1
|
Li N, Flanagan BA, Edmands S. The role of mitochondria in sex- and age-specific gene expression in a species without sex chromosomes. Proc Natl Acad Sci U S A 2024; 121:e2321267121. [PMID: 38838014 PMCID: PMC11181141 DOI: 10.1073/pnas.2321267121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/13/2024] [Indexed: 06/07/2024] Open
Abstract
Mitochondria perform an array of functions, many of which involve interactions with gene products encoded by the nucleus. These mitochondrial functions, particularly those involving energy production, can be expected to differ between sexes and across ages. Here, we measured mitochondrial effects on sex- and age-specific gene expression in parental and reciprocal F1 hybrids between allopatric populations of Tigriopus californicus with over 20% mitochondrial DNA divergence. Because the species lacks sex chromosomes, sex-biased mitochondrial effects are not confounded by the effects of sex chromosomes. Results revealed pervasive sex differences in mitochondrial effects, including effects on energetics and aging involving nuclear interactions throughout the genome. Using single-individual RNA sequencing, sex differences were found to explain more than 80% of the variance in gene expression. Males had higher expression of mitochondrial genes and mitochondrially targeted proteins (MTPs) involved in oxidative phosphorylation (OXPHOS), while females had elevated expression of non-OXPHOS MTPs, indicating strongly sex-dimorphic energy metabolism at the whole organism level. Comparison of reciprocal F1 hybrids allowed insights into the nature of mito-nuclear interactions, showing both mitochondrial effects on nuclear expression, and nuclear effects on mitochondrial expression. While based on a small set of crosses, sex-specific increases in mitochondrial expression with age were associated with longer life. Network analyses identified nuclear components of strong mito-nuclear interactions and found them to be sexually dimorphic. These results highlight the profound impact of mitochondria and mito-nuclear interactions on sex- and age-specific gene expression.
Collapse
Affiliation(s)
- Ning Li
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Ben A. Flanagan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
2
|
Edmands S. Mother's Curse effects on lifespan and aging. FRONTIERS IN AGING 2024; 5:1361396. [PMID: 38523670 PMCID: PMC10957651 DOI: 10.3389/fragi.2024.1361396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
The Mother's Curse hypothesis posits that mothers curse their sons with harmful mitochondria, because maternal mitochondrial inheritance makes selection blind to mitochondrial mutations that harm only males. As a result, mitochondrial function may be evolutionarily optimized for females. This is an attractive explanation for ubiquitous sex differences in lifespan and aging, given the prevalence of maternal mitochondrial inheritance and the established relationship between mitochondria and aging. This review outlines patterns expected under the hypothesis, and traits most likely to be affected, chiefly those that are sexually dimorphic and energy intensive. A survey of the literature shows that evidence for Mother's Curse is limited to a few taxonomic groups, with the strongest support coming from experimental crosses in Drosophila. Much of the evidence comes from studies of fertility, which is expected to be particularly vulnerable to male-harming mitochondrial mutations, but studies of lifespan and aging also show evidence of Mother's Curse effects. Despite some very compelling studies supporting the hypothesis, the evidence is quite patchy overall, with contradictory results even found for the same traits in the same taxa. Reasons for this scarcity of evidence are discussed, including nuclear compensation, factors opposing male-specific mutation load, effects of interspecific hybridization, context dependency and demographic effects. Mother's Curse effects may indeed contribute to sex differences, but the complexity of other contributing factors make Mother's Curse a poor general predictor of sex-specific lifespan and aging.
