1
|
Transcriptional landscape of oncogene-induced senescence: a machine learning-based meta-analytic approach. Ageing Res Rev 2023; 85:101849. [PMID: 36621646 DOI: 10.1016/j.arr.2023.101849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Oncogene-induced senescence (OIS) is highly heterogeneous, varying by oncogenic signals and cellular context. While its dual role, in the initial inhibition potentially later leading to promotion of tumors through the senescence-associated secretory phenotype, is still a matter of debate, it is undeniable that OIS is critical to understanding tumorigenesis. A major obstacle to OIS research is the absence of a universally accepted marker. Here, we present a robust OIS-specific transcriptomic secretory phenotype, termed oncogene-induced senescence secretory phenotype (OIS-SP), which can identify OIS across multiple biological contexts from in vitro datasets to in vivo human samples. We apply a meta-analytic machine learning pipeline to harmonize a deliberately varied selection of Ras-Raf-MEK-induced senescence datasets of differing origins, oncogenic signals and cell types. Finally we make use of bypass data to identify key genes and eliminate genes associated with quiescence, so identifying 40 OIS-SP genes. Within this set, we determined a robust core of five OIS-SP genes (FBLN1, CXCL12, EREG, CST1 and MMP10). Importantly, these 5 OIS-SP genes showed clear, consistent regulation patterns across various human Ras-Raf-MEK-mutated tumor tissues, which suggests that OIS-SP may be a novel cancer driver phenotype with an unexpectedly critical role in tumorigenesis.
Collapse
|
2
|
Altered differentiation of endometrial mesenchymal stromal fibroblasts is associated with endometriosis susceptibility. Commun Biol 2022; 5:600. [PMID: 35725766 PMCID: PMC9209414 DOI: 10.1038/s42003-022-03541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 05/31/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular development is tightly regulated as mature cells with aberrant functions may initiate pathogenic processes. The endometrium is a highly regenerative tissue, shedding and regenerating each month. Endometrial stromal fibroblasts are regenerated each cycle from mesenchymal stem cells and play a pivotal role in endometriosis, a disease characterised by endometrial cells that grow outside the uterus. Why the cells of some women are more capable of developing into endometriosis lesions is not clear. Using isolated, purified and cultured endometrial cells of mesenchymal origin from 19 women with (n = 10) and without (n = 9) endometriosis we analysed the transcriptome of 33,758 individual cells and compared these to clinical characteristics and in vitro growth profiles. We show purified mesenchymal cell cultures include a mix of mesenchymal stem cells and two endometrial stromal fibroblast subtypes with distinct transcriptomic signatures indicative of varied progression through the differentiation processes. The fibroblast subgroup characterised by incomplete differentiation was predominantly (81%) derived from women with endometriosis and exhibited an altered in vitro growth profile. These results uncover an inherent difference in endometrial cells of women with endometriosis and highlight the relevance of cellular differentiation and its potential to contribute to disease susceptibility. Comparing single cell transcriptome data to clinical characteristics and in vitro growth profiles uncovers a potential role for divergent mesenchymal-derived stromal fibroblast maturation in endometriosis susceptibility.
Collapse
|
3
|
Cystatin C and cystatin SN as possible soluble tumor markers in malignant uveal melanoma. Radiol Oncol 2021; 56:83-91. [PMID: 34957724 PMCID: PMC8884861 DOI: 10.2478/raon-2021-0049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/21/2021] [Indexed: 11/22/2022] Open
Abstract
Background The aim of the study was to determine the concentration of endogenous cystatin C and cystatin SN, as potential tumor biomarkers, in the serum and biological fluids of the eye in both healthy controls and patients with uveal melanoma. Patients and methods The concentration of both cystatins was determined in the intraocular fluid (IOF), tear fluid, and serum of patients with uveal melanoma and compared to baseline measurements in IOF, tears, serum, cerebral spinal fluid, saliva and urine of healthy controls. Results The concentration of cystatin C in all the biological matrices obtained from healthy controls significantly exceeded the concentration of cystatin SN and was independent of gender. Cystatin C concentrations in the tear fluid of patients with uveal melanoma (both the eye with the malignancy, as well as the contralateral, non-affected eye), were significantly greater than cystatin C concentrations in the tear fluid of healthy controls and was independent of tumor size. The concentration of cystatin SN in IOF of patients with uveal melanoma was significantly less than the corresponding concentration of cystatin SN in healthy controls. Conclusions The ratio of cystatins (CysC:CysSN) in both the serum and tear fluid, as well as the concentration of cystatin SN in IOF, would appear to strongly suggest the presence of uveal melanoma. It is further suggested that multiple diagnostic criteria be utilized if a patient is suspected of having uveal melanoma, such as determination of the cystatin C and cystatin SN concentrations in serum, tears, and IOF, ocular fundus and ultrasound imaging, and biopsy with histopathological evaluation.
