the other hand, the 12 "uncommon" mouse models of GHD described herein have tremendously divergent health outcomes ranging from beneficial aging phenotypes (similar to those described for the common models) to extremely detrimental features (such as improper development of the central nervous system, numerous sensory organ defects, and embryonic lethality). Moreover, advancements in next-generation sequencing technologies have led to the identification of an expanding array of genes that are recognized as causative agents to numerous rare syndromes with concomitant GHD. Accordingly, this review provides researchers with a comprehensive up-to-date collection of the common and uncommon mouse models of GHD that have been used to study various aspects of physiology and metabolism associated with multiple forms of GHD. For each mouse line presented, the closest comparable human syndromes are discussed providing important parallels to the clinic.
Collapse
Affiliation(s)
- Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| | | | - Gabriel Á Martos-Moreno
- Department of Endocrinology & Pediatrics, Hospital Infantil Universitario Niño Jesús, IIS La Princesa & Universidad Autónoma de Madrid. CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, E28009, Spain
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| |
Collapse
|
6
|
Lasher AT, Wang L, Hyun J, Summers SA, Sun LY. Unveiling ceramide dynamics: Shedding light on healthy aging in growth hormone-releasing hormone knockout mice. Aging Cell 2024; 23:e14226. [PMID: 38808779 PMCID: PMC11320351 DOI: 10.1111/acel.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/05/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Dysregulation of growth hormone (GH) signaling consistently leads to increased lifespan in laboratory rodents, yet the precise mechanisms driving this extension remain unclear. Understanding the molecular underpinnings of the beneficial effects associated with GH deficiency could unveil novel therapeutic targets for promoting healthy aging and longevity. In our pursuit of identifying metabolites implicated in aging, we conducted an unbiased lipidomic analysis of serum samples from growth hormone-releasing hormone knockout (GHRH-KO) female mice and their littermate controls. Employing a targeted lipidomic approach, we specifically investigated ceramide levels in GHRH-KO mice, a well-established model of enhanced longevity. While younger GHRH-KO mice did not exhibit notable differences in serum lipids, older counterparts demonstrated significant reductions in over one-third of the evaluated lipids. In employing the same analysis in liver tissue, GHRH-KO mice showed pronounced downregulation of numerous ceramides and hexosylceramides, which have been shown to elicit many of the tissue defects that accompany aging (e.g., insulin resistance, oxidative stress, and cell death). Additionally, gene expression analysis in the liver tissue of adult GHRH-KO mice identified substantial decreases in several ceramide synthesis genes, indicating that these alterations are, at least in part, attributed to GHRH-KO-induced transcriptional changes. These findings provide the first evidence of disrupted ceramide metabolism in a long-lived mammal. This study sheds light on the intricate connections between GH deficiency, ceramide levels, and the molecular mechanisms influencing lifespan extension.
Collapse
Affiliation(s)
| | - Liping Wang
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Jooyoung Hyun
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Scott A. Summers
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Liou Y. Sun
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
7
|
Kolb AF, Mayer C, Zitskaja A, Petrie L, Hasaballah K, Warren C, Carlisle A, Lillico S, Whitelaw B. Maternal α-casein deficiency extends the lifespan of offspring and programmes their body composition. GeroScience 2024:10.1007/s11357-024-01273-2. [PMID: 38992336 DOI: 10.1007/s11357-024-01273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Early nutrition has significant effects on physiological outcomes during adult life. We have analysed the effect of maternal α-casein (CSN1S1) deficiency on the physiological fate of dams and their offspring. α-casein deficiency reduces maternal milk protein concentration by more than 50% and attenuates the growth of pups to 27% (p < 0.001) of controls at the point of weaning. This is associated with a permanent reduction in adult body weight (- 31% at 25 weeks). Offspring nursed by α-casein deficient dams showed a significantly increased lifespan (+ 20%, χ2: 10.6; p = 0.001). Liver transcriptome analysis of offspring nursed by α-casein deficient dams at weaning revealed gene expression patterns similar to those found in dwarf mice (reduced expression of somatotropic axis signalling genes, increased expression of xenobiotic metabolism genes). In adult mice, the expression of somatotropic axis genes returned to control levels. This demonstrates that, in contrast to dwarf mice, attenuation of the GH-IGF signalling axis in offspring nursed by α-casein deficient dams is transient, while the changes in body size and lifespan are permanent. Offspring nursed by α-casein deficient dams showed permanent changes in body composition. Absolute and relative adipose tissue weights (p < 0.05), the percentage of body fat (p < 0.001) as well as adipocyte size in epididymal white adipose tissue are all reduced. Serum leptin levels were 25% of those found in control mice (p < 0.001). Liver lipid content and lipid composition were significantly altered in response to postnatal nutrition. This demonstrates the nutrition in early life programmes adult lipid metabolism, body composition and lifespan.
Collapse
Affiliation(s)
- Andreas F Kolb
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland.
| | - Claus Mayer
- Biomathematics and Statistics Scotland (BioSS), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland
| | - Alina Zitskaja
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland
| | - Linda Petrie
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland
| | - Khulod Hasaballah
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland
| | - Claire Warren
- Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | - Ailsa Carlisle
- Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | - Simon Lillico
- Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | - Bruce Whitelaw
- Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
8
|
Zhang J, Kibret BG, Vatner DE, Vatner SF. The role of brown adipose tissue in mediating healthful longevity. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:17. [PMID: 39119146 PMCID: PMC11309368 DOI: 10.20517/jca.2024.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
There are two major subtypes of adipose tissue, i.e., white adipose tissue (WAT) and brown adipose tissue (BAT). It has been known for a long time that WAT mediates obesity and impairs healthful longevity. More recently, interest has focused on BAT, which, unlike WAT, actually augments healthful aging. The goal of this review is to examine the role of BAT in mediating healthful longevity. A major role for BAT and its related beige adipose tissue is thermogenesis, as a mechanism to maintain body temperature by producing heat through uncoupling protein 1 (UCP1) or through UCP1-independent thermogenic pathways. Our hypothesis is that healthful longevity is, in part, mediated by BAT. BAT protects against the major causes of impaired healthful longevity, i.e., obesity, diabetes, cardiovascular disorders, cancer, Alzheimer's disease, reduced exercise tolerance, and impaired blood flow. Several genetically engineered mouse models have shown that BAT enhances healthful aging and that their BAT is more potent than wild-type (WT) BAT. For example, when BAT, which increases longevity and exercise performance in mice with disruption of the regulator of G protein signaling 14 (RGS14), is transplanted to WT mice, their exercise capacity is enhanced at 3 days after BAT transplantation, whereas BAT transplantation from WT to WT mice also resulted in increased exercise performance, but only at 8 weeks after transplantation. In view of the ability of BAT to mediate healthful longevity, it is likely that a pharmaceutical analog of BAT will become a novel therapeutic modality.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Berhanu Geresu Kibret
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Dorothy E. Vatner
- Department of Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Stephen F. Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
9
|
Peng L, Dan J, Huang W, Sang L, Tian H, Li Z, Li W, Liu J, Luo Y. The dual effects of Congea chinensis Moldenke on inhibiting tumor cell proliferation and delaying aging by activating TERT transcriptional activity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117103. [PMID: 37673201 DOI: 10.1016/j.jep.2023.117103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural medicinal plants, also named herbs, have attracted considerable research attention for their potential pharmacological activities, such as antitumor and longevity-promoting activities. Our previous review proposed that maintaining the homeostatic balance between aging and cancer may benefit organisms to enable tumor-free longevity. Congea chinensis Moldenke (CCM) is a plant species that grows on the border of Yunnan Province of China. Its medicinal value has been few reports until now. Thus, screening and extraction the ingredients from CCM that are both active tumor suppressors and TERT activators is a therapeutic strategy for improving tumor-free longevity. AIM OF THE STUDY To extract and evaluate the cytotoxic antitumor and TERT transcription-promoting activities of the plant CCM. MATERIALS AND METHODS The ingredients extracted from CCM were tested for transcriptional activation of p53 using pGL4-p53-GFP cells and for TERT expression using a real-time PCR assay. In vitro antitumor activity was detected by sulforhodamine B (SRB) assay and Annexin V/PI staining assay. The cell-permeable probe H2DCFDA was used to detect intracellular reactive oxygen species (ROS). Western blot was performed to verify predicated proteins regulated by the ingredients. RNA-sequence analysis was applied to predicate the underlying mechanism of CCM. RESULTS Both CCM and MPRC2-8, two novel extracts of Congea chinensis Moldenke, activated the expression of p53 and TERT and were selectively cytotoxic toward tumor cells. In addition, the cytotoxic mechanism of MPRC2-8 was identified as ROS generation-induced apoptosis. Interestingly, MPRC2-8 showed opposite regulatory effects on the SIRT1-p53 axis in A549 and HT-29 cells, which have different p53 statuses. RNA-seq analysis showed that CCM and MPRC2-8 induced the p53, apoptosis and ROS signaling pathways, consistent with the results of cellular experiments in vitro. CONCLUSION Our study reveals that CCM and MPRC2-8 have two complementary activities, antitumor activity and TERT-activating activity, with potential antitumor and longevity-improving effects.
Collapse
Affiliation(s)
- Lei Peng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wenhui Huang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lei Sang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hao Tian
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Zhiming Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Wanyi Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China.
| | - Jing Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Ying Luo
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Development on Common Chronic Diseases, School of Basic Medicine, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
10
|
Apaydin T, Zonis S, Zhou C, Valencia CW, Barrett R, Strous GJ, Mol JA, Chesnokova V, Melmed S. WIP1 is a novel specific target for growth hormone action. iScience 2023; 26:108117. [PMID: 37876819 PMCID: PMC10590974 DOI: 10.1016/j.isci.2023.108117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
DNA damage repair (DDR) is mediated by phosphorylating effectors ATM kinase, CHK2, p53, and γH2AX. We showed earlier that GH suppresses DDR by suppressing pATM, resulting in DNA damage accumulation. Here, we show GH acting through GH receptor (GHR) inducing wild-type p53-inducible phosphatase 1 (WIP1), which dephosphorylated ATM and its effectors in normal human colon cells and three-dimensional human intestinal organoids. Mice bearing GH-secreting xenografts exhibited induced colon WIP1 with suppressed pATM and γH2AX. WIP1 was also induced in buffy coats derived from patients with elevated GH from somatotroph adenomas. In contrast, decreased colon WIP1 was observed in GHR-/- mice. WIP1 inhibition restored ATM phosphorylation and reversed GH-induced DNA damage. We elucidated a novel GH signaling pathway activating Src/AMPK to trigger HIPK2 nuclear-cytoplasmic relocation and suppressing WIP1 ubiquitination. Concordantly, blocking either AMPK or Src abolished GH-induced WIP1. We identify WIP1 as a specific target for GH-mediated epithelial DNA damage accumulation.
