1
|
Moysés-Oliveira M, Adami LNG, Guerreiro P, Mosini AC, Kloster A, Cunha L, Paschalidis M, Marquezini BP, Pires GN, Tempaku PF, Andersen ML, Tufik S. Endocrine and Epigenetic Regulation as Common Pathways Underlying the Genetic Basis of Sleep Traits and Longevity. Rejuvenation Res 2023; 26:206-213. [PMID: 37694591 DOI: 10.1089/rej.2023.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
The amount of sleep needed over one's lifespan is age dependent and not sleeping enough or sleeping in excess is associated with increased morbidity and mortality. Yet, the convergent molecular mechanisms that link longevity and sleep are largely unknown. We performed a gene enrichment study that (1) identified genes associated with both longevity and sleep traits and (2) determined molecular pathways enriched among these shared genes. We manually curated two sets of genes, one associated with longevity and aging and the other with sleep traits (e.g., insomnia, narcolepsy, sleep duration, chronotype, among others), with both gene lists heavily driven by hits from recent large-scale Genome-Wide Association Studies. There were 47 overlapping genes between the gene list associated with sleep traits (1064 genes total) and the genes associated with longevity (367 genes total), indicating significantly more overlap than expected by chance. An overrepresentation analysis identified enriched pathways that suggest endocrine and epigenetic regulation as potential shared mechanisms between sleep traits and longevity. Concordantly, functional network analysis retrieved two clusters, being one associated with proteins of nuclear functions and the other, with extracellular proteins. This overlapping gene set, and the highlighted biological pathways may serve as preliminary findings for new functional investigations of sleep and longevity shared genetic mechanisms.
Collapse
Affiliation(s)
| | - Luana N G Adami
- Sleep Institute, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
| | - Pedro Guerreiro
- Sleep Institute, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
| | | | - Anna Kloster
- Sleep Institute, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
| | - Lais Cunha
- Sleep Institute, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
| | - Mayara Paschalidis
- Sleep Institute, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
| | | | - Gabriel N Pires
- Sleep Institute, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Priscila F Tempaku
- Sleep Institute, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
| | - Monica L Andersen
- Sleep Institute, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sergio Tufik
- Sleep Institute, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Dhillon VS, Deo P, Thomas P, Fenech M. Low Magnesium in Conjunction with High Homocysteine and Less Sleep Accelerates Telomere Attrition in Healthy Elderly Australian. Int J Mol Sci 2023; 24:ijms24020982. [PMID: 36674498 PMCID: PMC9866301 DOI: 10.3390/ijms24020982] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
The relationship between sleep and micronutrients, including magnesium, is implicated in its regulation. The effects of low magnesium and other micronutrients on sleep disruption and telomere loss are not well understood. The present study was carried out in 172 healthy elderly subjects from South Australia. Plasma micronutrients including magnesium were measured. Each participant provided information about their sleep hours (<7 h or ≥7 h). Lymphocyte telomere length (TL) was measured by real-time qPCR assay. Plasma magnesium level was significantly low in subjects who sleep less than 7 h (p = 0.0002). TL was significantly shorter in people who are low in magnesium and sleep less than 7 h (p = 0.01). Plasma homocysteine (Hcy) is negatively associated with magnesium (r = −0.299; p < 0.0001). There is a significant interaction effect of magnesium and Hcy on sleep duration (p = 0.04) and TL (p = 0.003). Our results suggest that inadequate magnesium levels have an adverse impact on sleep and telomere attrition rate in cognitively normal elderly people, and this may be exacerbated by low levels of vitamin B12 and folate that elevate Hcy concentration.
Collapse
Affiliation(s)
- Varinderpal S. Dhillon
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Correspondence: (V.S.D.); (M.F.)
| | - Permal Deo
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Philip Thomas
- CSIRO Health and Biosecurity, Adelaide, SA 5001, Australia
| | - Michael Fenech
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Genome Health Foundation, North Brighton, SA 5048, Australia
- Correspondence: (V.S.D.); (M.F.)
