1
|
Chartier C, Godard J, Durand S, Humeau-Heurtier A, Menetrier E, Allain P, Besnard J. Combinations of physical and cognitive training for subcortical neurodegenerative diseases with physical, cognitive and behavioral symptoms: a systematic review. Neurol Sci 2024; 45:5571-5589. [PMID: 39424648 PMCID: PMC11554706 DOI: 10.1007/s10072-024-07808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND The onset of the symptoms of subcortical NDs is due to a unique part of the brain which strengthens the idea of reciprocal influence of physical activity and cognitive training in improving clinical symptoms. Consequently, protocols combining the two stimulations are becoming increasingly popular in NDs. Our threefold aim was to (A) describe the different combinations of physical and cognitive training used to alleviate the motor and cognitive symptoms of patients with subcortical neurodegenerative disorders, (B) compare the effects of these different combinations (sequential, dual tasking, synergical) on symptoms, and (C) recommend approaches for further studies. METHODS We conducted literature searches of PubMed, BASE and ACM, to carry out a systematic review of randomized controlled trials and controlled trials of combined physical and cognitive training among patients with Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, Lewy body dementia, spinocerebellar ataxia, Friedreich's ataxia, and progressive supranuclear palsy. Physical, neuropsychological, behavioral outcomes were considered. The Cochrane risk-of-bias tool was used to verify the critical appraisal. RESULTS Twenty-one studies focused on Parkinson's disease with 940 participants were included. Despites promising benefits on cognitive and physical function, our results revealed discrepant findings for research on combined training. DISCUSSION Inconsistencies were linked to the choice of tests, the functions that were targeted, disease progression, and trainings. There was a dearth of follow-up data. CONCLUSIONS Differences between combined training are unclear, particularly regarding the role of cognitive load. Future studies should focus on comparing the feasibility, tolerability, and effectiveness of different combinations of motor-cognitive training.
Collapse
Affiliation(s)
- Coline Chartier
- Univ Angers, Nantes Université, CHU Angers, LPPL, SFR CONFLUENCES, UR4638, F-49000, Angers, France
| | - Julien Godard
- Univ Angers, LARIS, SFR MATHSTIC, F-49000, Angers, France.
- Le Mans Université, MIP, UR4334, F-72000, Le Mans, France.
| | - Sylvain Durand
- Le Mans Université, MIP, UR4334, F-72000, Le Mans, France
| | | | - Emmanuelle Menetrier
- Univ Angers, Nantes Université, LPPL, SFR CONFLUENCES, UR4638, F-49000, Angers, France
| | - Philippe Allain
- Univ Angers, Nantes Université, CHU Angers, LPPL, SFR CONFLUENCES, UR4638, F-49000, Angers, France
| | - Jérémy Besnard
- Univ Angers, Nantes Université, LPPL, SFR CONFLUENCES, UR4638, F-49000, Angers, France
| |
Collapse
|
2
|
Yau CE, Ho ECK, Ong NY, Loh CJK, Mai AS, Tan E. Innovative technology-based interventions in Parkinson's disease: A systematic review and meta-analysis. Ann Clin Transl Neurol 2024; 11:2548-2562. [PMID: 39236299 PMCID: PMC11514937 DOI: 10.1002/acn3.52160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVE Novel technology-based interventions have the potential to improve motor symptoms and gait in Parkinson's disease (PD). Promising treatments include virtual-reality (VR) training, robotic assistance, and biofeedback. Their effectiveness remains unclear, and thus, we conducted a Bayesian network meta-analysis. METHODS We searched the Medline, Embase, Cochrane CENTRAL, and Clinicaltrials.gov databases until 2 April 2024 and only included randomized controlled trials. Outcomes included changes in UPDRS-III/MDS-UPDRS-III score, stride length, 10-meter walk test (10MWT), timed up-and-go (TUG) test, balance scale scores and quality-of-life (QoL) scores. Results were reported as mean differences (MD) or standardized mean differences (SMD), with 95% credible intervals (95% CrI). RESULTS Fifty-one randomized controlled trials with 2095 patients were included. For UPDRS (motor outcome), all interventions had similar efficacies. VR intervention was the most effective in improving TUG compared with control (MD: -4.36, 95% CrI: -8.57, -0.35), outperforming robotic, exercise, and proprioceptive interventions. Proprioceptive intervention significantly improved stride length compared to control intervention (MD: 0.11 m, 95% CrI: 0.03, 0.19), outperforming VR, robotic and exercise interventions. Virtual reality improved balance scale scores significantly compared to exercise intervention (SMD: 0.75, 95% CrI: 0.12, 1.39) and control intervention (SMD: 1.42, 95% CrI: 0.06, 2.77). Virtual reality intervention significantly improved QoL scores compared to control intervention (SMD: -0.95, 95% CrI: -1.43, -0.52), outperforming Internet-based interventions. INTERPRETATION VR-based and proprioceptive interventions were the most promising interventions, consistently ranking as the top treatment choices for most outcomes. Their use in clinical practice could be helpful in managing motor symptoms and QoL in PD.