Collapse
Affiliation(s)
- Tugce Apaydin
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Svetlana Zonis
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cuiqi Zhou
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Wong Valencia
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert Barrett
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ger J. Strous
- Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, the Netherlands
| | - Vera Chesnokova
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shlomo Melmed
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
11
|
Iwasaki K, Lalani B, Kahng J, Carapeto P, Sanjines S, Hela F, Abarca C, Tsuji T, Darcy J, Bartke A, Tseng YH, Kulkarni RN, Aguayo-Mazzucato C. Decreased IGF1R attenuates senescence and improves function in pancreatic β-cells. Front Endocrinol (Lausanne) 2023; 14:1203534. [PMID: 37441495 PMCID: PMC10335398 DOI: 10.3389/fendo.2023.1203534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction The enhanced β-cell senescence that accompanies insulin resistance and aging contributes to cellular dysfunction and loss of transcriptional identity leading to type 2 diabetes (T2D). While senescence is among the 12 recognized hallmarks of aging, its relation to other hallmarks including altered nutrient sensing (insulin/IGF1 pathway) in β-cells is not fully understood. We previously reported that an increased expression of IGF1R in mouse and human β-cells is a marker of older β-cells; however, its contribution to age-related dysfunction and cellular senescence remains to be determined. Methods In this study, we explored the direct role of IGF1R in β-cell function and senescence using two independent mouse models with decreased IGF1/IGF1R signaling: a) Ames Dwarf mice (Dwarf +/+), which lack growth hormone and therefore have reduced circulating levels of IGF1, and b) inducible β-cell-specific IGF1R knockdown (βIgf1rKD) mice. Results Compared to Dwarf+/- mice, Dwarf+/+ mice had lower body and pancreas weight, lower circulating IGF1 and insulin levels, and lower IGF1R and p21Cip1 protein expression in β-cells, suggesting the suppression of senescence. Adult βIgf1rKD mice showed improved glucose clearance and glucose-induced insulin secretion, accompanied by decreased p21Cip1 protein expression in β-cells. RNA-Seq of islets isolated from these βIgf1rKD mice revealed the restoration of three signaling pathways known to be downregulated by aging: sulfide oxidation, autophagy, and mTOR signaling. Additionally, deletion of IGF1R in mouse β-cells increased transcription of genes important for maintaining β-cell identity and function, such as Mafa, Nkx6.1, and Kcnj11, while decreasing senescence-related genes, such as Cdkn2a, Il1b, and Serpine 1. Decreased senescence and improved insulin-secretory function of β-cells were also evident when the βIgf1rKD mice were fed a high-fat diet (HFD; 60% kcal from fat, for 5 weeks). Discussion These results suggest that IGF1R signaling plays a causal role in aging-induced β-cell dysfunction. Our data also demonstrate a relationship between decreased IGF1R signaling and suppressed cellular senescence in pancreatic β-cells. Future studies can further our understanding of the interaction between senescence and aging, developing interventions that restore β-cell function and identity, therefore preventing the progression to T2D.
Collapse
Affiliation(s)
- Kanako Iwasaki
- Section on Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
- Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Benjamin Lalani
- Section on Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
| | - Jiho Kahng
- Section on Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
| | - Priscila Carapeto
- Section on Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
| | - Stephanie Sanjines
- Section on Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
| | - Francesko Hela
- Section on Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
| | - Cristian Abarca
- Section on Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
| | - Tadataka Tsuji
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
| | - Justin Darcy
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
| | - Andrzej Bartke
- Department of Internal Medicine, Division of Geriatrics Research, Department of Medicine, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
| | - Rohit N. Kulkarni
- Section on Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
| | - Cristina Aguayo-Mazzucato
- Section on Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Xie K, Fuchs H, Scifo E, Liu D, Aziz A, Aguilar-Pimentel JA, Amarie OV, Becker L, da Silva-Buttkus P, Calzada-Wack J, Cho YL, Deng Y, Edwards AC, Garrett L, Georgopoulou C, Gerlini R, Hölter SM, Klein-Rodewald T, Kramer M, Leuchtenberger S, Lountzi D, Mayer-Kuckuk P, Nover LL, Oestereicher MA, Overkott C, Pearson BL, Rathkolb B, Rozman J, Russ J, Schaaf K, Spielmann N, Sanz-Moreno A, Stoeger C, Treise I, Bano D, Busch DH, Graw J, Klingenspor M, Klopstock T, Mock BA, Salomoni P, Schmidt-Weber C, Weiergräber M, Wolf E, Wurst W, Gailus-Durner V, Breteler MMB, Hrabě de Angelis M, Ehninger D. Deep phenotyping and lifetime trajectories reveal limited effects of longevity regulators on the aging process in C57BL/6J mice. Nat Commun 2022; 13:6830. [PMID: 36369285 PMCID: PMC9652467 DOI: 10.1038/s41467-022-34515-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Current concepts regarding the biology of aging are primarily based on studies aimed at identifying factors regulating lifespan. However, lifespan as a sole proxy measure for aging can be of limited value because it may be restricted by specific pathologies. Here, we employ large-scale phenotyping to analyze hundreds of markers in aging male C57BL/6J mice. For each phenotype, we establish lifetime profiles to determine when age-dependent change is first detectable relative to the young adult baseline. We examine key lifespan regulators (putative anti-aging interventions; PAAIs) for a possible countering of aging. Importantly, unlike most previous studies, we include in our study design young treated groups of animals, subjected to PAAIs prior to the onset of detectable age-dependent phenotypic change. Many PAAI effects influence phenotypes long before the onset of detectable age-dependent change, but, importantly, do not alter the rate of phenotypic change. Hence, these PAAIs have limited effects on aging.
Collapse
Affiliation(s)
- Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Enzo Scifo
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Dan Liu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.,Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Juan Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Oana Veronica Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Patricia da Silva-Buttkus
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Yi-Li Cho
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Yushuang Deng
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - A Cole Edwards
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Christina Georgopoulou
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Raffaele Gerlini
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | | | - Stefanie Leuchtenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Dimitra Lountzi
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Phillip Mayer-Kuckuk
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lena L Nover
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Manuela A Oestereicher
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Clemens Overkott
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Brandon L Pearson
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.,Mailman School of Public Health, Columbia University, 630W. 168th St., New York, NY, 10032, USA
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jan Rozman
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Jenny Russ
- Nuclear Function Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Kristina Schaaf
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Claudia Stoeger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Irina Treise
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München, 81675, Munich, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, 85350, Freising-Weihenstephan, Germany
| | - Thomas Klopstock
- Friedrich-Baur-Institut, Department of Neurology, Ludwig-Maximilians-University Munich, 80336, Munich, Germany.,DZNE, German Center for Neurodegenerative Diseases, 80336, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 80336, Munich, Germany
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD, 20892, USA
| | - Paolo Salomoni
- Nuclear Function Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Carsten Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technische Universität München, and Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Marco Weiergräber
- Research Group Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices, 53175, Bonn, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,DZNE, German Center for Neurodegenerative Diseases, 80336, Munich, Germany.,Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technische Universität München, Freising, Germany
| | - Valérie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.,Institute for Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Chair of Experimental Genetics, TUM School of Life Sciences (SoLS), Technische Universität München, 85354, Freising, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.
| |
Collapse
|
13
|
Fazekas-Pongor V, Péterfi A, Major D, Szarvas Z, Fekete M, Tabak AG, Csiszar A, Sonntag WE, Austad SN, Ungvari ZI. Decreased lifespan in female "Munchkin" actors from the cast of the 1939 film version of The Wizard of Oz does not support the hypothesis linking hypopituitary dwarfism to longevity. GeroScience 2022; 44:2527-2539. [PMID: 36334178 PMCID: PMC9768075 DOI: 10.1007/s11357-022-00680-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022] Open
Abstract
In laboratory mice, pituitary dwarfism caused by genetic reduction or elimination of the activity of growth hormone (GH) significantly extends lifespan. The effects of congenital pituitary dwarfism on human longevity are not well documented. To analyse the effects of untreated pituitary dwarfism on human lifespan, the longevity of a diverse group of widely known little people, the 124 adults who played "Munchkins" in the 1939 movie The Wizard of Oz was investigated. Survival of "Munchkin" actors with those of controls defined as cast members of The Wizard of Oz and those of other contemporary Academy Award winning Hollywood movies was compared. According to the Kaplan-Meier survival curves, survival of female and male "Munchkin" actors was shorter than cast controls and Hollywood controls of respective sexes. Cox regression analyses showed that female "Munchkin" actors had significantly higher risk ratios compared to both female cast controls (RR, 1.70; 95% CI, 1.05 to 2.77) and female Hollywood controls (RR, 1.52; 95% CI, 1.03 to 2.24). Similar trends were also discernible for men, albeit point estimates were not significant. The lack of lifespan extension in "Munchkin" actors does not support the hypothesis that hereditary GH deficiency regulates longevity in humans.
Collapse
Affiliation(s)
| | - Anna Péterfi
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Dávid Major
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zsófia Szarvas
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam G Tabak
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Epidemiology and Public Health, University College London, London, UK
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1313, Oklahoma City, OK, 731042, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Departments of Translational Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - William E Sonntag
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1313, Oklahoma City, OK, 731042, USA
| | - Steven N Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zoltan I Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1313, Oklahoma City, OK, 731042, USA.
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA.
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Departments of Translational Medicine and Public Health, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
14
|
Li X, Shi X, McPherson M, Hager M, Garcia GG, Miller RA. Cap-independent translation of GPLD1 enhances markers of brain health in long-lived mutant and drug-treated mice. Aging Cell 2022; 21:e13685. [PMID: 35930768 PMCID: PMC9470888 DOI: 10.1111/acel.13685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/20/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023] Open
Abstract
Glycosylphosphatidylinositol-specific phospholipase D1 (GPLD1) hydrolyzes inositol phosphate linkages in proteins anchored to the cell membrane. Mice overexpressing GPLD1 show enhanced neurogenesis and cognition. Snell dwarf (DW) and growth hormone receptor knockout (GKO) mice show delays in age-dependent cognitive decline. We hypothesized that augmented GPLD1 might contribute to retained cognitive function in these mice. We report that DW and GKO show higher GPLD1 levels in the liver and plasma. These mice also have elevated levels of hippocampal brain-derived neurotrophic factor (BDNF) and of doublecortin (DCX), suggesting a mechanism for maintenance of cognitive function at older ages. GPLD1 was not increased in the hippocampus of DW or GKO mice, suggesting that plasma GPLD1 increases elevated these brain proteins. Alteration of the liver and plasma GPLD1 was unaltered in mice with liver-specific GHR deletion, suggesting that the GH effect was not intrinsic to the liver. GPLD1 was also induced by caloric restriction and by each of four drugs that extend lifespan. The proteome of DW and GKO mice is molded by selective translation of mRNAs, involving cap-independent translation (CIT) of mRNAs marked by N6 methyladenosine. Because GPLD1 protein increases were independent of the mRNA level, we tested the idea that GPLD1 might be regulated by CIT. 4EGI-1, which enhances CIT, increased GPLD1 protein without changes in GPLD1 mRNA in cultured fibroblasts and mice. Furthermore, transgenic overexpression of YTHDF1, which promotes CIT by reading m6A signals, also led to increased GPLD1 protein, showing that elevation of GPLD1 reflects selective mRNA translation.