Collapse
Affiliation(s)
- Suzanne Edmands
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
3
|
Nagarajan‐Radha V, Cordina N, Beekman M. Diet and mitonuclear haplotype interactions affect growth rate in a slime mould. Ecol Evol 2023; 13:e10508. [PMID: 37674651 PMCID: PMC10477482 DOI: 10.1002/ece3.10508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
Trait expression in metazoans is strongly influenced by the balance of macronutrients (i.e. protein, carbohydrate and fat) in the diet. At the same time, an individual's genetic background seems to regulate the magnitude of phenotypic response to a particular diet. It needs to be better understood whether interactions between diet, genetic background and trait expression are found in unicellular eukaryotes. A protist-the slime mould, Physarum polycephalum can choose diets based on protein-to-carbohydrate (P:C) content to support optimal growth rate. Yet, the role of genetic background (variation in the mitochondrial and nuclear DNAs) in mediating growth rate response to dietary P:C ratios in the slime mould is unknown. Here, we studied the effects of interactions between mitochondrial and nuclear DNA haplotypes and diet (i.e. G × G × E interactions) on the growth rate of P. polycephalum. A genetic panel of six distinct strains of P. polycephalum that differ in their mitochondrial and nuclear DNA haplotypes was used to measure growth rate across five diets that varied in their P:C ratio and total calories. We first determined the strains' growth rate (total biomass and surface area) when grown on a set menu with access to a particular diet. We then assessed whether the growth rate of strains increased on a buffet menu with access to all diets. Our findings show that the growth rate of P. polycephalum is generally higher on diets containing more carbohydrates than protein and that total calories negatively affect the growth rate. Three-way interactions between mitochondrial, nuclear haplotypes and dietary P:C ratios affected the strains' surface area of growth but not biomass. Intriguingly, strains did not increase their surface area and biomass when they had access to all diets on the buffet menu. Our findings have broad implications for our understanding of the effect of mitonuclear interactions on trait expression across diverse eukaryotic lineages.
Collapse
Affiliation(s)
- Venkatesh Nagarajan‐Radha
- Behaviour, Ecology and Evolution Lab, School of Life and Environmental SciencesThe University of SydneyCamperdownNew South WalesAustralia
| | - Natalie Cordina
- Behaviour, Ecology and Evolution Lab, School of Life and Environmental SciencesThe University of SydneyCamperdownNew South WalesAustralia
| | - Madeleine Beekman
- Behaviour, Ecology and Evolution Lab, School of Life and Environmental SciencesThe University of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
4
|
Dowling DK, Wolff JN. Evolutionary genetics of the mitochondrial genome: insights from Drosophila. Genetics 2023; 224:iyad036. [PMID: 37171259 PMCID: PMC10324950 DOI: 10.1093/genetics/iyad036] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/05/2023] [Indexed: 05/13/2023] Open
Abstract
Mitochondria are key to energy conversion in virtually all eukaryotes. Intriguingly, despite billions of years of evolution inside the eukaryote, mitochondria have retained their own small set of genes involved in the regulation of oxidative phosphorylation (OXPHOS) and protein translation. Although there was a long-standing assumption that the genetic variation found within the mitochondria would be selectively neutral, research over the past 3 decades has challenged this assumption. This research has provided novel insight into the genetic and evolutionary forces that shape mitochondrial evolution and broader implications for evolutionary ecological processes. Many of the seminal studies in this field, from the inception of the research field to current studies, have been conducted using Drosophila flies, thus establishing the species as a model system for studies in mitochondrial evolutionary biology. In this review, we comprehensively review these studies, from those focusing on genetic processes shaping evolution within the mitochondrial genome, to those examining the evolutionary implications of interactions between genes spanning mitochondrial and nuclear genomes, and to those investigating the dynamics of mitochondrial heteroplasmy. We synthesize the contribution of these studies to shaping our understanding of the evolutionary and ecological implications of mitochondrial genetic variation.
Collapse
Affiliation(s)
- Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Jonci N Wolff
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
5
|
MacArthur MR, Mitchell SJ. Sex differences in healthspan and lifespan responses to geroprotective dietary interventions in preclinical models. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Kyrgiafini MA, Giannoulis T, Moutou KA, Mamuris Z. Investigating the Impact of a Curse: Diseases, Population Isolation, Evolution and the Mother's Curse. Genes (Basel) 2022; 13:2151. [PMID: 36421825 PMCID: PMC9690142 DOI: 10.3390/genes13112151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 09/08/2024] Open
Abstract