Collapse
Affiliation(s)
- Chun En Yau
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of NeurologySingapore General Hospital Campus, National Neuroscience InstituteSingaporeSingapore
| | - Eric Chi Kiat Ho
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of NeurologySingapore General Hospital Campus, National Neuroscience InstituteSingaporeSingapore
| | - Natasha Yixuan Ong
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of NeurologySingapore General Hospital Campus, National Neuroscience InstituteSingaporeSingapore
| | - Clifton Joon Keong Loh
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of NeurologySingapore General Hospital Campus, National Neuroscience InstituteSingaporeSingapore
| | - Aaron Shengting Mai
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of NeurologySingapore General Hospital Campus, National Neuroscience InstituteSingaporeSingapore
| | - Eng‐King Tan
- Department of NeurologySingapore General Hospital Campus, National Neuroscience InstituteSingaporeSingapore
- Neuroscience and Behavioural DisordersDuke‐NUS Medical SchoolSingaporeSingapore
| |
Collapse
|
3
|
Zhang C, Yu S. The Technology to Enhance Patient Motivation in Virtual Reality Rehabilitation: A Review. Games Health J 2024; 13:215-233. [PMID: 39159237 DOI: 10.1089/g4h.2023.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Virtual reality (VR) technology has experienced a steady rise and has been widely applied in the field of rehabilitation. The integration of VR technology in rehabilitation has shown promising results in enhancing their motivation for treatment, thereby enabling patients to actively engage in rehab training. Despite the advancement, there is a dearth of comprehensive summary and analysis on the use of VR technology to enhance patient motivation in rehabilitation. Thus, this narrative review aims to evaluate the potential of VR technology in enhancing patient motivation during motor rehabilitation training. This review commences with an explanation of how enhancing motivation through the VR rehabilitation system could improve the efficiency and effectiveness of rehabilitation training. Then, the technology was analyzed to improve patient motivation in the present VR rehabilitation system in detail. Furthermore, these technologies are classified and summarized to provide a comprehensive overview of the state-of-the-art approaches for enhancing patient motivation in VR rehabilitation. Findings showed VR rehabilitation training utilizes game-like exercises to enhance the engagement and enjoyment of rehabilitation training. By immersing patients in a simulated environment with multisensory feedback, VR systems offer a unique approach to rehabilitation that can lead to improved patient motivation. Both ultimately lead to improved patient outcomes, which is not typically achievable with traditional rehabilitation methods. The review concludes that VR rehabilitation presents an opportunity to improve patient motivation and adherence to long-term rehabilitation training. However, to further enhance patient self-efficacy, VR rehabilitation should integrate psychology and incorporate methods. Moreover, it is necessary to build a game design theory for rehabilitation games, and the latest VR feedback technology should also be introduced.
Collapse
Affiliation(s)
- Chengjie Zhang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Suiran Yu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Horinouchi T, Nezu T, Saita K, Date S, Kurumadani H, Maruyama H, Kirimoto H. Transcutaneous auricular vagus nerve stimulation enhances short-latency afferent inhibition via central cholinergic system activation. Sci Rep 2024; 14:11224. [PMID: 38755234 PMCID: PMC11099104 DOI: 10.1038/s41598-024-61958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024] Open
Abstract
The present study examined the effects of transcutaneous auricular vagus nerve stimulation (taVNS) on short-latency afferent inhibition (SAI), as indirect biomarker of cholinergic system activation. 24 healthy adults underwent intermittent taVNS (30 s on/30 s off, 30 min) or continuous taVNS at a frequency of 25 Hz (15 min) along with earlobe temporary stimulation (15 min or 30 min) were performed in random order. The efficiency with which the motor evoked potential from the abductor pollicis brevis muscle by transcranial magnetic stimulation was attenuated by the preceding median nerve conditioning stimulus was compared before taVNS, immediately after taVNS, and 15 min after taVNS. Continuous taVNS significantly increased SAI at 15 min post-stimulation compared to baseline. A positive correlation (Pearson coefficient = 0.563, p = 0.004) was observed between baseline SAI and changes after continuous taVNS. These results suggest that 15 min of continuous taVNS increases the activity of the cholinergic nervous system, as evidenced by the increase in SAI. In particular, the increase after taVNS was more pronounced in those with lower initial SAI. This study provides fundamental insight into the clinical potential of taVNS for cholinergic dysfunction.
Collapse
Affiliation(s)
- Takayuki Horinouchi
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tomohisa Nezu
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Kazuya Saita
- Department of Psychosocial Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shota Date
- Department of Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Kurumadani
- Department of Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Hikari Kirimoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
5
|
Lombardi G, Baccini M, Gualerzi A, Pancani S, Campagnini S, Doronzio S, Longo D, Maselli A, Cherubini G, Piazzini M, Ciapetti T, Polito C, Pinna S, De Santis C, Bedoni M, Macchi C, Ramat S, Cecchi F. Comparing the effects of augmented virtual reality treadmill training versus conventional treadmill training in patients with stage II-III Parkinson's disease: the VIRTREAD-PD randomized controlled trial protocol. Front Neurol 2024; 15:1338609. [PMID: 38327625 PMCID: PMC10847255 DOI: 10.3389/fneur.2024.1338609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Background Intensive treadmill training (TT) has been documented to improve gait parameters and functional independence in Parkinson's Disease (PD), but the optimal intervention protocol and the criteria for tailoring the intervention to patients' performances are lacking. TT may be integrated with augmented virtual reality (AVR), however, evidence of the effectiveness of this combined treatment is still limited. Moreover, prognostic biomarkers of rehabilitation, potentially useful to customize the treatment, are currently missing. The primary aim of this study is to compare the effects on gait performances of TT + AVR versus TT alone in II-III stage PD patients with gait disturbance. Secondary aims are to assess the effects on balance, gait parameters and other motor and non-motor symptoms, and patient's satisfaction and adherence to the treatment. As an exploratory aim, the study attempts to identify biomarkers of neuroplasticity detecting changes in Neurofilament Light Chain concentration T0-T1 and to identify prognostic biomarkers associated to blood-derived Extracellular Vesicles. Methods Single-center, randomized controlled single-blind trial comparing TT + AVR vs. TT in II-III stage PD patients with gait disturbances. Assessment will be performed at baseline (T0), end of training (T1), 3 (T2) and 6 months (T3, phone interview) from T1. The primary outcome is difference in gait performance assessed with the Tinetti Performance-Oriented Mobility Assessment gait scale at T1. Secondary outcomes are differences in gait performance at T2, in balance and spatial-temporal gait parameters at T1 and T2, patients' satisfaction and adherence. Changes in falls, functional mobility, functional autonomy, cognition, mood, and quality of life will be also assessed at different timepoints. The G*Power software was used to estimate a sample size of 20 subjects per group (power 0.95, α < 0.05), raised to 24 per group to compensate for potential drop-outs. Both interventions will be customized and progressive, based on the participant's performance, according to a predefined protocol. Conclusion This study will provide data on the possible superiority of AVR-associated TT over conventional TT in improving gait and other motor and non-motor symptoms in persons with PD and gait disturbances. Results of the exploratory analysis could add information in the field of biomarker research in PD rehabilitation.