Collapse
Affiliation(s)
- Xinna Li
- Department of Pathology, School of MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Xiaofang Shi
- Department of Pathology, School of MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Madaline McPherson
- College of Literature, Sciences, & the ArtsUniversity of MichiganAnn ArborMichiganUSA
| | - Mary Hager
- College of Literature, Sciences, & the ArtsUniversity of MichiganAnn ArborMichiganUSA
| | - Gonzalo G. Garcia
- Department of Pathology, School of MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Richard A. Miller
- Department of Pathology, School of MedicineUniversity of MichiganAnn ArborMichiganUSA,University of Michigan Geriatrics CenterAnn ArborMichiganUSA
| |
Collapse
|
15
|
Varela-López A, Ramírez-Tortosa CL, Ramos-Pleguezuelos FM, Márquez-Lobo B, Battino M, Quiles JL. Differences reported in the lifespan and aging of male Wistar rats maintained on diets containing fat with different fatty acid profiles (virgin olive, sunflower or fish oils) are not reflected by histopathological lesions found at death in central nervous and endocrine systems. Food Chem Toxicol 2022; 168:113357. [PMID: 35985366 DOI: 10.1016/j.fct.2022.113357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
The present study was designed to examine if dietary fat sources that have shown differences in lifespan and if some aging-related aspects can modulate the range of histopathologic changes in central nervous and endocrine systems that occur during the lifespan of Wistar rats. Moreover, it was attempted to gain insight into the relationship between longevity and the development of the different pathological changes, as well as possible interaction with diet. In order to achieve this, male Wistar rats were randomly assigned to three experimental groups fed semisynthetic and isoenergetic diets from weaning until death with different dietary fat sources, namely virgin olive, sunflower, or fish oil. An individual follow-up until death of each animal was performed. Incidence, severity, and burden of specific or group (i.e., neoplastic or non-neoplastic proliferative and non-proliferative) of lesions was calculated along with individual's disease and individual organ lesion burden. Most of the histopathological lesions found have been described in previous studies. Neoplasms, and in particular pituitary adenomas followed by brain tumors, were the most prevalent lesions found in the rats and the main cause of death involving both systems. Incidence of brain lesions was associated with age-at-death. Assayed dietary fats did not present differential effects on pathological changes occurring in endocrine and central nervous systems throughout rat lifespan.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | | | | | | | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131, Ancona, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, 212013, China
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix Verdú," Biomedical Research Center, University of Granada, Armilla, Granada, Spain; Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011, Santander, Spain.
| |
Collapse
|
16
|
Li X, McPherson M, Hager M, Fang Y, Bartke A, Miller RA. Transient early life growth hormone exposure permanently alters brain, muscle, liver, macrophage, and adipocyte status in long-lived Ames dwarf mice. FASEB J 2022; 36:e22394. [PMID: 35704312 PMCID: PMC9250136 DOI: 10.1096/fj.202200143r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 01/24/2023]
Abstract
The exceptional longevity of Ames dwarf (DF) mice can be abrogated by a brief course of growth hormone (GH) injections started at 2 weeks of age. This transient GH exposure also prevents the increase in cellular stress resistance and decline in hypothalamic inflammation characteristic of DF mice. Here, we show that transient early-life GH treatment leads to permanent alteration of pertinent changes in adipocytes, fat-associated macrophages, liver, muscle, and brain that are seen in DF mice. Ames DF mice, like Snell dwarf and GHRKO mice, show elevation of glycosylphosphatidylinositol specific phospholipase D1 in liver, neurogenesis in brain as indicated by BDNF and DCX proteins, muscle production of fibronectin type III domain-containing protein 5 (a precursor of irisin), uncoupling protein 1 as an index of thermogenic capacity in brown and white fat, and increase in fat-associated anti-inflammatory macrophages. In each case, transient exposure to GH early in life reverts the DF mice to the levels of each protein seen in littermate control animals, in animals evaluated at 15-18 months of age. Thus, many of the traits seen in long-lived mutant mice, pertinent to age-related changes in inflammation, neurogenesis, and metabolic control, are permanently set by early-life GH levels.
Collapse
Affiliation(s)
- Xinna Li
- Department of PathologyUniversity of Michigan School of MedicineAnn ArborMichiganUSA
| | - Madaline McPherson
- College of Literature, Sciences, & the ArtsUniversity of MichiganAnn ArborMichiganUSA
| | - Mary Hager
- College of Literature, Sciences, & the ArtsUniversity of MichiganAnn ArborMichiganUSA
| | - Yimin Fang
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Andrzej Bartke
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Richard A. Miller
- Department of PathologyUniversity of Michigan School of MedicineAnn ArborMichiganUSA
- University of Michigan Geriatrics CenterAnn ArborMichiganUSA
| |
Collapse
|
17
|
Qian Y, Berryman DE, Basu R, List EO, Okada S, Young JA, Jensen EA, Bell SRC, Kulkarni P, Duran-Ortiz S, Mora-Criollo P, Mathes SC, Brittain AL, Buchman M, Davis E, Funk KR, Bogart J, Ibarra D, Mendez-Gibson I, Slyby J, Terry J, Kopchick JJ. Mice with gene alterations in the GH and IGF family. Pituitary 2022; 25:1-51. [PMID: 34797529 PMCID: PMC8603657 DOI: 10.1007/s11102-021-01191-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/04/2023]
Abstract
Much of our understanding of GH's action stems from animal models and the generation and characterization of genetically altered or modified mice. Manipulation of genes in the GH/IGF1 family in animals started in 1982 when the first GH transgenic mice were produced. Since then, multiple laboratories have altered mouse DNA to globally disrupt Gh, Ghr, and other genes upstream or downstream of GH or its receptor. The ability to stay current with the various genetically manipulated mouse lines within the realm of GH/IGF1 research has been daunting. As such, this review attempts to consolidate and summarize the literature related to the initial characterization of many of the known gene-manipulated mice relating to the actions of GH, PRL and IGF1. We have organized the mouse lines by modifications made to constituents of the GH/IGF1 family either upstream or downstream of GHR or to the GHR itself. Available data on the effect of altered gene expression on growth, GH/IGF1 levels, body composition, reproduction, diabetes, metabolism, cancer, and aging are summarized. For the ease of finding this information, key words are highlighted in bold throughout the main text for each mouse line and this information is summarized in Tables 1, 2, 3 and 4. Most importantly, the collective data derived from and reported for these mice have enhanced our understanding of GH action.
Collapse
Affiliation(s)
- Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Shigeru Okada
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Pediatrics, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Jonathan A Young
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Elizabeth A Jensen
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, USA
| | - Stephen R C Bell
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | | | - Patricia Mora-Criollo
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, USA
| | - Samuel C Mathes
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Alison L Brittain
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Mat Buchman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Emily Davis
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Kevin R Funk
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Jolie Bogart
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Diego Ibarra
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Isaac Mendez-Gibson
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- College of Health Sciences and Professions, Ohio University, Athens, OH, USA
| | - Julie Slyby
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Joseph Terry
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
18
|
Green CL, Lamming DW, Fontana L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat Rev Mol Cell Biol 2022; 23:56-73. [PMID: 34518687 PMCID: PMC8692439 DOI: 10.1038/s41580-021-00411-4] [Citation(s) in RCA: 366] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
Dietary restriction with adequate nutrition is the gold standard for delaying ageing and extending healthspan and lifespan in diverse species, including rodents and non-human primates. In this Review, we discuss the effects of dietary restriction in these mammalian model organisms and discuss accumulating data that suggest that dietary restriction results in many of the same physiological, metabolic and molecular changes responsible for the prevention of multiple ageing-associated diseases in humans. We further discuss how different forms of fasting, protein restriction and specific reductions in the levels of essential amino acids such as methionine and the branched-chain amino acids selectively impact the activity of AKT, FOXO, mTOR, nicotinamide adenine dinucleotide (NAD+), AMP-activated protein kinase (AMPK) and fibroblast growth factor 21 (FGF21), which are key components of some of the most important nutrient-sensing geroprotective signalling pathways that promote healthy longevity.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
- Department of Clinical and Experimental Sciences, Brescia University School of Medicine, Brescia, Italy.
| |
Collapse
|
19
|
Li J, Liu D, Li D, Guo Y, Du H, Cao Y. Phytochemical composition and anti-aging activity of n-butanol extract of Hedyotis diffusa in Caenorhabditis elegans. Chem Biodivers 2021; 19:e202100685. [PMID: 34935259 DOI: 10.1002/cbdv.202100685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Hedyotis diffusa Willd. ( H. diffusa ), a kind of traditional Chinese medicine, has been evaluated to potential display antioxidant and anti-aging effects in vitro experiments. In this work, we investigated the effects on lifespan and stress resistance of the N-butanol extract from H. diffusa (NHD) in vivo using a Caenorhabditis elegans ( C. elegans ) model. The phytochemicals of NHD were identified by UPLC-ESI-qTOF-MS/MS method. NHD-treated wild-type N2 worms showed an increase in survival time under both normal and stress conditions. Meanwhile, NHD promoted the healthspan of nematodes by stimulating growth and development, reducing the deposition of age pigment, increasing the activities of superoxide dismutase (SOD) and glutathione peroxidase dismutase (GSH-Px), and decreasing the level of ROS without impairing fertility. Moreover, the upregulating of the expression of daf-16 , gst-4 , sod-3 , hsp12.6 genes and the downregulating of the expression of daf-2 were involved in the NHD-mediated lifespan extension. Finally, the increasing of the expression of GST-4::GFP in CL2166 transgenic nematodes and the life-span-extending activity of NHD was completely abolished in daf-2 and daf-16 mutants further revealed that the potential roles for these genes in NHD-induced longevity in C. elegans . Collectively, our findings suggest that NHD may have an active effect in healthy aging and age-related diseases.
Collapse
Affiliation(s)
- Jing Li
- Hubei University of Chinese Medicine, college of pharmcy, Hongshan district, 16# West road Huangjiahu, Wuhan, CHINA
| | - Di Liu
- Hubei University of Chinese Medicine, college of pharmcy, Hongshan district, 16# West road Huangjiahu, Wuhan, CHINA
| | - Danqing Li
- Hubei University of Chinese Medicine, college of pharmcy, Hongshan district, 16# West road Huangjiahu, Wuhan, CHINA
| | - Yujie Guo
- Hubei University of Chinese Medicine, college of pharmcy, Hongshan district, 16# West road Huangjiahu, Wuhan, CHINA
| | - Hongzhi Du
- Hubei University of Chinese Medicine, college of pharmcy, Hongshan district, 16# West road Huangjiahu, Wuhan, CHINA
| | - Yan Cao
- Hubei University of Chinese Medicine, college of pharmacy, Hongshan district, 16# West road Huangjiahu, 430065, Wuhan, CHINA
| |
Collapse
|
20
|
Duran‐Ortiz S, List EO, Ikeno Y, Young J, Basu R, Bell S, McHugh T, Funk K, Mathes S, Qian Y, Kulkarni P, Yakar S, Berryman DE, Kopchick JJ. Growth hormone receptor gene disruption in mature-adult mice improves male insulin sensitivity and extends female lifespan. Aging Cell 2021; 20:e13506. [PMID: 34811874 PMCID: PMC8672790 DOI: 10.1111/acel.13506] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
Studies in multiple species indicate that reducing growth hormone (GH) action enhances healthy lifespan. In fact, GH receptor knockout (GHRKO) mice hold the Methuselah prize for the world's longest-lived laboratory mouse. We previously demonstrated that GHR ablation starting at puberty (1.5 months), improved insulin sensitivity and female lifespan but results in markedly reduced body size. In this study, we investigated the effects of GHR disruption in mature-adult mice at 6 months old (6mGHRKO). These mice exhibited GH resistance (reduced IGF-1 and elevated GH serum levels), increased body adiposity, reduced lean mass, and minimal effects on body length. Importantly, 6mGHRKO males have enhanced insulin sensitivity and reduced neoplasms while females exhibited increased median and maximal lifespan. Furthermore, fasting glucose and oxidative damage was reduced in females compared to males irrespective of Ghr deletion. Overall, disrupted GH action in adult mice resulted in sexual dimorphic effects suggesting that GH reduction at older ages may have gerotherapeutic effects.