The mitochondrion was characterized for years as the energy factory of the cell, but now its role in many more cellular processes is recognized. The mitochondrion and mitochondrial DNA (mtDNA) also possess a set of distinct properties, including maternal inheritance, that creates the Mother's Curse phenomenon. As mtDNA is inherited from females to all offspring, mutations that are harmful to males tend to accumulate more easily. The Mother's Curse is associated with various diseases, and has a significant effect on males, in many cases even affecting their reproductive ability. Sometimes, it even leads to reproductive isolation, as in crosses between different populations, the mitochondrial genome cannot cooperate effectively with the nuclear one resulting in a mito-nuclear incompatibility and reduce the fitness of the hybrids. This phenomenon is observed both in the laboratory and in natural populations, and have the potential to influence their evolution and speciation. Therefore, it turns out that the study of mitochondria is an exciting field that finds many applications, including pest control, and it can shed light on the molecular mechanism of several diseases, improving successful diagnosis and therapeutics. Finally, mito-nuclear co-adaptation, paternal leakage, and kin selection are some mechanisms that can mitigate the impact of the Mother's Curse.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Katerina A. Moutou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
7
|
Koch RE, Dowling DK. Effects of mitochondrial haplotype on pre-copulatory mating success in male fruit flies (Drosophila melanogaster). J Evol Biol 2022; 35:1396-1402. [PMID: 35988150 DOI: 10.1111/jeb.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 01/07/2023]
Abstract
While mitochondria have long been understood to be critical to cellular function, questions remain as to how genetic variation within mitochondria may underlie variation in general metrics of organismal function. To date, studies investigating links between mitochondrial genotype and phenotype have largely focused on differences in expression of genes and physiological and life-history traits across haplotypes. Mating display behaviours may also be sensitive to mitochondrial functionality and so may also be affected by sequence variation in mitochondrial DNA, with consequences for sexual selection and fitness. Here, we tested whether the pre-copulatory mating success of male fruit flies (Drosophila melanogaster) varies across six different mitochondrial haplotypes expressed alongside a common nuclear genetic background. We found a significant effect of mitochondrial haplotype on our measure of competitive mating success, driven largely by the relatively poor performance of males with one particular haplotype. This haplotype, termed 'Brownsville', has previously been shown to have complex and sex-specific effects, most notably including depressed fertility in males but not females. Our study extends this disproportionate effect on male reproductive success to pre-copulatory aspects of reproduction. Our results demonstrate that mutations in mitochondrial DNA can plausibly affect pre-copulatory mating success, with implications for future study into the subcellular underpinnings of such behaviours and the information they may communicate.
Collapse
Affiliation(s)
- Rebecca E Koch
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.,Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Li N, Flanagan BA, Edmands S. Food deprivation exposes sex‐specific trade‐offs between stress tolerance and life span in the copepod
Tigriopus californicus. Ecol Evol 2022; 12:e8822. [PMID: 35432933 PMCID: PMC9005923 DOI: 10.1002/ece3.8822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
Long life is standardly assumed to be associated with high stress tolerance. Previous work shows that the copepod Tigriopus californicus breaks this rule, with longer life span under benign conditions found in males, the sex with lower stress tolerance. Here, we extended this previous work, raising animals from the same families in food‐replete conditions until adulthood and then transferring them to food‐limited conditions until all animals perished. As in previous work, survivorship under food‐replete conditions favored males. However, under food deprivation life span strongly favored females in all crosses. Compared to benign conditions, average life span under nutritional stress was reduced by 47% in males but only 32% in females. Further, the sex‐specific mitonuclear effects previously found under benign conditions were erased under food limited conditions. Results thus demonstrate that sex‐specific life span, including mitonuclear interactions, are highly dependent on nutritional environment.
Collapse
Affiliation(s)
- Ning Li
- Department of Biological Sciences University of Southern California Los Angeles California USA
| | - Ben A. Flanagan
- Department of Biological Sciences University of Southern California Los Angeles California USA
| | - Suzanne Edmands
- Department of Biological Sciences University of Southern California Los Angeles California USA
| |
Collapse
|
9
|
Rand DM, Mossman JA, Spierer AN, Santiago JA. Mitochondria as environments for the nuclear genome in Drosophila: mitonuclear G×G×E. J Hered 2022; 113:37-47. [PMID: 34964900 PMCID: PMC8851671 DOI: 10.1093/jhered/esab066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria evolved from a union of microbial cells belonging to distinct lineages that were likely anaerobic. The evolution of eukaryotes required a massive reorganization of the 2 genomes and eventual adaptation to aerobic environments. The nutrients and oxygen that sustain eukaryotic metabolism today are processed in mitochondria through coordinated expression of 37 mitochondrial genes and over 1000 nuclear genes. This puts mitochondria at the nexus of gene-by-gene (G×G) and gene-by-environment (G×E) interactions that sustain life. Here we use a Drosophila model of mitonuclear genetic interactions to explore the notion that mitochondria are environments for the nuclear genome, and vice versa. We construct factorial combinations of mtDNA and nuclear chromosomes to