Collapse
Affiliation(s)
- Gemma Lombardi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
| | - Marco Baccini
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
| | | | - Silvia Pancani
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
| | | | - Stefano Doronzio
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Diego Longo
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Maselli
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Technical-Health Professions, Rehabilitation, and Prevention, Campostaggia Hospital, Poggibonsi (SI), USL Toscana Sudest, Italy
| | - Giulio Cherubini
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | | | | | - Samuele Pinna
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara De Santis
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Claudio Macchi
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Silvia Ramat
- Parkinson Unit, Department of NeuroMuscular-Skeletal and Sensorial Organs, AOU Careggi, Florence, Italy
| | - Francesca Cecchi
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Alarcón TA, Presti-Silva SM, Simões APT, Ribeiro FM, Pires RGW. Molecular mechanisms underlying the neuroprotection of environmental enrichment in Parkinson's disease. Neural Regen Res 2023; 18:1450-1456. [PMID: 36571341 PMCID: PMC10075132 DOI: 10.4103/1673-5374.360264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Parkinson's disease is the most common movement disorder, affecting about 1% of the population over the age of 60 years. Parkinson's disease is characterized clinically by resting tremor, bradykinesia, rigidity and postural instability, as a result of the progressive loss of nigrostriatal dopaminergic neurons. In addition to this neuronal cell loss, Parkinson's disease is characterized by the accumulation of intracellular protein aggregates, Lewy bodies and Lewy neurites, composed primarily of the protein α-synuclein. Although it was first described almost 200 years ago, there are no disease-modifying drugs to treat patients with Parkinson's disease. In addition to conventional therapies, non-pharmacological treatment strategies are under investigation in patients and animal models of neurodegenerative disorders. Among such strategies, environmental enrichment, comprising physical exercise, cognitive stimulus, and social interactions, has been assessed in preclinical models of Parkinson's disease. Environmental enrichment can cause structural and functional changes in the brain and promote neurogenesis and dendritic growth by modifying gene expression, enhancing the expression of neurotrophic factors and modulating neurotransmission. In this review article, we focus on the current knowledge about the molecular mechanisms underlying environmental enrichment neuroprotection in Parkinson's disease, highlighting its influence on the dopaminergic, cholinergic, glutamatergic and GABAergic systems, as well as the involvement of neurotrophic factors. We describe experimental pre-clinical data showing how environmental enrichment can act as a modulator in a neurochemical and behavioral context in different animal models of Parkinson's disease, highlighting the potential of environmental enrichment as an additional strategy in the management and prevention of this complex disease.
Collapse
Affiliation(s)
- Tamara Andrea Alarcón
- Department of Physiological Sciences; Laboratory of Molecular and Behavioral Neurobiology, Health Science Center, Universidade Federal do Espirito Santo, Vitoria, Brazil
| | - Sarah Martins Presti-Silva
- Laboratory of Molecular and Behavioral Neurobiology, Health Science Center, Universidade Federal do Espirito Santo, Vitoria; Department of Biochemistry and Immunology, Institute o Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, Brazil
| | - Ana Paula Toniato Simões
- Department of Physiological Sciences; Laboratory of Molecular and Behavioral Neurobiology, Health Science Center, Universidade Federal do Espirito Santo, Vitoria, Brazil
| | - Fabiola Mara Ribeiro
- Department of Biochemistry and Immunology, Institute o Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, Brazil
| | - Rita Gomes Wanderley Pires
- Department of Physiological Sciences; Laboratory of Molecular and Behavioral Neurobiology, Health Science Center, Universidade Federal do Espirito Santo, Vitoria, Brazil
| |
Collapse
|
7
|
Chen X, Wu L, Feng H, Ning H, Wu S, Hu M, Jiang D, Chen Y, Jiang Y, Liu X. Comparison of Exergames Versus Conventional Exercises on the Health Benefits of Older Adults: Systematic Review With Meta-Analysis of Randomized Controlled Trials. JMIR Serious Games 2023; 11:e42374. [PMID: 37347534 PMCID: PMC10337432 DOI: 10.2196/42374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/08/2023] [Accepted: 05/13/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Conventional exercises (CEs) can provide health benefits for older adults, but the long-term exercise adherence rate is low. As an emerging, stimulating, and self-motivating strategy, exergames (EGs) are defined as combinations of exercises and games that users carry out through physical actions. They can promote exercise, but the health effects of EGs versus CEs on the physical function and mental health (cognitive function, depression, and quality of life) of older adults remain controversial. OBJECTIVE The aim of the study is to compare the health benefits of EGs versus those of CEs for the physical function and mental health of older adults. METHODS A comprehensive search was conducted from the earliest available date to February 2023 in the following 6 databases: PubMed, Web of Science, Embase, Cochrane, CINAHL, and PsycINFO. All English-language randomized controlled trials comparing the effects of EGs versus those of CEs on the physical function and mental health of older adults, with nearly same physical activity between the 2 interventions, were included. Risk of bias was independently evaluated by 2 authors using the Cochrane risk of bias in randomized trials tool. Two authors independently extracted data. We followed the Cochrane Handbook of Systematic Reviews of Interventions to process and analyze the data for meta-analysis. Standardized mean differences (SMDs) and 95% CIs were used for continuous data, and random models were used for analyses. RESULTS We included 12 studies consisting of 919 participants in total. Of these, 10 studies were eventually included in the meta-analysis. The results showed that EGs versus CEs exhibited no significant differences in physical (P=.13; τ2=0.31; χ26=26.6; I2=77%; SMD=0.37; 95% CI -0.11 to 0.86) or cognitive function (P=.63; τ2=0.01; χ23=3.1; I2=4%; SMD=0.09; 95% CI -0.27 to 0.44) effects. CONCLUSIONS Our findings indicate no significant difference between EGs and CEs in improving the physical function and cognitive function of older adults. Future studies are required to compare the effects of EGs versus those of CEs on cognitive function according to cognitive status, quantify the "dose-effect" relationship between EGs and health benefits, and evaluate the effects of different types and devices of EGs with regard to the health benefits of older adults. TRIAL REGISTRATION PROSPERO CRD42022322734; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=322734.