Collapse
Affiliation(s)
- Silvana Duran‐Ortiz
- Edison Biotechnology Institute Ohio University Athens Ohio USA
- Molecular and Cellular Biology program Ohio University Athens Ohio USA
- Department of Biological Sciences College of Arts and Sciences Ohio University Athens Ohio USA
| | - Edward O. List
- Edison Biotechnology Institute Ohio University Athens Ohio USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies San Antonio Texas USA
| | - Jonathan Young
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine Ohio University Athens Ohio USA
| | - Reetobrata Basu
- Edison Biotechnology Institute Ohio University Athens Ohio USA
| | - Stephen Bell
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine Ohio University Athens Ohio USA
| | - Todd McHugh
- Department of Biological Sciences College of Arts and Sciences Ohio University Athens Ohio USA
| | - Kevin Funk
- Edison Biotechnology Institute Ohio University Athens Ohio USA
| | - Samuel Mathes
- Edison Biotechnology Institute Ohio University Athens Ohio USA
| | - Yanrong Qian
- Edison Biotechnology Institute Ohio University Athens Ohio USA
| | - Prateek Kulkarni
- Molecular and Cellular Biology program Ohio University Athens Ohio USA
- Department of Biological Sciences College of Arts and Sciences Ohio University Athens Ohio USA
| | - Shoshana Yakar
- Department of Molecular Pathobiology David B. Kriser Dental Center New York University College of Dentistry New York New York USA
| | - Darlene E. Berryman
- Edison Biotechnology Institute Ohio University Athens Ohio USA
- Molecular and Cellular Biology program Ohio University Athens Ohio USA
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine Ohio University Athens Ohio USA
- Diabetes Institute Ohio University Athens Ohio USA
| | - John J. Kopchick
- Edison Biotechnology Institute Ohio University Athens Ohio USA
- Molecular and Cellular Biology program Ohio University Athens Ohio USA
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine Ohio University Athens Ohio USA
- Diabetes Institute Ohio University Athens Ohio USA
| |
Collapse
|
21
|
Nunes ADC, Weigl M, Schneider A, Noureddine S, Yu L, Lahde C, Saccon TD, Mitra K, Beltran E, Grillari J, Kirkland JL, Tchkonia T, Robbins PD, Masternak MM. miR-146a-5p modulates cellular senescence and apoptosis in visceral adipose tissue of long-lived Ames dwarf mice and in cultured pre-adipocytes. GeroScience 2021; 44:503-518. [PMID: 34825304 PMCID: PMC8811002 DOI: 10.1007/s11357-021-00490-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are potent regulators of multiple biological processes. Previous studies have demonstrated that miR-146a-5p increases in normal mice during aging, while long-living Ames dwarf (df/df) mice maintain youthful levels of this miRNA. The aim of this study was to elucidate the involvement of miR-146a-5p in modulating cellular senescence and apoptosis in visceral adipose tissue of df/df mice and cultured pre-adipocytes. To test the effects of miR-146a-5p overexpression on visceral adipose tissue, wild-type, and df/df mice, were treated with miRNA-negative control-base and df/df were transfected with 4 or 8 µg/g of a miR-146a-5p mimetic, respectively. Effects of miR-146a-5p overexpression were also evaluated in 3T3-L1 cells cultured under high and normal glucose conditions. Treatment with miR-146a-5p mimetic increased cellular senescence and inflammation and decreased pro-apoptotic factors in visceral adipose tissue of df/df mice. The miR-146a-5p mimetic induced similar effects in 3T3-L1 cells cultivated at normal but not high glucose levels. Importantly, 3T3-L1 HG cells in high glucose conditions showed significantly higher expression of miR-146a-5p than 3T3-L1 grown in normal glucose conditions. These results indicate that miR-146a-5p can be a marker for cellular senescence. This miRNA represents one of the significant SASP factors that if not precisely regulated, can accentuate inflammatory responses and stimulate senescence in surrounding non-senescent cells. The role of miR-146a-5p is different in healthy versus stressed cells, suggesting potential effects of this miRNA depend on overall organismal health, aging, and metabolic state.
Collapse
Affiliation(s)
- Allancer D C Nunes
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Moritz Weigl
- Ludwig Boltzmann Institute of Traumatology in Cooperation With AUVA, Vienna, Austria
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Sarah Noureddine
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Lin Yu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Collin Lahde
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | | | - Kunal Mitra
- Biomedical Engineering, Florida Tech, Melbourne, FL, 32901, USA
| | - Esther Beltran
- Florida Space Institute, University of Central Florida, Orlando, FL, 32826, USA
| | - Johannes Grillari
- Ludwig Boltzmann Institute of Traumatology in Cooperation With AUVA, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - James L Kirkland
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
22
|
Lee EJ, Neppl RL. Influence of Age on Skeletal Muscle Hypertrophy and Atrophy Signaling: Established Paradigms and Unexpected Links. Genes (Basel) 2021; 12:genes12050688. [PMID: 34063658 PMCID: PMC8147613 DOI: 10.3390/genes12050688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle atrophy in an inevitable occurrence with advancing age, and a consequence of disease including cancer. Muscle atrophy in the elderly is managed by a regimen of resistance exercise and increased protein intake. Understanding the signaling that regulates muscle mass may identify potential therapeutic targets for the prevention and reversal of muscle atrophy in metabolic and neuromuscular diseases. This review covers the major anabolic and catabolic pathways that regulate skeletal muscle mass, with a focus on recent progress and potential new players.
Collapse
|
23
|
Bartke A, Hascup E, Hascup K, Masternak MM. Growth Hormone and Aging: New Findings. World J Mens Health 2021; 39:454-465. [PMID: 33663025 PMCID: PMC8255405 DOI: 10.5534/wjmh.200201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/21/2020] [Accepted: 01/02/2021] [Indexed: 01/04/2023] Open
Abstract
Complex relationships between growth hormone (GH) signaling and mammalian aging continue to attract attention of many investigators. Recent results include evidence that the impact of GH on genome maintenance (DNA damage and repair) is drastically different in normal as compared to cancer cells, consistent with GH promoting aging and cancer progression. Impact of GH on DNA methylation was studied as a possible mechanism linking actions of GH during early life to the trajectory of aging. Animals with reduced or enhanced GH signaling and novel animals with adipocyte-specific deletion of GH receptors were used to elucidate the effects of GH on white and brown adipose tissue, including the impact of this hormone on lipolysis, fibrosis, and thermogenesis. Effects of GH on adipose tissue related to lipid and energy metabolism emerge as mechanistic links between GH, healthspan, and lifespan. Treatment of healthy men with a combination of GH, dehydroepiandrosterone, and metformin was reported to restore thymus function and reduce epigenetic age. Studies of human subjects with deficiency of GH or GH receptors and studies of mice with the same endocrine syndromes identified several phenotypic changes related (positively or negatively) to the previously reported predisposition to healthy aging. Results of these and other recent studies advance present understanding of the mechanisms by which GH influences aging and longevity and of the trade-offs involved.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Erin Hascup
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin Hascup
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
24
|
Abstract
Growth hormone (GH) actions impact growth, metabolism, and body composition and have been associated with aging and longevity. Lack of GH results in slower growth, delayed maturation, and reduced body size and can lead to delayed aging, increased healthspan, and a remarkable extension of longevity. Adult body size, which is a GH-dependent trait, has a negative association with longevity in several mammalian species. Mechanistic links between GH and aging include evolutionarily conserved insulin/insulin-like growth factors and mechanistic target of rapamycin signaling pathways in accordance with long-suspected trade-offs between anabolic/growth processes and longevity. Height and the rate and regulation of GH secretion have been related to human aging, but longevity is not extended in humans with syndromes of GH deficiency or resistance. However, the risk of age-related chronic disease is reduced in individuals affected by these syndromes and various indices of increased healthspan have been reported.
Collapse
Affiliation(s)
- Andrzej Bartke
- Southern Illinois University School of Medicine, 801 N. Rutledge, P.O. Box 19628, Springfield, IL, 62794-9628, USA.
| |
Collapse
|
25
|
List EO, Basu R, Duran-Ortiz S, Krejsa J, Jensen EA. Mouse models of growth hormone deficiency. Rev Endocr Metab Disord 2021; 22:3-16. [PMID: 33033978 DOI: 10.1007/s11154-020-09601-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 01/01/2023]
Abstract
Nearly one century of research using growth hormone deficient (GHD) mouse lines has contributed greatly toward our knowledge of growth hormone (GH), a pituitary-derived hormone that binds and signals through the GH receptor and affects many metabolic processes throughout life. Although delayed sexual maturation, decreased fertility, reduced muscle mass, increased adiposity, small body size, and glucose intolerance appear to be among the negative characteristics of these GHD mouse lines, these mice still consistently outlive their normal sized littermates. Furthermore, the absence of GH action in these mouse lines leads to enhanced insulin sensitivity (likely due to the lack of GH's diabetogenic actions), delayed onset for a number of age-associated physiological declines (including cognition, cancer, and neuromusculoskeletal frailty), reduced cellular senescence, and ultimately, extended lifespan. In this review, we provide details about history, availability, growth, physiology, and aging of five commonly used GHD mouse lines.
Collapse
Affiliation(s)
- Edward O List
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA.
- The Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.
| | - Reetobrata Basu
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA
| | - Silvana Duran-Ortiz
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA
| | - Jackson Krejsa
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA
| | - Elizabeth A Jensen
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA
- The Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
26
|
Wiesenborn DS, Gálvez EJC, Spinel L, Victoria B, Allen B, Schneider A, Gesing A, Al-Regaiey KA, Strowig T, Schäfer KH, Masternak MM. The Role of Ames Dwarfism and Calorie Restriction on Gut Microbiota. J Gerontol A Biol Sci Med Sci 2021; 75:e1-e8. [PMID: 31665244 DOI: 10.1093/gerona/glz236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome (GM) represents a large and very complex ecosystem of different microorganisms. There is an extensive interest in the potential role of the GM in different diseases including cancer, diabetes, cardiovascular diseases, and aging. The GM changes over the lifespan and is strongly associated with various age-related diseases. Ames dwarf (df/df) mice are characterized by an extended life- and healthspan, and although these mice are protected from many age-related diseases, their microbiome has not been studied. To determine the role of microbiota on longevity animal models, we investigated the changes in the GM of df/df and normal control (N) mice, by comparing parents before mating and littermate mice at three distinct time points during early life. Furthermore, we studied the effects of a 6-month calorie restriction (CR), the most powerful intervention extending the lifespan. Our data revealed significant changes of the GM composition during early life development, and we detected differences in the abundance of some bacteria between df/df and N mice, already in early life. Overall, the variability of the microbiota by genotype, time-point, and breeding pair showed significant differences. In addition, CR caused significant changes in microbiome according to gastrointestinal (GI) location (distal colon, ileum, and cecum), genotype, and diet. However, the overall impact of the genotype was more prominent than that of the CR. In conclusion, our findings suggest that the gut microbiota plays an important role during postnatal development in long-living df/df mice and CR dietary regimen can significantly modulate the GM.