test for epistatic interactions (G×G), and expose these mitonuclear genotypes to altered dietary environments to examine G×E interactions. We use development time and genome-wide RNAseq analyses to assess the relative contributions of mtDNA, nuclear chromosomes, and environmental effects on these traits (mitonuclear G×G×E). We show that the nuclear transcriptional response to alternative mitochondrial "environments" (G×G) has significant overlap with the transcriptional response of mitonuclear genotypes to altered dietary environments. These analyses point to specific transcription factors (e.g., giant) that mediated these interactions, and identified coexpressed modules of genes that may account for the overlap in differentially expressed genes. Roughly 20% of the transcriptome includes G×G genes that are concordant with G×E genes, suggesting that mitonuclear interactions are part of an organism's environment.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology, Evolution and Organismal Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA
| | - James A Mossman
- Department of Ecology, Evolution and Organismal Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA
| | - Adam N Spierer
- Department of Ecology, Evolution and Organismal Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA
| | - John A Santiago
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA
- Department of Pathology and Laboratory Medicine, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA
| |
Collapse
|
10
|
Austad SN, Hoffman JM. Beyond calorie restriction: aging as a biological target for nutrient therapies. Curr Opin Biotechnol 2021; 70:56-60. [PMID: 33360494 PMCID: PMC8219814 DOI: 10.1016/j.copbio.2020.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/24/2020] [Accepted: 11/20/2020] [Indexed: 11/25/2022]
Abstract
Arguably, the most important discovery in the biology of aging to date was that simply reducing food intake extended life and improved many aspects of health in a diversity of animal species. The conventional wisdom that emerged from first 50 years of rodent food restriction studies included (1) that the longevity impact of restriction was greater the longer restriction was imposed, and (2) that restricting calories rather than any specific macronutrient was critical to its health and longevity benefits. However these assumptions began to crumble as more and more restriction research was performed on other species besides laboratory rodents. Recent investigations of flies, rodents, monkeys, and increasingly humans, has begun to parse how calorie restriction, protein restriction, intermittent fasting, and the temporal pattern of eating all impact the health benefits of food restriction. Fly research continues to inform, as it has repeatedly shown that genotype, age, sex, duration, and tempo restriction all affect the health impact. Ultimately, optimizing human diets will require a personalized approach using omics approaches.
Collapse
Affiliation(s)
- Steven N Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Jessica M Hoffman
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
11
|
Stewart JB, Chinnery PF. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat Rev Genet 2020; 22:106-118. [PMID: 32989265 DOI: 10.1038/s41576-020-00284-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Contrary to the long-held view that most humans harbour only identical mitochondrial genomes, deep resequencing has uncovered unanticipated extreme genetic variation within mitochondrial DNA (mtDNA). Most, if not all, humans contain multiple mtDNA genotypes (heteroplasmy); specific patterns of variants accumulate in different tissues, including cancers, over time; and some variants are preferentially passed down or suppressed in the maternal germ line. These findings cast light on the origin and spread of mtDNA mutations at multiple scales, from the organelle to the human population, and challenge the conventional view that high percentages of a mutation are required before a new variant has functional consequences.
Collapse
Affiliation(s)
- James B Stewart
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Keaney TA, Wong HWS, Dowling DK, Jones TM, Holman L. Sibling rivalry versus mother's curse: can kin competition facilitate a response to selection on male mitochondria? Proc Biol Sci 2020; 287:20200575. [PMID: 32605521 DOI: 10.1098/rspb.2020.0575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Assuming that fathers never transmit mitochondrial DNA (mtDNA) to their offspring, mitochondrial mutations that affect male fitness are invisible to direct selection on males, leading to an accumulation of male-harming alleles in the mitochondrial genome (mother's curse). However, male phenotypes encoded by mtDNA can still undergo adaptation via kin selection provided that males interact with females carrying related mtDNA, such as their sisters. Here, using experiments with Drosophila melanogaster carrying standardized nuclear DNA but distinct mitochondrial DNA, we test whether the mitochondrial haplotype carried by interacting pairs of larvae affects survival to adulthood, as well as the fitness of the adults. Although mtDNA had no detectable direct or indirect genetic effect on larva-to-adult survival, the fitness of male and female adults was significantly affected by their own mtDNA and the mtDNA carried by their social partner in the larval stage. Thus, mtDNA mutations that alter the effect of male larvae on nearby female larvae (which often carry the same mutation, due to kinship) could theoretically respond to kin selection. We discuss the implications of our findings for the evolution of mitochondria and other maternally inherited endosymbionts.