Collapse
Affiliation(s)
- Xi Chen
- Xiangya School of Nursing, Central South University, Changsha, China
| | - Lina Wu
- Xiangya School of Nursing, Central South University, Changsha, China
| | - Hui Feng
- Xiangya School of Nursing, Central South University, Changsha, China
- Xiangya-Oceanwide Health Management Research Institute, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Hongting Ning
- Xiangya School of Nursing, Central South University, Changsha, China
| | - Shuang Wu
- Xiangya School of Nursing, Central South University, Changsha, China
| | - Mingyue Hu
- Xiangya School of Nursing, Central South University, Changsha, China
| | - Dian Jiang
- Xiangya School of Nursing, Central South University, Changsha, China
| | - Yifei Chen
- Xiangya School of Nursing, Central South University, Changsha, China
| | - Yu Jiang
- Changsha Xingsha Hospital, Changsha, China
| | - Xin Liu
- Department of General Practice, 921 Hospital of Joint Logistics Support Force, The Chinese People's Liberation Army, Changsha, China
| |
Collapse
|
8
|
Alves JE, Pelegrini LNDC, Porcatti LR, Ansai JH, Candanedo MJBL, Gramani-Say K. Effects of a cognitive stimulation program on physical and cognitive dimensions in community-dwelling faller older adults with cognitive impairment: study protocol. BMC Neurol 2023; 23:107. [PMID: 36932354 PMCID: PMC10020753 DOI: 10.1186/s12883-023-03154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Cognitive functioning is an important dimension among the elderly. Cognitive maintenance is vital for aging due to its association with autonomy and independence. Considering the importance of preventive programs in older adults' health, this study aims to share an intervention protocol of a falls prevention program for community-dwelling faller older adults with cognitive impairment. METHODS This is the protocol of an experimental and longitudinal study, consisting of cognitive stimulation associated with physical exercise in a 16-week fall prevention program. For cognitive intervention, the APG Cognitive Training Protocol will be used. Participants will be assessed pre-and post-intervention and will be randomly allocated to experimental or control groups. The screening protocol is composed of the TUG, FES-I, LAWTON & BRODY, ACE-R, GAI and fall survey instruments, focusing on the assessment of balance and mobility, fear of falling, performance on IADL, cognitive and anxiety tracking, respectively. DISCUSSION This study can determine the long-term effects of multimodal cognitive training, providing evidence for its replication in the provision of care for the elderly. The objective is to promote improvements in the cognitive performance, mobility and balance of the elderly, with a focus on reducing the number of falls, fractures, hospitalizations and institutionalization, serving as an alternative to interrupt the cycle of falls. TRIAL REGISTRATION The research was approved by the Research Ethics Committee with Human Beings at the Federal University of São Carlos, CAAE: 3654240.9.0000.5504 and Brazilian Registry of Clinical Trials (REBEC) RBR-3t85fd, registered on the 25th of September, 2020.
Collapse
Affiliation(s)
- José Emanuel Alves
- Department of Gerontology, Federal University of São Carlos, Rodovia Washington Luiz, Km 235, São Carlos, São Paulo, 13565-905 Brazil
| | - Lucas N. de Carvalho Pelegrini
- Department of Gerontology, Federal University of São Carlos, Rodovia Washington Luiz, Km 235, São Carlos, São Paulo, 13565-905 Brazil
| | - Luana Rafaela Porcatti
- Department of Gerontology, Federal University of São Carlos, Rodovia Washington Luiz, Km 235, São Carlos, São Paulo, 13565-905 Brazil
| | - Juliana Hotta Ansai
- Department of Gerontology, Federal University of São Carlos, Rodovia Washington Luiz, Km 235, São Carlos, São Paulo, 13565-905 Brazil
| | | | - Karina Gramani-Say
- Department of Gerontology, Federal University of São Carlos, Rodovia Washington Luiz, Km 235, São Carlos, São Paulo, 13565-905 Brazil
| |
Collapse
|
9
|
How Cognitive Reserve should Influence Rehabilitation Choices using Virtual Reality in Parkinson’s Disease. PARKINSON'S DISEASE 2022; 2022:7389658. [PMID: 36160828 PMCID: PMC9507627 DOI: 10.1155/2022/7389658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
Virtual reality (VR) is used in the rehabilitation of patients with Parkinson's disease (PD) in several studies. In VR trials, the motor, physical characteristics, and the degree of the disease are often well defined, while PD cognitive reserve is not. This systematic review was performed to define a cognitive profile for patients with PD who could best benefit from using VR to enhance functional motor aspects during rehabilitation. PubMed, Cochrane Library, Scopus, and Web of Sciences databases were analysed to identify randomized clinical trials (RCT) and randomized pilot trials that addressed the rehabilitation of motor symptoms in subjects with PD using VR. The included studies used Mini-Mental State Examination (MMSE) or Montreal Cognitive Assessment (MoCA) to evaluate the cognitive aspect. Only articles written in English and with full texts were considered. The risk of bias from all included studies was assessed based on the Cochrane risk-of-bias tool and the PRISMA guideline was considered. Eighteen articles were eligible for review, including three randomized pilot trials. All studies aimed to evaluate the effect of VR on the motor aspects typically affected by PD (balance, postural control, risk of falls, walking, and reaching). The most widely adopted approach has been nonimmersive VR, except for one study that used immersive VR. Both the benefits of physical activity on the motor symptoms of patients with PD and the impact of cognitive reserve during the rehabilitation of these patients were highlighted. The analysis of the results allowed us to outline the ideal cognitive profile of patients with PD who can benefit from the effects of rehabilitation using VR.