Collapse
Affiliation(s)
- Denise S Wiesenborn
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando.,Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Eric J C Gálvez
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lina Spinel
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando
| | - Brittany Allen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando
| | - Augusto Schneider
- Department of Nutrition, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Adam Gesing
- Department of Endocrinology of Ageing, Medical University of Lodz, Poland
| | - Khalid A Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Germany
| | - Karl-Herbert Schäfer
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando.,Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany.,Department of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando.,Department of Head and Neck Surgery, The Greater Poland Cancer Center, Poznan, Poland
| |
Collapse
|
27
|
Vatner SF, Zhang J, Oydanich M, Berkman T, Naftalovich R, Vatner DE. Healthful aging mediated by inhibition of oxidative stress. Ageing Res Rev 2020; 64:101194. [PMID: 33091597 PMCID: PMC7710569 DOI: 10.1016/j.arr.2020.101194] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022]
Abstract
The progressive increase in lifespan over the past century carries with it some adversity related to the accompanying burden of debilitating diseases prevalent in the older population. This review focuses on oxidative stress as a major mechanism limiting longevity in general, and healthful aging, in particular. Accordingly, the first goal of this review is to discuss the role of oxidative stress in limiting longevity, and compare healthful aging and its mechanisms in different longevity models. Secondly, we discuss common signaling pathways involved in protection against oxidative stress in aging and in the associated diseases of aging, e.g., neurological, cardiovascular and metabolic diseases, and cancer. Much of the literature has focused on murine models of longevity, which will be discussed first, followed by a comparison with human models of longevity and their relationship to oxidative stress protection. Finally, we discuss the extent to which the different longevity models exhibit the healthful aging features through physiological protective mechanisms related to exercise tolerance and increased β-adrenergic signaling and also protection against diabetes and other metabolic diseases, obesity, cancer, neurological diseases, aging-induced cardiomyopathy, cardiac stress and osteoporosis.
Collapse
Affiliation(s)
- Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA.
| | - Jie Zhang
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA
| | - Marko Oydanich
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA
| | - Tolga Berkman
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA
| | - Rotem Naftalovich
- Department of Anesthesiology, New Jersey Medical School, Newark, New Jersey, USA
| | - Dorothy E Vatner
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA.
| |
Collapse
|
28
|
Carter CS, Richardson A, Huffman DM, Austad S. Bring Back the Rat! J Gerontol A Biol Sci Med Sci 2020; 75:405-415. [PMID: 31894235 DOI: 10.1093/gerona/glz298] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
As 2020 is "The Year of the Rat" in the Chinese astrological calendar, it seems an appropriate time to consider whether we should bring back the laboratory rat to front-and-center in research on the basic biology of mammalian aging. Beginning in the 1970s, aging research with rats became common, peaking in 1992 but then declined dramatically by 2018 as the mouse became preeminent. The purpose of this review is to highlight some of the historical contributions as well as current advantages of the rat as a mammalian model of human aging, because we suspect at least a generation of researchers is no longer aware of this history or these advantages. Herein, we compare and contrast the mouse and rat in the context of several biological domains relevant to their use as appropriate models of aging: phylogeny/domestication, longevity interventions, pathology/physiology, and behavior/cognition. It is not the goal of this review to give a complete characterization of the differences between mice and rats, but to provide important examples of why using rats as well as mice is important to advance our understanding of the biology of aging.
Collapse
Affiliation(s)
- Christy S Carter
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, School of Medicine, University of Alabama at Birmingham
| | - Arlan Richardson
- Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Science Center, and the Oklahoma City VA Medical Center
| | - Derek M Huffman
- Department of Molecular Pharmacology, Department of Medicine, and Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York
| | - Steven Austad
- Department of Biology, College of Arts and Sciences, University of Alabama at Birmingham
| |
Collapse
|
29
|
Strous GJ, Almeida ADS, Putters J, Schantl J, Sedek M, Slotman JA, Nespital T, Hassink GC, Mol JA. Growth Hormone Receptor Regulation in Cancer and Chronic Diseases. Front Endocrinol (Lausanne) 2020; 11:597573. [PMID: 33312162 PMCID: PMC7708378 DOI: 10.3389/fendo.2020.597573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The GHR signaling pathway plays important roles in growth, metabolism, cell cycle control, immunity, homeostatic processes, and chemoresistance via both the JAK/STAT and the SRC pathways. Dysregulation of GHR signaling is associated with various diseases and chronic conditions such as acromegaly, cancer, aging, metabolic disease, fibroses, inflammation and autoimmunity. Numerous studies entailing the GHR signaling pathway have been conducted for various cancers. Diverse factors mediate the up- or down-regulation of GHR signaling through post-translational modifications. Of the numerous modifications, ubiquitination and deubiquitination are prominent events. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and induces proteasomal degradation or starts the sequence of events that leads to endocytosis and lysosomal degradation. In this review, we discuss the role of first line effectors that act directly on the GHR at the cell surface including ADAM17, JAK2, SRC family member Lyn, Ubc13/CHIP, proteasome, βTrCP, CK2, STAT5b, and SOCS2. Activity of all, except JAK2, Lyn and STAT5b, counteract GHR signaling. Loss of their function increases the GH-induced signaling in favor of aging and certain chronic diseases, exemplified by increased lung cancer risk in case of a mutation in the SOCS2-GHR interaction site. Insight in their roles in GHR signaling can be applied for cancer and other therapeutic strategies.
Collapse
Affiliation(s)
- Ger J. Strous
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
- BIMINI Biotech B.V., Leiden, Netherlands
| | - Ana Da Silva Almeida
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joyce Putters
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Julia Schantl
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Magdalena Sedek
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Johan A. Slotman
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tobias Nespital
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Gerco C. Hassink
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
30
|
Gauthier BR, Sola‐García A, Cáliz‐Molina MÁ, Lorenzo PI, Cobo‐Vuilleumier N, Capilla‐González V, Martin‐Montalvo A. Thyroid hormones in diabetes, cancer, and aging. Aging Cell 2020; 19:e13260. [PMID: 33048427 PMCID: PMC7681062 DOI: 10.1111/acel.13260] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 09/13/2020] [Indexed: 12/18/2022] Open
Abstract
Thyroid function is central in the control of physiological and pathophysiological processes. Studies in animal models and human research have determined that thyroid hormones modulate cellular processes relevant for aging and for the majority of age‐related diseases. While several studies have associated mild reductions on thyroid hormone function with exceptional longevity in animals and humans, alterations in thyroid hormones are serious medical conditions associated with unhealthy aging and premature death. Moreover, both hyperthyroidism and hypothyroidism have been associated with the development of certain types of diabetes and cancers, indicating a great complexity of the molecular mechanisms controlled by thyroid hormones. In this review, we describe the latest findings in thyroid hormone research in the field of aging, diabetes, and cancer, with a special focus on hepatocellular carcinomas. While aging studies indicate that the direct modulation of thyroid hormones is not a viable strategy to promote healthy aging or longevity and the development of thyromimetics is challenging due to inefficacy and potential toxicity, we argue that interventions based on the use of modulators of thyroid hormone function might provide therapeutic benefit in certain types of diabetes and cancers.
Collapse
Affiliation(s)
- Benoit R. Gauthier
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases‐CIBERDEM Instituto de Salud Carlos III Madrid Spain
| | - Alejandro Sola‐García
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - María Ángeles Cáliz‐Molina
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - Petra Isabel Lorenzo
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - Nadia Cobo‐Vuilleumier
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - Vivian Capilla‐González
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| | - Alejandro Martin‐Montalvo
- Department of Cell Therapy and Regeneration Andalusian Center for Molecular Biology and Regenerative Medicine‐CABIMER Junta de Andalucía‐University of Pablo de Olavide‐University of Seville‐CSIC Seville Spain
| |
Collapse
|
31
|
Zhang WB, Aleksic S, Gao T, Weiss EF, Demetriou E, Verghese J, Holtzer R, Barzilai N, Milman S. Insulin-like Growth Factor-1 and IGF Binding Proteins Predict All-Cause Mortality and Morbidity in Older Adults. Cells 2020; 9:cells9061368. [PMID: 32492897 PMCID: PMC7349399 DOI: 10.3390/cells9061368] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/02/2023] Open
Abstract
While the growth hormone/insulin-like growth factor-1 (GH/IGF-1) pathway plays essential roles in growth and development, diminished signaling via this pathway in model organisms extends lifespan and health-span. In humans, circulating IGF-1 and IGF-binding proteins 3 and 1 (IGFBP-3 and 1), surrogate measures of GH/IGF-1 system activity, have not been consistently associated with morbidity and mortality. In a prospective cohort of independently-living older adults (n = 840, mean age 76.1 ± 6.8 years, 54.5% female, median follow-up 6.9 years), we evaluated the age- and sex-adjusted hazards for all-cause mortality and incident age-related diseases, including cardiovascular disease, diabetes, cancer, and multiple-domain cognitive impairment (MDCI), as predicted by baseline total serum IGF-1, IGF-1/IGFBP-3 molar ratio, IGFBP-3, and IGFBP-1 levels. All-cause mortality was positively associated with IGF-1/IGFBP-3 molar ratio (HR 1.28, 95% CI 1.05–1.57) and negatively with IGFBP-3 (HR 0.82, 95% CI 0.680–0.998). High serum IGF-1 predicted greater risk for MDCI (HR 1.56, 95% CI 1.08–2.26) and composite incident morbidity (HR 1.242, 95% CI 1.004–1.538), whereas high IGFBP-1 predicted lower risk for diabetes (HR 0.50, 95% CI 0.29–0.88). In conclusion, higher IGF-1 levels and bioavailability predicted mortality and morbidity risk, supporting the hypothesis that diminished GH/IGF-1 signaling may contribute to human longevity and health-span.
Collapse
Affiliation(s)
- William B. Zhang
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (W.B.Z.); (S.A.); (T.G.); (N.B.)
| | - Sandra Aleksic
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (W.B.Z.); (S.A.); (T.G.); (N.B.)
| | - Tina Gao
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (W.B.Z.); (S.A.); (T.G.); (N.B.)
| | - Erica F. Weiss
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.F.W.); (J.V.); (R.H.)
| | - Eleni Demetriou
- Ferkauf Graduate School of Psychology, Yeshiva University, New York, NY 10033, USA;
| | - Joe Verghese
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.F.W.); (J.V.); (R.H.)
- Department of Medicine, Division of Geriatrics, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Roee Holtzer
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.F.W.); (J.V.); (R.H.)
- Ferkauf Graduate School of Psychology, Yeshiva University, New York, NY 10033, USA;
| | - Nir Barzilai
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (W.B.Z.); (S.A.); (T.G.); (N.B.)
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sofiya Milman
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (W.B.Z.); (S.A.); (T.G.); (N.B.)