Collapse
|
4
|
Kuot A, Corbett MA, Mills RA, Snibson G, Wiffen S, Loh R, Burdon KP, Craig JE, Sharma S. Differential gene expression analysis of corneal endothelium indicates involvement of phagocytic activity in Fuchs' endothelial corneal dystrophy. Exp Eye Res 2021; 210:108692. [PMID: 34228965 DOI: 10.1016/j.exer.2021.108692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/31/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022]
Abstract
Fuchs' endothelial corneal dystrophy (FECD) is a progressive vision impairing disease caused by thickening of Descemet's membrane and gradual degeneration and loss of corneal endothelial cells. The aim of this study was to identify differentially expressed genes between FECD-affected and unaffected corneal endothelium to gain insight into the pathophysiological mechanisms underlying this disease. Microarray gene expression analysis was performed on total RNA from FECD-affected and unaffected corneal endothelium-Descemet's membrane (CE-DM) specimens using the Illumina HumanHT-12 v4.0 expression array. RNA from pools of FECD-affected (n = 3 per pool) and individual unaffected (n = 3) specimens was used for comparison. Altered expression of a sub-set of differentially expressed genes was validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in independent specimens. Bioinformatics analysis was performed using InnateDB to reveal functional relationships among the differentially expressed genes and molecular pathways involved in the disease. A total of 16,513 genes were found expressed in the corneal endothelium of which 142 genes were differentially expressed between FECD-affected and unaffected endothelium (log2 fold-change ≥1.5, corrected p-value ≤0.05). Most of the genes were up-regulated (126) and a small proportion down-regulated (16) in affected corneal endothelium. Of the twelve genes prioritised for validation, differential expression of 10 genes, including those ranked 57th and 81st by significance validated by qRT-PCR (8 up-regulated and 2 downregulated, corrected p ≤ 0.05), one gene showed a trend for up-regulation in affected endothelium, consistent with the microarray analysis and another was up-regulated in an independent study indicating robustness of the differential expression dataset. Bioinformatic analysis revealed significant over-representation of differentially expressed genes in extracellular matrix reorganisation, cellular remodelling, immune response, and inflammation. Network analysis showed functional inter-relatedness of the majority of the dysregulated genes and revealed known direct functional relationships between 20 of the genes; many of these genes have roles in macrophage differentiation, phagocytosis and inflammation. This is the second report of microarray gene expression analysis in FECD. This study revealed a set of highly dysregulated genes in the corneal endothelium in FECD. More than a third of the dysregulated genes in the disease have been discovered for the first time and thus are novel. The dysregulated genes strongly suggest the presence of phagocytic cells, most likely immune cells, and inflammation in corneal endothelium in the disease. This study provides a molecular framework for delineating the mechanisms underlying these cellular processes in FECD.
Collapse
Affiliation(s)
- Abraham Kuot
- Department of Ophthalmology, Flinders University, Bedford Park, SA, 5042, Australia
| | - Mark A Corbett
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, SA, 5042, Australia
| | - Richard A Mills
- Department of Ophthalmology, Flinders University, Bedford Park, SA, 5042, Australia
| | - Grant Snibson
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Steven Wiffen
- The Lions Eye Bank of Western Australia, Lions Eye Institute, Nedlands, WA, 6009, Australia
| | - Raymond Loh
- Department of Ophthalmology, Flinders University, Bedford Park, SA, 5042, Australia
| | - Kathryn P Burdon
- Department of Ophthalmology, Flinders University, Bedford Park, SA, 5042, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Bedford Park, SA, 5042, Australia
| | - Shiwani Sharma
- Department of Ophthalmology, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
5
|
Abstract
Cystatin SN, belonging to the type 2 cystatin superfamily, is widely expressed and distributed in mammals. Cystatin SN is involved in inflammation, cell cycle, cellular senescence, tumorigenesis, and metastasis. Cystatin SN is also known to participate in signaling pathways like Wnt signaling pathway, GSK3 signaling pathway, AKT signaling pathway, and IL-6 signaling pathway. Cystatin SN was found to be highly expressed in peritumoral normal tissues in esophageal squamous cell carcinoma (ESCC); however, low cystatin SN expression was found in ESCC cancer tissues. Conversely, in other cancer types such as lung cancer, breast cancer, gastric cancer, pancreatic cancer, and colorectal cancer, high cystatin SN expression in cancer tissues but low cystatin SN expression in peritumoral normal tissues was found. Survival analyses showed that high cystatin SN expression benefited ESCC patients but did harm to other types of cancer patients. Univariate and multivariate analyses indicated that cystatin SN possibly acts as a marker for cancer prognosis. Here, we provide a brief introduction about the role of cystatin SN in cancer and discuss the different prognostic effects of cystatin SN on different tumors. Cystatin SN might be a potential marker for cancer prognosis and a target for cancer therapy.