Collapse
|
10
|
Das R, Paul S, Mourya GK, Kumar N, Hussain M. Recent Trends and Practices Toward Assessment and Rehabilitation of Neurodegenerative Disorders: Insights From Human Gait. Front Neurosci 2022; 16:859298. [PMID: 35495059 PMCID: PMC9051393 DOI: 10.3389/fnins.2022.859298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 12/06/2022] Open
Abstract
The study of human movement and biomechanics forms an integral part of various clinical assessments and provides valuable information toward diagnosing neurodegenerative disorders where the motor symptoms predominate. Conventional gait and postural balance analysis techniques like force platforms, motion cameras, etc., are complex, expensive equipment requiring specialist operators, thereby posing a significant challenge toward translation to the clinics. The current manuscript presents an overview and relevant literature summarizing the umbrella of factors associated with neurodegenerative disorder management: from the pathogenesis and motor symptoms of commonly occurring disorders to current alternate practices toward its quantification and mitigation. This article reviews recent advances in technologies and methodologies for managing important neurodegenerative gait and balance disorders, emphasizing assessment and rehabilitation/assistance. The review predominantly focuses on the application of inertial sensors toward various facets of gait analysis, including event detection, spatiotemporal gait parameter measurement, estimation of joint kinematics, and postural balance analysis. In addition, the use of other sensing principles such as foot-force interaction measurement, electromyography techniques, electrogoniometers, force-myography, ultrasonic, piezoelectric, and microphone sensors has also been explored. The review also examined the commercially available wearable gait analysis systems. Additionally, a summary of recent progress in therapeutic approaches, viz., wearables, virtual reality (VR), and phytochemical compounds, has also been presented, explicitly targeting the neuro-motor and functional impairments associated with these disorders. Efforts toward therapeutic and functional rehabilitation through VR, wearables, and different phytochemical compounds are presented using recent examples of research across the commonly occurring neurodegenerative conditions [viz., Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis, Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS)]. Studies exploring the potential role of Phyto compounds in mitigating commonly associated neurodegenerative pathologies such as mitochondrial dysfunction, α-synuclein accumulation, imbalance of free radicals, etc., are also discussed in breadth. Parameters such as joint angles, plantar pressure, and muscle force can be measured using portable and wearable sensors like accelerometers, gyroscopes, footswitches, force sensors, etc. Kinetic foot insoles and inertial measurement tools are widely explored for studying kinematic and kinetic parameters associated with gait. With advanced correlation algorithms and extensive RCTs, such measurement techniques can be an effective clinical and home-based monitoring and rehabilitation tool for neuro-impaired gait. As evident from the present literature, although the vast majority of works reported are not clinically and extensively validated to derive a firm conclusion about the effectiveness of such techniques, wearable sensors present a promising impact toward dealing with neurodegenerative motor disorders.
Collapse
Affiliation(s)
- Ratan Das
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Gajendra Kumar Mourya
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Neelesh Kumar
- Biomedical Applications Unit, Central Scientific Instruments Organisation, Chandigarh, India
| | - Masaraf Hussain
- Department of Neurology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, India
| |
Collapse
|
11
|
Bishnoi A, Lee R, Hu Y, Mahoney JR, Hernandez ME. Effect of Treadmill Training Interventions on Spatiotemporal Gait Parameters in Older Adults with Neurological Disorders: Systematic Review and Meta-Analysis of Randomized Controlled Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052824. [PMID: 35270516 PMCID: PMC8909968 DOI: 10.3390/ijerph19052824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/07/2022]
Abstract
Objective: Treadmill interventions have been shown to promote ‘normal’ walking patterns, as they facilitate the proper movement and timing of the lower limbs. However, prior reviews have not examined which intervention provides the most effective treatment of specific gait impairments in neurological populations. The objective of this systematic review was to review and quantify the changes in gait after treadmill interventions in adults with neurological disorders. Data Sources: A keyword search was performed in four databases: PubMed, CINAHL, Scopus, and Web of Science (January 2000−December 2021). We performed the search algorithm including all possible combinations of keywords. Full-text articles were examined further using forward/backward search methods. Study Selection: Studies were thoroughly screened using the following inclusion criteria: study design: Randomized Controlled Trial (RCT); adults ≥55 years old with a neurological disorder; treadmill intervention; spatiotemporal gait characteristics; and language: English. Data Extraction: A standardized data extraction form was used to collect the following methodological outcome variables from each of the included studies: author, year, population, age, sample size, and spatiotemporal gait parameters including stride length, stride time, step length, step width, step time, stance time, swing time, single support time, double support time, or cadence. Data Synthesis: We found a total of 32 studies to be included in our systematic review through keyword search, out of which 19 studies included adults with stroke and 13 studies included adults with PD. We included 22 out of 32 studies in our meta-analysis that examined gait in adults with neurological disorders, which only yielded studies including Parkinson’s disease (PD) and stroke patients. A meta-analysis was performed among trials presenting with similar characteristics, including study population and outcome measure. If heterogeneity was >50% (denoted by I2), random plot analysis was used, otherwise, a fixed plot analysis was performed. All analyses used effect sizes and standard errors and a p < 0.05 threshold was considered statistically significant (denoted by *). Overall, the effect of treadmill intervention on cadence (z = 6.24 *, I2 = 11.5%) and step length (z = 2.25 *, I2 = 74.3%) in adults with stroke was significant. We also found a significant effect of treadmill intervention on paretic step length (z = 2.34 *, I2 = 0%) and stride length (z = 6.09 *, I2 = 45.5%). For the active control group, including adults with PD, we found that overground physical therapy training had the largest effect on step width (z = −3.75 *, I2 = 0%). Additionally, for PD adults in treadmill intervention studies, we found the largest significant effect was on step length (z = 2.73 *, I2 = 74.2%) and stride length (z = −2.54 *, I2 = 96.8%). Conclusion: Treadmill intervention with sensory stimulation and body weight support treadmill training were shown to have the largest effect on step length in adults with PD and stroke.