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|
32
|
Gray A, Dang BN, Moore TB, Clemens R, Pressman P. A review of nutrition and dietary interventions in oncology. SAGE Open Med 2020; 8:2050312120926877. [PMID: 32537159 PMCID: PMC7268120 DOI: 10.1177/2050312120926877] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
The complex cellular mechanisms and inter-related pathways of cancer proliferation, evasion, and metastasis remain an emerging field of research. Over the last several decades, nutritional research has prominent role in identifying emerging adjuvant therapies in our fight against cancer. Nutritional and dietary interventions are being explored to improve the morbidity and mortality for cancer patients worldwide. In this review, we examine several dietary interventions and their proposed mechanisms against cancer as well as identifying limitations in the currently available literature. This review provides a comprehensive review of the cancer metabolism, dietary interventions used during cancer treatment, anti metabolic drugs, and their impact on nutritional deficiencies along with a critical review of the following diets: caloric restriction, intermittent fasting, ketogenic diet, Mediterranean diet, Japanese diet, and vegan diet.
Collapse
Affiliation(s)
- Ashley Gray
- Division of Pediatric Hematology/Oncology, Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brian N Dang
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Theodore B Moore
- Division of Pediatric Hematology/Oncology, Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Roger Clemens
- Pharmacology & Pharmaceutical Sciences, USC School of Pharmacy, International Center for Regulatory Science, Los Angeles, CA, USA
| | - Peter Pressman
- Polyscience Consulting & Director of Nutrition and Public Health, The Daedalus Foundation, San Clemente, CA, USA
| |
Collapse
|
33
|
Icyuz M, Fitch M, Zhang F, Challa A, Sun LY. Physiological and metabolic features of mice with CRISPR/Cas9-mediated loss-of-function in growth hormone-releasing hormone. Aging (Albany NY) 2020; 12:9761-9780. [PMID: 32422607 PMCID: PMC7288930 DOI: 10.18632/aging.103242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
Our previous study demonstrated that the loss of growth hormone releasing hormone (GHRH) results in increased lifespan and improved metabolic homeostasis in the mouse model generated by classical embryonic stem cell-based gene-targeting method. In this study, we targeted the GHRH gene using the CRISPR/Cas9 technology to avoid passenger alleles/mutations and performed in-depth physiological and metabolic characterization. In agreement with our previous observations, male and female GHRH-/- mice have significantly reduced body weight and enhanced insulin sensitivity when compared to wild type littermates. Dual-energy X-ray absorptiometry showed that there were significant decreases in lean mass, bone mineral content and density, and a dramatic increase in fat mass of GHRH-/- mice when compared to wild type littermates. Indirect calorimetry measurements showed dramatic reductions in oxygen consumption, carbon dioxide production and energy expenditure in GHRH-/- mice compared to wild type mice in both light and dark cycles. Respiratory exchange ratio was significantly lower in GHRH-/- mice during the light cycle, but not during the dark cycle, indicating a circadian related metabolic shift towards fat utilization in the growth hormone deficient mice. The novel CRISPR/Cas9 GHRH-/- mice are exhibiting the consistent and unique physiological and metabolic characteristics, which might mediate the longevity effects of growth hormone deficiency in mice.
Collapse
Affiliation(s)
- Mert Icyuz
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Michael Fitch
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Fang Zhang
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Anil Challa
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Liou Y. Sun
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
34
|
Roman MG, Flores LC, Cunningham GM, Cheng C, Dube S, Allen C, Remmen HV, Bai Y, Hubbard GB, Saunders TL, Ikeno Y. Thioredoxin overexpression in mitochondria showed minimum effects on aging and age-related diseases in male C57BL/6 mice. ACTA ACUST UNITED AC 2020; 2:20-31. [PMID: 35356005 PMCID: PMC8963792 DOI: 10.31491/apt.2020.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Objective: In this study, the effects of overexpression of thioredoxin 2 (Trx2) on aging and age-related diseases were examined using Trx2 transgenic mice [Tg(TXN2]+/0]. Because our previous studies demonstrated that thioredoxin (Trx) overexpression in the cytosol (Trx1) did not extend maximum lifespan, this study was conducted to test if increased Trx2 expression in mitochondria shows beneficial effects on aging and age-related pathology. Methods: Trx2 transgenic mice were generated using a fragment of the human genome containing the TXN2 gene. Effects of Trx2 overexpression on survival, age-related pathology, oxidative stress, and redox-sensitive signaling pathways were examined in male Tg(TXN2)+/0 mice. Results: Trx2 levels were significantly higher (approximately 1.6- to 5-fold) in all of the tissues we examined in Tg(TXN2)+/0 mice compared to wild-type (WT) littermates, and the expression levels were maintained during aging (up to 22-24 months old). Trx2 overexpression did not alter the levels of Trx1, glutaredoxin, glutathione, or other major antioxidant enzymes. Overexpression of Trx2 was associated with reduced reactive oxygen species (ROS) production from mitochondria and lower isoprostane levels compared to WT mice. When we conducted the survival study, male Tg(TXN2)+/0 mice showed a slight extension (approximately 8-9%] of mean, median, and 10th percentile lifespans; however, the survival curve was not significantly different from WT mice. Cross-sectional pathological analysis (22-24 months old) showed that Tg(TXN2)+/0 mice had a slightly higher severity of lymphoma; however, tumor burden, disease burden, and severity of glomerulonephritis and inflammation were similar to WT mice. Trx2 overexpression was also associated with higher c-Jun and c-Fos levels; however, mTOR activity and levels of NFκB p65 and p50 were similar to WT littermates. Conclusions: Our findings suggest that the increased levels of Trx2 in mitochondria over the lifespan in Tg(TXN2)+/0 mice showed a slight life-extending effect, reduced ROS production from mitochondria and oxidative damage to lipids, but showed no significant effects on aging and age-related diseases.
Collapse
|
35
|
Buffenstein R, Lewis KN, Gibney PA, Narayan V, Grimes KM, Smith M, Lin TD, Brown-Borg HM. Probing Pedomorphy and Prolonged Lifespan in Naked Mole-Rats and Dwarf Mice. Physiology (Bethesda) 2020; 35:96-111. [DOI: 10.1152/physiol.00032.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pedomorphy, maintenance of juvenile traits throughout life, is most pronounced in extraordinarily long-lived naked mole-rats. Many of these traits (e.g., slow growth rates, low hormone levels, and delayed sexual maturity) are shared with spontaneously mutated, long-lived dwarf mice. Although some youthful traits likely evolved as adaptations to subterranean habitats (e.g., thermolability), the nature of these intrinsic pedomorphic features may also contribute to their prolonged youthfulness, longevity, and healthspan.
Collapse
Affiliation(s)
| | | | - Patrick A. Gibney
- Calico Life Sciences LLC, South San Francisco, California
- Department of Food Science, College of Agriculture and Life Sciences, Stocking Hall, Cornell University, Ithaca, New York
| | - Vikram Narayan
- Calico Life Sciences LLC, South San Francisco, California
| | - Kelly M. Grimes
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Megan Smith
- Calico Life Sciences LLC, South San Francisco, California
| | - Tzuhua D. Lin
- Calico Life Sciences LLC, South San Francisco, California
| | - Holly M. Brown-Borg
- Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| |
Collapse
|
36
|
Norling AM, Gerstenecker AT, Buford TW, Khan B, Oparil S, Lazar RM. The role of exercise in the reversal of IGF-1 deficiencies in microvascular rarefaction and hypertension. GeroScience 2019; 42:141-158. [PMID: 31808026 DOI: 10.1007/s11357-019-00139-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
Hypertension has been linked with peripheral and central reductions in vascular density, and with devastating effects on brain function. However, the underlying mechanisms in the relationship between blood pressure and cognitive impairment have yet to be fully elucidated. Here, we review compelling evidence from two lines of inquiry: one that links microvascular rarefaction with insulin-like growth factor 1 (IGF-1) deficiencies, and another which posits that vascular dysfunction precedes hypertension. Based on the findings from experimental and clinical studies, we propose that these lines of evidence converge, and suggest that age-related declines in IGF-1 concentrations precede microvascular rarefaction, initiate an increase in vascular resistance, and therefore are causally linked to onset of hypertension. Physical exercise provides a relevant model for supporting our premise, given the well-established effects of exercise in attenuating vascular dysfunction, hypertension, IGF-1 deficiency, and cognitive decline. We highlight here the role of exercise-induced increases in blood flow in improving vascular integrity and enhancing angiogenesis via the actions of IGF-1, resulting in reversal of rarefaction and hypertension, and enhancement of cerebral blood flow and cognition.
Collapse
Affiliation(s)
- Amani M Norling
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,The UAB Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Alabama, AL, 35294, USA
| | - Adam T Gerstenecker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,The UAB Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Alabama, AL, 35294, USA
| | - Thomas W Buford
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Bilal Khan
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Suzanne Oparil
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ronald M Lazar
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,The UAB Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Alabama, AL, 35294, USA.
| |
Collapse
|
37
|
Colon G, Saccon T, Schneider A, Cavalcante MB, Huffman DM, Berryman D, List E, Ikeno Y, Musi N, Bartke A, Kopchick J, Kirkland JL, Tchkonia T, Masternak MM. The enigmatic role of growth hormone in age-related diseases, cognition, and longevity. GeroScience 2019; 41:759-774. [PMID: 31485887 PMCID: PMC6925094 DOI: 10.1007/s11357-019-00096-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Growth hormone (GH) is secreted by the anterior pituitary gland and regulates various metabolic processes throughout the body. GH and IGF-1 levels are markedly reduced in older humans, leading some to hypothesize GH supplementation could be a viable "anti-aging" therapy. However, there is still much debate over the benefits and risks of GH administration. While an early study of GH administration reported reduced adiposity and lipid levels and increased bone mineral density, subsequent studies failed to show significant benefits. Conversely, other studies found positive effects of GH deficiency including extended life span, improved cognitive function, resistance to diseases such as cancer and diabetes, and improved insulin sensitivity despite a higher fat percentage. Thus, the roles of GH in aging and cognition remain unclear, and there is currently not enough evidence to support use of GH as an anti-aging or cognitive impairment therapy. Additional robust and longer-duration studies of efficacy and safety of GH administration are needed to determine if modulating GH levels could be a successful strategy for treating aging and age-related diseases.
Collapse
Affiliation(s)
- Gabriela Colon
- College of Medicine, Florida State University, Tallahassee, FL, 32304, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Tatiana Saccon
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Marcelo B Cavalcante
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
- Faculdade de Medicina, Universidade de Fortaleza, Fortaleza, CE, Brazil
| | - Derek M Huffman
- Departments of Molecular Pharmacology, Medicine, and the Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Darlene Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Ed List
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Geriatric Research Education and Clinical Center (GRECC), Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, San Antonio Geriatric, Research, Education and Clinical Center, San Antonio, TX, 78229, USA
| | - Andrzej Bartke
- Departments of Internal Medicine and Physiology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - John Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA.
| |
Collapse
|
38
|
Muñoz-Lorente MA, Cano-Martin AC, Blasco MA. Mice with hyper-long telomeres show less metabolic aging and longer lifespans. Nat Commun 2019; 10:4723. [PMID: 31624261 PMCID: PMC6797762 DOI: 10.1038/s41467-019-12664-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022] Open
Abstract
Short telomeres trigger age-related pathologies and shorter lifespans in mice and humans. In the past, we generated mouse embryonic (ES) cells with longer telomeres than normal (hyper-long telomeres) in the absence of genetic manipulations, which contributed to all mouse tissues. To address whether hyper-long telomeres have deleterious effects, we generated mice in which 100% of their cells are derived from hyper-long telomere ES cells. We observe that these mice have longer telomeres and less DNA damage with aging. Hyper-long telomere mice are lean and show low cholesterol and LDL levels, as well as improved glucose and insulin tolerance. Hyper-long telomere mice also have less incidence of cancer and an increased longevity. These findings demonstrate that longer telomeres than normal in a given species are not deleterious but instead, show beneficial effects.