| |
Collapse
|
3
|
Vo TT, Pahlen S, Kremen WS, McGue M, Dahl Aslan A, Nygaard M, Christensen K, Reynolds CA. Does sleep duration moderate genetic and environmental contributions to cognitive performance? Sleep 2022; 45:zsac140. [PMID: 35727734 PMCID: PMC9548666 DOI: 10.1093/sleep/zsac140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
While prior research has demonstrated a relationship between sleep and cognitive performance, how sleep relates to underlying genetic and environmental etiologies contributing to cognitive functioning, regardless of the level of cognitive function, is unclear. The present study assessed whether the importance of genetic and environmental contributions to cognition vary depending on an individual's aging-related sleep characteristics. The large sample consisted of twins from six studies within the Interplay of Genes and Environment across Multiple Studies (IGEMS) consortium spanning mid- to late-life (Average age [Mage] = 57.6, range = 27-91 years, N = 7052, Female = 43.70%, 1525 complete monozygotic [MZ] pairs, 2001 complete dizygotic [DZ] pairs). Quantitative genetic twin models considered sleep duration as a primary moderator of genetic and environmental contributions to cognitive performance in four cognitive abilities (Semantic Fluency, Spatial-Visual Reasoning, Processing Speed, and Episodic Memory), while accounting for age moderation. Results suggested genetic and both shared and nonshared environmental contributions for Semantic Fluency and genetic and shared environmental contributions for Episodic Memory vary by sleep duration, while no significant moderation was observed for Spatial-Visual Reasoning or Processing Speed. Results for Semantic Fluency and Episodic Memory illustrated patterns of higher genetic influences on cognitive function at shorter sleep durations (i.e. 4 hours) and higher shared environmental contributions to cognitive function at longer sleep durations (i.e. 10 hours). Overall, these findings may align with associations of upregulation of neuroinflammatory processes and ineffective beta-amyloid clearance in short sleep contexts and common reporting of mental fatigue in long sleep contexts, both associated with poorer cognitive functioning.
Collapse
Affiliation(s)
- Tina T Vo
- Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Shandell Pahlen
- Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Anna Dahl Aslan
- School of Health Sciences, University of Skövde, Skövde, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Marianne Nygaard
- The Danish Twin Registry, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Kaare Christensen
- The Danish Twin Registry, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Chandra A Reynolds
- Department of Psychology, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
4
|
Gao L, Dang L, Wei S, Hu N, Gao F, Peng W, Shang S, Zhao Y, Chen C, Guo X, Huo K, Wang J, Wang J, Qu Q. Peripheral Transport Proteins Were Associated with 4-Year Cognitive Decline in APOE ɛ4 Non-Carriers: A Longitudinal, Population-Based Study. J Alzheimers Dis 2022; 86:801-812. [PMID: 35124644 DOI: 10.3233/jad-215228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Soluble low-density lipoprotein receptor-related protein-1 (sLRP1) and soluble receptor of advanced glycation end products (sRAGE) play major roles in peripheral clearance of amyloid-β (Aβ). OBJECTIVE To determine the relationship between baseline sLRP1/sRAGE and early cognitive decline in a longitudinal study and explore the possible effect of apolipoprotein E (APOE) on their association. METHODS Cognitively normal subjects were followed-up for 4 years. The baseline plasma levels of sLRP1 and sRAGE were measured using commercial ELISA kits. Global cognition was evaluated by Mini-Mental State Examination (MMSE), and cognitive decline was defined as a ≥2-point decrease of MMSE after 4 years. The association between baseline sLRP1/sRAGE and 4-year cognitive decline were analyzed using logistic regression analysis. Interaction analysis was performed to discover the potential effect of APOE genotype on the relationship. RESULTS 769 participants were included in the final analysis, with 122 subjects (15.86%) were cognitive decline. Baseline sLRP1/sRAGE levels were not associated with 4-year cognitive decline after multivariable adjustments in the total cohort. However, there was significant interaction effect between sRAGE and APOE genotype on cognitive decline (adjusted odds ratio [OR] = 2.09, 95% confidence interval [CI]: 1.13-3.86, p = 0.019). Lower levels of sRAGE were associated with increased risk of cognitive decline among APOE ɛ4 non-carriers (adjusted OR = 1.60, 95% CI: 1.04-2.48, p = 0.034). CONCLUSION Individuals with lower levels of sRAGE had an increased risk of 4-year cognitive decline in APOE ɛ4 non-carriers, indicating that the association between sRAGE and cognitive decline might depend on the APOE genotype. However, the specific mechanisms need to be further elucidated.
Collapse
Affiliation(s)
- Ling Gao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liangjun Dang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shan Wei
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ningwei Hu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fan Gao
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Peng
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Suhang Shang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Zhao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Chen
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaojuan Guo
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kang Huo
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyi Wang
- Huyi Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|