Collapse
Affiliation(s)
- Alka Bishnoi
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.B.); (Y.H.)
| | - Rachel Lee
- Department of Solid Organ Transplant, University of Chicago Medical Center, Chicago, IL 60637, USA;
| | - Yang Hu
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.B.); (Y.H.)
| | - Jeannette R. Mahoney
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Manuel E. Hernandez
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.B.); (Y.H.)
- Correspondence:
| |
Collapse
|
12
|
Scott H, Griffin C, Coggins W, Elberson B, Abdeldayem M, Virmani T, Larson-Prior LJ, Petersen E. Virtual Reality in the Neurosciences: Current Practice and Future Directions. Front Surg 2022; 8:807195. [PMID: 35252318 PMCID: PMC8894248 DOI: 10.3389/fsurg.2021.807195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/30/2021] [Indexed: 01/05/2023] Open
Abstract
Virtual reality has made numerous advancements in recent years and is used with increasing frequency for education, diversion, and distraction. Beginning several years ago as a device that produced an image with only a few pixels, virtual reality is now able to generate detailed, three-dimensional, and interactive images. Furthermore, these images can be used to provide quantitative data when acting as a simulator or a rehabilitation device. In this article, we aim to draw attention to these areas, as well as highlight the current settings in which virtual reality (VR) is being actively studied and implemented within the field of neurosurgery and the neurosciences. Additionally, we discuss the current limitations of the applications of virtual reality within various settings. This article includes areas in which virtual reality has been used in applications both inside and outside of the operating room, such as pain control, patient education and counseling, and rehabilitation. Virtual reality's utility in neurosurgery and the neurosciences is widely growing, and its use is quickly becoming an integral part of patient care, surgical training, operative planning, navigation, and rehabilitation.
Collapse
Affiliation(s)
- Hayden Scott
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Hayden Scott
| | - Connor Griffin
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - William Coggins
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Brooke Elberson
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mohamed Abdeldayem
- Department of Anesthesiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Tuhin Virmani
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Linda J. Larson-Prior
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Erika Petersen
- Department of Anesthesiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
13
|
Pelosin E, Ponte C, Putzolu M, Lagravinese G, Hausdorff JM, Nieuwboer A, Ginis P, Rochester L, Alcock L, Bloem BR, Nieuwhof F, Cereatti A, Della Croce U, Mirelman A, Avanzino L. Motor–Cognitive Treadmill Training With Virtual Reality in Parkinson’s Disease: The Effect of Training Duration. Front Aging Neurosci 2022; 13:753381. [PMID: 35069171 PMCID: PMC8767105 DOI: 10.3389/fnagi.2021.753381] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/17/2021] [Indexed: 01/11/2023] Open
Abstract
Treadmill training with virtual reality (TT + VR) has been shown to improve gait performance and to reduce fall risk in Parkinson’s disease (PD). However, there is no consensus on the optimal training duration. This study is a sub-study of the V-TIME randomized clinical trial (NCT01732653). In this study, we explored the effect of the duration of training based on the motor–cognitive interaction on motor and cognitive performance and on fall risk in subjects with PD. Patients in Hoehn and Yahr stages II–III, aged between 40 and 70 years, were included. In total, 96 patients with PD were assigned to 6 or 12 weeks of TT + VR intervention, and 77 patients completed the full protocol. Outcome measures for gait and cognitive performance were assessed at baseline, immediately after training, and at 1- and 6-month follow-up. The incident rate of falls in the 6-month pre-intervention was compared with that in the 6-month post-intervention. Dual-task gait performance (gait speed, gait speed variability and stride length under cognitive dual task and obstacle negotiation, and the leading foot clearance in obstacle negotiation) improved similarly in both groups with gains sustained at 6-month follow-up. A higher decrease in fall rate and fear of falling were observed in participants assigned to the 12-week intervention than the 6-week intervention. Improvements in cognitive functions (i.e., executive functions, visuospatial ability, and attention) were seen only in participants enrolled in 12-week training up to 1-month follow-up but vanished at the 6-month evaluation. Our results suggest that a longer TT + VR training leads to greater improvements in cognitive functions especially those directly addressed by the virtual environment.