Collapse
Affiliation(s)
- Miguel A Muñoz-Lorente
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Alba C Cano-Martin
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain.
| |
Collapse
|
39
|
Snyder JM, Snider TA, Ciol MA, Wilkinson JE, Imai DM, Casey KM, Vilches-Moure JG, Pettan-Brewer C, Pillai SPS, Carrasco SE, Salimi S, Ladiges W. Validation of a geropathology grading system for aging mouse studies. GeroScience 2019; 41:455-465. [PMID: 31468322 DOI: 10.1007/s11357-019-00088-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/31/2019] [Indexed: 12/24/2022] Open
Abstract
An understanding of early-onset mechanisms underlying age-related changes can be obtained by evaluating changes that precede frailty and end of life using histological characterization of age-related lesions. Histopathology-based information as a component of aging studies in mice can complement and add context to molecular, cellular, and physiologic data, but there is a lack of information regarding scoring criteria and lesion grading guidelines. This report describes the validation of a grading system, designated as the geropathology grading platform (GGP), which generated a composite lesion score (CLS) for comparison of histological lesion scores in tissues from aging mice. To assess reproducibility of the scoring system, multiple veterinary pathologists independently scored the same slides from the heart, lung, liver, and kidney from two different strains (C57BL/6 and CB6F1) of male mice at 8, 16, 24, and 32 months of age. There was moderate to high agreement between pathologists, particularly when agreement within a 1-point range was considered. CLS for all organs was significantly higher in older versus younger mice, suggesting that the GGP was reliable for detecting age-related pathology in mice. The overall results suggest that the GGP guidelines reliably distinguish between younger and older mice and may therefore be accurate in distinguishing between experimental groups of mice with more, or less, age-related pathology.
Collapse
Affiliation(s)
- Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Timothy A Snider
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, USA
| | - Marcia A Ciol
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - John E Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Denise M Imai
- Department of Veterinary Pathology, UC Davis, Davis, CA, USA
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose G Vilches-Moure
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Sebastian E Carrasco
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shabnam Salimi
- School of Medicine, University of Maryland, College Park, MD, USA
| | - Warren Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
40
|
Divide and conquer: two stem cell populations in squamous epithelia, reserves and the active duty forces. Int J Oral Sci 2019; 11:26. [PMID: 31451683 PMCID: PMC6802623 DOI: 10.1038/s41368-019-0061-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/09/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022] Open
Abstract
Stem cells are of great interest to the scientific community due to their potential role in regenerative and rejuvenative medicine. However, their role in the aging process and carcinogenesis remains unclear. Because DNA replication in stem cells may contribute to the background mutation rate and thereby to cancer, reducing proliferation and establishing a relatively quiescent stem cell compartment has been hypothesized to limit DNA replication-associated mutagenesis. On the other hand, as the main function of stem cells is to provide daughter cells to build and maintain tissues, the idea of a quiescent stem cell compartment appears counterintuitive. Intriguing observations in mice have led to the idea of separated stem cell compartments that consist of cells with different proliferative activity. Some epithelia of short-lived rodents appear to lack quiescent stem cells. Comparing stem cells of different species and different organs (comparative stem cell biology) may allow us to elucidate the evolutionary pressures such as the balance between cancer and longevity that govern stem cell biology (evolutionary stem cell biology). The oral mucosa and its stem cells are an exciting model system to explore the characteristics of quiescent stem cells that have eluded biologists for decades.
Collapse
|
41
|
Tanisawa K, Hirose N, Arai Y, Shimokata H, Yamada Y, Kawai H, Kojima M, Obuchi S, Hirano H, Suzuki H, Fujiwara Y, Taniguchi Y, Shinkai S, Ihara K, Sugaya M, Higuchi M, Arai T, Mori S, Sawabe M, Sato N, Muramatsu M, Tanaka M. Inverse Association Between Height-Increasing Alleles and Extreme Longevity in Japanese Women. J Gerontol A Biol Sci Med Sci 2019; 73:588-595. [PMID: 28958036 DOI: 10.1093/gerona/glx155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/16/2017] [Indexed: 01/07/2023] Open
Abstract
Growth hormone (GH)/insulin-like growth factor-1 (IGF-1)/insulin signaling is one of the most plausible biological pathways regulating aging and longevity. Previous studies have demonstrated that several single nucleotide polymorphisms (SNPs) in the GH/IGF-1/insulin signaling-associated genes influence both longevity and adult height, suggesting the possibility of a shared genetic architecture between longevity and height. We therefore examined the relationship between 30 height-associated SNPs and extreme longevity in a Japanese population consisting of 428 centenarians and 4,026 younger controls. We confirmed that height-increasing genetic scores (HGSs) constructed based on 30 SNPs were significantly associated with height in the controls (p = 6.95 × 10-23). HGS was significantly and inversely associated with extreme longevity in women (p = .011), but not in men, although no SNPs were significantly associated with extreme longevity after Bonferroni correction. The odds ratio for extreme longevity in the lowest HGS group (≤27) and the second lowest HGS group (28-30) relative to the highest HGS group (≥37) was 1.71 (p = .056) and 1.69 (p = .034), respectively, for women. In conclusion, the present study demonstrated an inverse association between height-increasing alleles with extreme longevity in Japanese women, providing novel insight into the genetic architecture of longevity and aging.
Collapse
Affiliation(s)
- Kumpei Tanisawa
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan.,Department of Molecular Gerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Nobuyoshi Hirose
- Center for Supercentenarian Research, Keio University School of Medicine, Tokyo, Japan
| | - Yasumichi Arai
- Center for Supercentenarian Research, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Shimokata
- Section of Longitudinal Study of Aging, National Institute for Longevity Sciences (NILS-LSA), National Center for Geriatrics and Gerontology, Obu, Japan.,Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Japan
| | - Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan
| | - Hisashi Kawai
- Human Care Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Motonaga Kojima
- Human Care Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shuichi Obuchi
- Human Care Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hirohiko Hirano
- Research Team for Promoting Independence of the Elderly, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hiroyuki Suzuki
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yu Taniguchi
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shoji Shinkai
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kazushige Ihara
- Department of Public Health, Toho University School of Medicine, Tokyo, Japan
| | - Maki Sugaya
- Department of Molecular Gerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Mitsuru Higuchi
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan.,Institute of Advanced Active Aging Research, Waseda University, Tokorozawa, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Seijiro Mori
- Center for Promotion of Clinical Investigation, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Motoji Sawabe
- Section of Molecular Pathology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Noriko Sato
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masashi Tanaka
- Department of Clinical Laboratory, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| |
Collapse
|
42
|
Chesnokova V, Zonis S, Barrett R, Kameda H, Wawrowsky K, Ben-Shlomo A, Yamamoto M, Gleeson J, Bresee C, Gorbunova V, Melmed S. Excess growth hormone suppresses DNA damage repair in epithelial cells. JCI Insight 2019; 4:e125762. [PMID: 30728323 PMCID: PMC6413789 DOI: 10.1172/jci.insight.125762] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022] Open
Abstract
Growth hormone (GH) decreases with age, and GH therapy has been advocated by some to sustain lean muscle mass and vigor in aging patients and advocated by athletes to enhance performance. Environmental insults and aging lead to DNA damage, which - if unrepaired - results in chromosomal instability and tumorigenesis. We show that GH suppresses epithelial DNA damage repair and blocks ataxia telangiectasia mutated (ATM) kinase autophosphorylation with decreased activity. Decreased phosphorylation of ATM target proteins p53, checkpoint kinase 2 (Chk2), and histone 2A variant led to decreased DNA repair by nonhomologous end-joining. In vivo, prolonged high GH levels resulted in a 60% increase in unrepaired colon epithelial DNA damage. GH suppression of ATM was mediated by induced tripartite motif containing protein 29 (TRIM29) and attenuated tat interacting protein 60 kDa (Tip60). By contrast, DNA repair was increased in human nontumorous colon cells (hNCC) where GH receptor (GHR) was stably suppressed and in colon tissue derived from GHR-/- mice. hNCC treated with etoposide and GH showed enhanced transformation, as evidenced by increased growth in soft agar. In mice bearing human colon GH-secreting xenografts, metastatic lesions were increased. The results elucidate a mechanism underlying GH-activated epithelial cell transformation and highlight an adverse risk for inappropriate adult GH treatment.
Collapse
Affiliation(s)
| | | | - Robert Barrett
- Board of Governors Regenerative Medicine Institute
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, and
| | | | | | | | | | - John Gleeson
- Board of Governors Regenerative Medicine Institute
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, and
| | - Catherine Bresee
- Biostatistics and Bioinformatics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York, USA
| | | |
Collapse
|
43
|
Darcy J, Bartke A. From White to Brown - Adipose Tissue Is Critical to the Extended Lifespan and Healthspan of Growth Hormone Mutant Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:207-225. [PMID: 31493229 DOI: 10.1007/978-3-030-25650-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Growth hormone (GH) is a metabolic hormone that has major functions in the liver, muscle, and adipose tissue (AT). In the past 20 years, numerous studies have demonstrated that decreased growth hormone (GH) action is clearly linked to alterations in longevity. Therefore, it is not surprising that mechanisms underlying the extended longevity of GH-mutant animals include alterations in AT function. This Review aims to describe the basics of AT biology, GH secretion and action, and the effects of altered GH signaling in mice and humans. Lastly, this Review discusses the intersection of GH and AT, and how the influence of GH on AT may play a critical role in determining lifespan and healthspan.
Collapse
Affiliation(s)
- Justin Darcy
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
44
|
Plausible Links Between Metabolic Networks, Stem Cells, and Longevity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:355-388. [PMID: 31898793 DOI: 10.1007/978-3-030-31206-0_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aging is an inevitable consequence of life, and all multicellular organisms undergo a decline in tissue and organ functions as they age. Several well-known risk factors, such as obesity, diabetes, and lack of physical activity that lead to the cardiovascular system, decline and impede the function of vital organs, ultimately limit overall life span. Over recent years, aging research has experienced an unparalleled growth, particularly with the discovery and recognition of genetic pathways and biochemical processes that control to some extent the rate of aging.In this chapter, we focus on several aspects of stem cell biology and aging, beginning with major cellular hallmarks of aging, endocrine regulation of aging and its impact on stem cell compartment, and mechanisms of increased longevity. We then discuss the role of epigenetic modifications associated with aging and provide an overview on a most recent search of antiaging modalities.