Collapse
Affiliation(s)
- Yanfang Liu
- Department of Oncology, The Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China,
| | - Jing Yao
- Department of Oncology, The Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China,
| |
Collapse
|
6
|
Dai DN, Li Y, Chen B, Du Y, Li SB, Lu SX, Zhao ZP, Zhou AJ, Xue N, Xia TL, Zeng MS, Zhong Q, Wei WD. Elevated expression of CST1 promotes breast cancer progression and predicts a poor prognosis. J Mol Med (Berl) 2017; 95:873-886. [PMID: 28523467 PMCID: PMC5515997 DOI: 10.1007/s00109-017-1537-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/09/2017] [Accepted: 04/24/2017] [Indexed: 12/14/2022]
Abstract
Cystatin SN (CST1) belongs to the type 2 cystatin (CST) superfamily, which restricts the proteolytic activities of cysteine proteases. CST1 has been recently considered to be involved in the development of several human cancers. However, the prognostic significance and function of CST1 in breast cancer remains unknown. In the current study, we found that CST1 was generally upregulated in breast cancer at both mRNA and protein level. Furthermore, overall survival (OS) and disease-free survival (DFS) in the low CST1 expression subgroup were significantly superior to the high CST1 expression subgroup (OS, p < 0.001; DFS, p < 0.001), which indicated that CST1 expression level was closely correlated to the survival risk of these patients. Univariate and multivariate analyses demonstrated that CST1 expression was an independent prognostic factor, the same as ER status and nodal status. Next, CST1 overexpression promoted breast cancer cell proliferation, clonogenicity, migration, and invasion abilities. By contrast, knockdown of CST1 attenuated these malignant characteristics in breast cancer cells. Collectively, our study indicates that CST1 cannot only serve as a significant prognostic indicator but also as a potential therapeutic target for breast cancer. KEY MESSAGES High CST1 expression is negatively correlated with survival of breast cancer patients. CST1 promotes cell proliferation, clone formation, and metastasis in breast cancer cells. CST1 is a novel potential prognostic biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Da-Nian Dai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Bo Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Yong Du
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shi-Bing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shi-Xun Lu
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhi-Ping Zhao
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ai-Jun Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ning Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Tian-Liang Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China.
| | - Wei-Dong Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Diep CM, Kaur G, Keppler D, Lin AW. Retroviral expression of human cystatin genes in HeLa cells. Methods Mol Biol 2014; 1249:121-31. [PMID: 25348302 DOI: 10.1007/978-1-4939-2013-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Retroviral gene transfer is a highly efficient and effective method of stably introducing genetic material into the genome of specific cell types. The process involves the transfection of retroviral expression vectors into a packaging cell line, the isolation of viral particles, and the infection of target cell lines. Compared to traditional gene transfer methods such as liposome-mediated transfection, retroviral gene transfer allows for stable gene expression in cell populations without the need for lengthy selection and cloning procedures. This is particularly helpful when studying gene products that have negative effect on cell growth and viability. Here, we describe the retroviral transfer of cystatin cDNAs using HEK293-derived Phoenix packaging cells and human HeLa cervical carcinoma cells as target cells.
Collapse
Affiliation(s)
- Crystal M Diep
- College of Pharmacy, Touro University California, Vallejo, CA, USA
| | | | | | | |
Collapse
|
8
|
Rombouts C, Aerts A, Quintens R, Baselet B, El-Saghire H, Harms-Ringdahl M, Haghdoost S, Janssen A, Michaux A, Yentrapalli R, Benotmane MA, Van Oostveldt P, Baatout S. Transcriptomic profiling suggests a role for IGFBP5 in premature senescence of endothelial cells after chronic low dose rate irradiation. Int J Radiat Biol 2014; 90:560-74. [PMID: 24646080 DOI: 10.3109/09553002.2014.905724] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Ionizing radiation has been recognized to increase the risk of cardiovascular diseases (CVD). However, there is no consensus concerning the dose-risk relationship for low radiation doses and a mechanistic understanding of low dose effects is needed. MATERIAL AND METHODS Previously, human umbilical vein endothelial cells (HUVEC) were exposed to chronic low dose rate radiation (1.4 and 4.1 mGy/h) during one, three and six weeks which resulted in premature senescence in cells exposed to 4.1 mGy/h. To gain more insight into the underlying signaling pathways, we analyzed gene expression changes in these cells using microarray technology. The obtained data were analyzed in a dual approach, combining single gene expression analysis and Gene Set Enrichment Analysis. RESULTS An early stress response was observed after one week of exposure to 4.1 mGy/h which was replaced by a more inflammation-related expression profile after three weeks and onwards. This early stress response may trigger the radiation-induced premature senescence previously observed in HUVEC irradiated with 4.1 mGy/h. A dedicated analysis pointed to the involvement of insulin-like growth factor binding protein 5 (IGFBP5) signaling in radiation-induced premature senescence. CONCLUSION Our findings motivate further research on the shape of the dose-response and the dose rate effect for radiation-induced vascular senescence.
Collapse
Affiliation(s)
- Charlotte Rombouts
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK•CEN , Mol , Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|