Collapse
Affiliation(s)
- Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- *Correspondence: Elisa Pelosin,
| | - Chiara Ponte
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genova, Italy
| | - Martina Putzolu
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genova, Italy
| | - Giovanna Lagravinese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Jeffrey M. Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physical Therapy, Tel Aviv University, Tel Aviv, Israel
- Department of Orthopedic Surgery, Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), KU Leuven, Leuven, Belgium
| | - Pieter Ginis
- Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), KU Leuven, Leuven, Belgium
| | - Lynn Rochester
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Lisa Alcock
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Bastiaan R. Bloem
- Department of Neurology, Radboud University Medical Centre, Centre of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Freek Nieuwhof
- Department of Neurology, Radboud University Medical Centre, Centre of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Andrea Cereatti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Ugo Della Croce
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Anat Mirelman
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Laura Avanzino
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| |
Collapse
|
14
|
García-López H, Obrero-Gaitán E, Castro-Sánchez AM, Lara-Palomo IC, Nieto-Escamez FA, Cortés-Pérez I. Non-Immersive Virtual Reality to Improve Balance and Reduce Risk of Falls in People Diagnosed with Parkinson's Disease: A Systematic Review. Brain Sci 2021; 11:brainsci11111435. [PMID: 34827433 PMCID: PMC8615507 DOI: 10.3390/brainsci11111435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Objective: To evaluate the effectiveness of non-immersive virtual reality in reducing falls and improving balance in patients diagnosed with Parkinson’s disease. (2) Methods: The following databases were searched: PUBMED, PEDro, Scielo, CINAHL, Web of Science, Dialnet, Scopus and MEDLINE. These databases were searched for randomized controlled trials published using relevant keywords in various combinations. The methodological quality of the articles was evaluated using the PEDro scale. (3) Results: A total of 10 studies with a total of 537 subjects, 58.7% of which (n = 315) were men, have been included in the review. The age of the participants in these studies ranged between 55 and 80 years. Each session lasted between 30 and 75 min, and the interventions lasted between 5 and 12 weeks. These studies showed that non-immersive virtual reality is effective in reducing the number of falls and improving both static and dynamic balance in patients diagnosed with Parkinson’s disease. Results after non-immersive virtual reality intervention showed an improvement in balance and a decrease in the number and the risk of falls. However, no significant differences were found between the intervention groups and the control groups for all the included studies regarding balance. (4) Conclusions: There is evidence that non-immersive virtual reality can improve balance and reduce the risk and number of falls, being therefore beneficial for people diagnosed with Parkinson’s disease.
Collapse
Affiliation(s)
- Héctor García-López
- Department of Nursing, Physical Therapy and Medicine, University of Almeria, Road Sacramento s/n, 04120 Almeria, Spain; (H.G.-L.); (A.M.C.-S.); (I.C.L.-P.)
| | - Esteban Obrero-Gaitán
- Department of Health Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23071 Jaen, Spain; (E.O.-G.); (I.C.-P.)
| | - Adelaida María Castro-Sánchez
- Department of Nursing, Physical Therapy and Medicine, University of Almeria, Road Sacramento s/n, 04120 Almeria, Spain; (H.G.-L.); (A.M.C.-S.); (I.C.L.-P.)
| | - Inmaculada Carmen Lara-Palomo
- Department of Nursing, Physical Therapy and Medicine, University of Almeria, Road Sacramento s/n, 04120 Almeria, Spain; (H.G.-L.); (A.M.C.-S.); (I.C.L.-P.)
| | - Francisco Antonio Nieto-Escamez
- Department of Psychology, University of Almeria, Ctra. Sacramento s/n, 04120 Almeria, Spain
- Center for Neuropsychological Assessment and Rehabilitation (CERNEP), Ctra. Sacramento s/n, 04120 Almeria, Spain
- Correspondence: ; Tel.: +34-950-214-628
| | - Irene Cortés-Pérez
- Department of Health Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23071 Jaen, Spain; (E.O.-G.); (I.C.-P.)
- Granada Northeast Health District, Andalusian Health Service, Street San Miguel 2, 18500 Guadix, Spain
| |
Collapse
|
15
|
Crisafulli O, Trompetto C, Puce L, Marinelli L, Costi S, Abbruzzese G, Avanzino L, Pelosin E. Dual task gait deteriorates gait performance in cervical dystonia patients: a pilot study. J Neural Transm (Vienna) 2021; 128:1677-1685. [PMID: 34324056 PMCID: PMC8536592 DOI: 10.1007/s00702-021-02393-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/26/2021] [Indexed: 01/22/2023]
Abstract
Day-to-day walking-related activities frequently involve the simultaneous performance of two or more tasks (i.e., dual task). Dual task ability is influenced by higher order cognitive and cortical control mechanisms. Recently, it has been shown that the concomitant execution of an attention-demanding task affected postural control in subject with cervical dystonia (CD). However, no study has investigated whether dual tasking might deteriorate gait performance in CD patients. To investigate whether adding a concomitant motor and cognitive tasks could affect walking performance in CD subjects.17 CD patients and 19 healthy subjects (HS) participated in this pilot case–control study. Gait performance was evaluated during four walking tasks: usual, fast, cognitive dual task and obstacle negotiation. Spatiotemporal parameters, dual-task cost and coefficients of variability (CV%) were measured by GaitRite® and were used to detect differences between groups. Balance performance was also assessed with Mini-BEST and Four Step Square tests. In CD participants, correlation analysis was computed between gait parameters and clinical data. Significant differences in complex gait and balance performance were found between groups. CD patients showed lower speed, longer stance time and higher CV% and dual-task cost compared to HS. In CD, altered gait parameters correlated with balance performance and were not associated with clinical features of CD. Our findings suggest that complex walking performance is impaired in patients with CD and that balance and gait deficits might be related
Collapse
Affiliation(s)
- Oscar Crisafulli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Luca Puce
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Stefania Costi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Abbruzzese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Laura Avanzino
- Ospedale Policlinico San Martino, IRCCS, Genoa, Italy.