Collapse
|
45
|
Hahn O, Stubbs TM, Reik W, Grönke S, Beyer A, Partridge L. Hepatic gene body hypermethylation is a shared epigenetic signature of murine longevity. PLoS Genet 2018; 14:e1007766. [PMID: 30462643 PMCID: PMC6281273 DOI: 10.1371/journal.pgen.1007766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/05/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Dietary, pharmacological and genetic interventions can extend health- and lifespan in diverse mammalian species. DNA methylation has been implicated in mediating the beneficial effects of these interventions; methylation patterns deteriorate during ageing, and this is prevented by lifespan-extending interventions. However, whether these interventions also actively shape the epigenome, and whether such epigenetic reprogramming contributes to improved health at old age, remains underexplored. We analysed published, whole-genome, BS-seq data sets from mouse liver to explore DNA methylation patterns in aged mice in response to three lifespan-extending interventions: dietary restriction (DR), reduced TOR signaling (rapamycin), and reduced growth (Ames dwarf mice). Dwarf mice show enhanced DNA hypermethylation in the body of key genes in lipid biosynthesis, cell proliferation and somatotropic signaling, which strongly correlates with the pattern of transcriptional repression. Remarkably, DR causes a similar hypermethylation in lipid biosynthesis genes, while rapamycin treatment increases methylation signatures in genes coding for growth factor and growth hormone receptors. Shared changes of DNA methylation were restricted to hypermethylated regions, and they were not merely a consequence of slowed ageing, thus suggesting an active mechanism driving their formation. By comparing the overlap in ageing-independent hypermethylated patterns between all three interventions, we identified four regions, which, independent of genetic background or gender, may serve as novel biomarkers for longevity-extending interventions. In summary, we identified gene body hypermethylation as a novel and partly conserved signature of lifespan-extending interventions in mouse, highlighting epigenetic reprogramming as a possible intervention to improve health at old age.
Collapse
Affiliation(s)
- Oliver Hahn
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, Germany
| | - Thomas M. Stubbs
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Andreas Beyer
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
46
|
Flores LC, Roman MG, Cunningham GM, Cheng C, Dube S, Allen C, Van Remmen H, Hubbard GB, Saunders TL, Ikeno Y. Continuous overexpression of thioredoxin 1 enhances cancer development and does not extend maximum lifespan in male C57BL/6 mice. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2018; 8:1533754. [PMID: 30370017 PMCID: PMC6201794 DOI: 10.1080/20010001.2018.1533754] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/14/2018] [Accepted: 09/20/2018] [Indexed: 11/23/2022]
Abstract
We examined the effects of continuous overexpression of thioredoxin (Trx) 1 on aging in Trx1 transgenic mice [Tg(TXN)+/0]. This study was conducted to test whether increased thioredoxin expression over the lifespan in mice would alter aging and age-related pathology because our previous study demonstrated that Tg(act-TXN)+/0 mice had no significant maximum life extension, possibly due to the use of actin as a promoter, which may have resulted in loss of Trx1 overexpression during aging. To test this hypothesis, we generated new Trx1 transgenic mice using a fragment of the human genome containing the TXN gene with an endogenous promoter to ensure continuous overexpression of Trx1 throughout the lifespan. Universal overexpression of Trx1 was observed, and Trx1 overexpression was maintained during aging (up to 22–24 months old) in the Tg(TXN)+/0 mice. The levels of Trx1 are significantly higher (approximately 4 to 31 fold) in all of the tissues examined in the Tg(TXN)+/0 mice compared to the wild-type (WT) littermates. The overexpression of Trx1 did not cause any changes in the levels of Trx2, glutaredoxin, glutathione, or other major antioxidant enzymes. The survival study demonstrated that male Tg(TXN)+/0 mice slightly extended the earlier part of the lifespan compared to WT littermates, but no significant life extension was observed over the lifespan. The cross-sectional pathological analysis (22–25 months old) showed that Tg(TXN)+/0 mice had a significantly higher severity of lymphoma and more tumor burden than WT mice, which was associated with the suppression of the apoptosis signal-regulating kinase 1 (ASK1) pathway. Our findings suggest that the increased levels of Trx1 over the lifespan in Tg(TXN)+/0 mice showed some beneficial effects (slight extension of lifespan) in the earlier part of life but had no significant effects on median or maximum lifespans, and increased Trx1 levels enhanced tumor development in old mice.
Collapse
Affiliation(s)
- Lisa C Flores
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Madeline G Roman
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Geneva M Cunningham
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Christie Cheng
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sara Dube
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Colton Allen
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Gene B Hubbard
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI, USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Geriatric Research Education and Clinical Center (GRECC), Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
47
|
Thioredoxin overexpression in both the cytosol and mitochondria accelerates age-related disease and shortens lifespan in male C57BL/6 mice. GeroScience 2018; 40:453-468. [PMID: 30121784 DOI: 10.1007/s11357-018-0039-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022] Open
Abstract
To investigate the role of increased levels of thioredoxin (Trx) in both the cytosol (Trx1) and mitochondria (Trx2) on aging, we have conducted a study to examine survival and age-related diseases using male mice overexpressing Trx1 and Trx2 (TXNTg × TXN2Tg). Our study demonstrated that the upregulation of Trx in both the cytosol and mitochondria in male TXNTg × TXN2Tg C57BL/6 mice resulted in a significantly shorter lifespan compared to wild-type (WT) mice. Cross-sectional pathology data showed a slightly higher incidence of neoplastic diseases in TXNTg × TXN2Tg mice than WT mice. The incidence of lymphoma, a major neoplastic disease in C57BL/6 mice, was slightly higher in TXNTg × TXN2Tg mice than in WT mice, and more importantly, the severity of lymphoma was significantly higher in TXNTg × TXN2Tg mice compared to WT mice. Furthermore, the total number of histopathological changes in the whole body (disease burden) was significantly higher in TXNTg × TXN2Tg mice compared to WT mice. Therefore, our study suggests that overexpression of Trx in both the cytosol and mitochondria resulted in deleterious effects on aging and accelerated the development of age-related diseases, especially cancer, in male C57BL/6 mice.
Collapse
|
48
|
Gubbi S, Quipildor GF, Barzilai N, Huffman DM, Milman S. 40 YEARS of IGF1: IGF1: the Jekyll and Hyde of the aging brain. J Mol Endocrinol 2018; 61:T171-T185. [PMID: 29739805 PMCID: PMC5988994 DOI: 10.1530/jme-18-0093] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022]
Abstract
The insulin-like growth factor 1 (IGF1) signaling pathway has emerged as a major regulator of the aging process, from rodents to humans. However, given the pleiotropic actions of IGF1, its role in the aging brain remains complex and controversial. While IGF1 is clearly essential for normal development of the central nervous system, conflicting evidence has emerged from preclinical and human studies regarding its relationship to cognitive function, as well as cerebrovascular and neurodegenerative disorders. This review delves into the current state of the evidence examining the role of IGF1 in the aging brain, encompassing preclinical and clinical studies. A broad examination of the data indicates that IGF1 may indeed play opposing roles in the aging brain, depending on the underlying pathology and context. Some evidence suggests that in the setting of neurodegenerative diseases that manifest with abnormal protein deposition in the brain, such as Alzheimer's disease, reducing IGF1 signaling may serve a protective role by slowing disease progression and augmenting clearance of pathologic proteins to maintain cellular homeostasis. In contrast, inducing IGF1 deficiency has also been implicated in dysregulated function of cognition and the neurovascular system, suggesting that some IGF1 signaling may be necessary for normal brain function. Furthermore, states of acute neuronal injury, which necessitate growth, repair and survival signals to persevere, typically demonstrate salutary effects of IGF1 in that context. Appreciating the dual, at times opposing 'Dr Jekyll' and 'Mr Hyde' characteristics of IGF1 in the aging brain, will bring us closer to understanding its impact and devising more targeted IGF1-related interventions.
Collapse
Affiliation(s)
- Sriram Gubbi
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Internal MedicineJacobi Medical Center, Bronx, New York, USA
| | - Gabriela Farias Quipildor
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nir Barzilai
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of GeriatricsDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of GeneticsAlbert Einstein College of Medicine, Bronx, New York, USA
| | - Derek M Huffman
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sofiya Milman
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of GeriatricsDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
49
|
Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice. Nat Commun 2018; 9:2394. [PMID: 29921922 PMCID: PMC6008442 DOI: 10.1038/s41467-018-04805-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 05/16/2018] [Indexed: 01/16/2023] Open
Abstract
Diminished growth factor signaling improves longevity in laboratory models, while a reduction in the somatotropic axis is favorably linked to human aging and longevity. Given the conserved role of this pathway on lifespan, therapeutic strategies, such as insulin-like growth factor-1 receptor (IGF-1R) monoclonal antibodies (mAb), represent a promising translational tool to target human aging. To this end, we performed a preclinical study in 18-mo-old male and female mice treated with vehicle or an IGF-1R mAb (L2-Cmu, Amgen Inc), and determined effects on aging outcomes. Here we show that L2-Cmu preferentially improves female healthspan and increases median lifespan by 9% (P = 0.03) in females, along with a reduction in neoplasms and inflammation (P ≤ 0.05). Thus, consistent with other models, targeting IGF-1R signaling appears to be most beneficial to females. Importantly, these effects could be achieved at advanced ages, suggesting that IGF-1R mAbs could represent a promising therapeutic candidate to delay aging.
Collapse
|
50
|
Wei M, Brandhorst S, Shelehchi M, Mirzaei H, Cheng CW, Budniak J, Groshen S, Mack WJ, Guen E, Di Biase S, Cohen P, Morgan TE, Dorff T, Hong K, Michalsen A, Laviano A, Longo VD. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci Transl Med 2017; 9:9/377/eaai8700. [PMID: 28202779 DOI: 10.1126/scitranslmed.aai8700] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/23/2016] [Accepted: 12/20/2016] [Indexed: 12/28/2022]
Abstract
Calorie restriction or changes in dietary composition can enhance healthy aging, but the inability of most subjects to adhere to chronic and extreme diets, as well as potentially adverse effects, limits their application. We randomized 100 generally healthy participants from the United States into two study arms and tested the effects of a fasting-mimicking diet (FMD)-low in calories, sugars, and protein but high in unsaturated fats-on markers/risk factors associated with aging and age-related diseases. We compared subjects who followed 3 months of an unrestricted diet to subjects who consumed the FMD for 5 consecutive days per month for 3 months. Three FMD cycles reduced body weight, trunk, and total body fat; lowered blood pressure; and decreased insulin-like growth factor 1 (IGF-1). No serious adverse effects were reported. After 3 months, control diet subjects were crossed over to the FMD program, resulting in a total of 71 subjects completing three FMD cycles. A post hoc analysis of subjects from both FMD arms showed that body mass index, blood pressure, fasting glucose, IGF-1, triglycerides, total and low-density lipoprotein cholesterol, and C-reactive protein were more beneficially affected in participants at risk for disease than in subjects who were not at risk. Thus, cycles of a 5-day FMD are safe, feasible, and effective in reducing markers/risk factors for aging and age-related diseases. Larger studies in patients with diagnosed diseases or selected on the basis of risk factors are warranted to confirm the effect of the FMD on disease prevention and treatment.
Collapse
Affiliation(s)
- Min Wei
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Sebastian Brandhorst
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Mahshid Shelehchi
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hamed Mirzaei
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Chia Wei Cheng
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Julia Budniak
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Susan Groshen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Esra Guen
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Stefano Di Biase
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Pinchas Cohen
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Todd E Morgan
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Tanya Dorff
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kurt Hong
- Department of Internal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Andreas Michalsen
- Department of Internal and Complementary Medicine, Charité University Medical Center, 10117 Berlin, Germany
| | | | - Valter D Longo
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA. .,FIRC Institute of Molecular Oncology, Italian Foundation for Cancer Research Institute of Molecular Oncology, 20139 Milan, Italy
| |
Collapse
|