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| |
Collapse
|
16
|
Chau B, Humbert S, Shou A. Systemic Literature Review of the Use of Virtual Reality for Rehabilitation in Parkinson Disease. Fed Pract 2021; 38:S20-S27. [PMID: 34177236 DOI: 10.12788/fp.0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Functional rehabilitation is important when managing Parkinson disease (PD). Virtual reality (VR) therapy is a noninvasive, potential alternative or adjunct to conventional therapies used during rehabilitation. Observations The authors searched for articles in Google Scholar, PubMed, Physiotherapy Evidence Database Score (PEDro), and Cochrane after setting specific requirements starting in July 2019. Methodologic quality was assessed by PEDro for randomized controlled trials. Among 89 studies identified, 28 included in this review evaluated VR therapy for use during rehabilitation for PD: 7 used immersive VR and 21 used nonimmersive VR. Among the immersive VR studies, 6 showed improvement in primary outcomes after adding VR therapy. Among the nonimmersive VR studies, 5 showed improvement with VR therapy when compared with conventional therapy, 9 showed improvement with VR and conventional therapy with no between group difference, and the remaining 7 showed improvement in primary outcomes after adding VR intervention. The quality and diversity of studies was a major limitation. Conclusion VR therapy is a promising rehabilitation modality for PD but more studies are needed. Additional investigations of VR therapy and PD should include direct comparisons between immersive and nonimmersive VR therapies.
Collapse
Affiliation(s)
- Brian Chau
- is a Diplomat of Physical Medicine and Rehabilitation and is an Attending Physician, both at the US Department of Veteran Affairs Loma Linda Healthcare System. Sarah Humbert is a Diplomat of Physical Medicine and Rehabilitation, a Diplomat of Neuromuscular Medicine, and an Assistant Professor; Brian Chau is an Assistant Professor of Physical Medicine and Rehabilitation; and was a Medical Student at the time the article was written and is now a Resident Physician in Physical Medicine and Rehabilitation; all at Loma Linda University School of Medicine in California
| | - Sarah Humbert
- is a Diplomat of Physical Medicine and Rehabilitation and is an Attending Physician, both at the US Department of Veteran Affairs Loma Linda Healthcare System. Sarah Humbert is a Diplomat of Physical Medicine and Rehabilitation, a Diplomat of Neuromuscular Medicine, and an Assistant Professor; Brian Chau is an Assistant Professor of Physical Medicine and Rehabilitation; and was a Medical Student at the time the article was written and is now a Resident Physician in Physical Medicine and Rehabilitation; all at Loma Linda University School of Medicine in California
| | - Aaron Shou
- is a Diplomat of Physical Medicine and Rehabilitation and is an Attending Physician, both at the US Department of Veteran Affairs Loma Linda Healthcare System. Sarah Humbert is a Diplomat of Physical Medicine and Rehabilitation, a Diplomat of Neuromuscular Medicine, and an Assistant Professor; Brian Chau is an Assistant Professor of Physical Medicine and Rehabilitation; and was a Medical Student at the time the article was written and is now a Resident Physician in Physical Medicine and Rehabilitation; all at Loma Linda University School of Medicine in California
| |
Collapse
|
17
|
Bevilacqua R, Maranesi E, Riccardi GR, Di Donna V, Pelliccioni P, Luzi R, Lattanzio F, Pelliccioni G. Non-Immersive Virtual Reality for Rehabilitation of the Older People: A Systematic Review into Efficacy and Effectiveness. J Clin Med 2019; 8:E1882. [PMID: 31694337 PMCID: PMC6912349 DOI: 10.3390/jcm8111882] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 01/17/2023] Open
Abstract
: Objective: the objective of this review is to analyze the advances in the field of rehabilitation through virtual reality, while taking into account non-immersive systems, as evidence have them shown to be highly accepted by older people, due to the lowest "cibersikness" symptomatology. DATA SOURCES a systematic review of the literature was conducted in June 2019. The data were collected from Cochrane, Embase, Scopus, and PubMed databases, analyzing manuscripts and articles of the last 10 years. STUDY SELECTION we only included randomized controlled trials written in English aimed to study the use of the virtual reality in rehabilitation. We selected 10 studies, which were characterized by clinical heterogeneity. DATA EXTRACTION quality evaluation was performed based on the Physioterapy Evidence Database (PEDro) scale, suggested for evidence based review of stroke rehabilitation. Of 10 studies considered, eight were randomized controlled trials and the PEDro score ranged from four to a maximum of nine. DATA SYNTHESIS VR (Virtual Reality) creates artificial environments with the possibility of a patient interaction. This kind of experience leads to the development of cognitive and motor abilities, which usually positively affect the emotional state of the patient, increasing collaboration and compliance. Some recent studies have suggested that rehabilitation treatment interventions might be useful and effective in treating motor and cognitive symptoms in different neurological disorders, including traumatic brain injury, multiple sclerosis, and progressive supranuclear palsy. CONCLUSIONS as it is shown by the numerous studies in the field, the application of VR has a positive impact on the rehabilitation of the most predominant geriatric syndromes. The level of realism of the virtual stimuli seems to have a crucial role in the training of cognitive abilities. Future research needs to improve study design by including larger samples, longitudinal designs, long term follow-ups, and different outcome measures, including functional and quality of life indexes, to better evaluate the clinical impact of this promising technology in healthy old subjects and in neurological patients.
Collapse
Affiliation(s)
| | - Elvira Maranesi
- Scientific Direction, IRCCS INRCA, 60129 Ancona, Italy; (R.B.); (F.L.)
| | | | - Valentina Di Donna
- Clinical Unit of Physical Rehabilitation, IRCCS INRCA, 60100 Ancona, Italy; (G.R.R.); (V.D.D.)
| | | | - Riccardo Luzi
- Medical Direction, IRCCS INRCA, 60100 Ancona, Italy;
| | | | | |
Collapse
|