Collapse
Affiliation(s)
- Thomas A Keaney
- School of Biosciences, The University of Melbourne, Vic. 3010, Australia
| | - Heidi W S Wong
- School of Biosciences, The University of Melbourne, Vic. 3010, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Vic. 3800, Australia
| | - Therésa M Jones
- School of Biosciences, The University of Melbourne, Vic. 3010, Australia
| | - Luke Holman
- School of Biosciences, The University of Melbourne, Vic. 3010, Australia
| |
Collapse
|
13
|
Camus MF, Moore J, Reuter M. Nutritional geometry of mitochondrial genetic effects on male fertility. Biol Lett 2020; 16:20190891. [PMID: 32097597 DOI: 10.1098/rsbl.2019.0891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Organismal fitness is partly determined by how well the nutritional intake matches sex-specific metabolic requirements. Metabolism itself is underpinned by complex genomic interactions involving products from both nuclear and mitochondrial genomes. Products from these two genomes must coordinate how nutrients are extracted, used and recycled, processes vital for fuelling reproduction. Given the complicated nature of metabolism, it is not well understood how the functioning of these two genomes is modulated by nutrients. Here we use nutritional geometry techniques on Drosophila lines that only differ in their mtDNA, with the aim to understand if there is nutrient-dependent mitochondrial genetic variance for male reproduction. We first find genetic variance for diet consumption, indicating that flies are consuming different amounts of food to meet new physiological requirements. We then find an interaction between mtDNA and diet for fitness, suggesting that the mtDNA plays a role in modulating diet-dependent fitness. Our results enhance our basic understanding of nutritional health and our chimeric genomes.
Collapse
Affiliation(s)
- M F Camus
- Research Department of Genetics, Evolution and Environment, University College, Gower Street, London WC1E 6BT, UK
| | - J Moore
- Research Department of Genetics, Evolution and Environment, University College, Gower Street, London WC1E 6BT, UK
| | - M Reuter
- Research Department of Genetics, Evolution and Environment, University College, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
14
|
Rand DM, Mossman JA. Mitonuclear conflict and cooperation govern the integration of genotypes, phenotypes and environments. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190188. [PMID: 31787039 PMCID: PMC6939372 DOI: 10.1098/rstb.2019.0188] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mitonuclear genome is the most successful co-evolved mutualism in the history of life on Earth. The cross-talk between the mitochondrial and nuclear genomes has been shaped by conflict and cooperation for more than 1.5 billion years, yet this system has adapted to countless genomic reorganizations by each partner, and done so under changing environments that have placed dramatic biochemical and physiological pressures on evolving lineages. From putative anaerobic origins, mitochondria emerged as the defining aerobic organelle. During this transition, the two genomes resolved rules for sex determination and transmission that made uniparental inheritance the dominant, but not a universal pattern. Mitochondria are much more than energy-producing organelles and play crucial roles in nutrient and stress signalling that can alter how nuclear genes are expressed as phenotypes. All of these interactions are examples of genotype-by-environment (GxE) interactions, gene-by-gene (GxG) interactions (epistasis) or more generally context-dependent effects on the link between genotype and phenotype. We provide evidence from our own studies in Drosophila, and from those of other systems, that mitonuclear interactions—either conflicting or cooperative—are common features of GxE and GxG. We argue that mitonuclear interactions are an important model for how to better understand the pervasive context-dependent effects underlying the architecture of complex phenotypes. Future research in this area should focus on the quantitative genetic concept of effect size to place mitochondrial links to phenotype in a proper context. This article is part of the theme issue ‘Linking the mitochondrial genotype to phenotype: a complex endeavour’.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G, Providence, RI, USA
| | - Jim A Mossman
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Box G, Providence, RI, USA
| |
Collapse
|
15
|
Nagarajan-Radha V, Aitkenhead I, Clancy DJ, Chown SL, Dowling DK. Sex-specific effects of mitochondrial haplotype on metabolic rate in Drosophila melanogaster support predictions of the Mother's Curse hypothesis. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190178. [PMID: 31787038 DOI: 10.1098/rstb.2019.0178] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Evolutionary theory proposes that maternal inheritance of mitochondria will facilitate the accumulation of mitochondrial DNA (mtDNA) mutations that are harmful to males but benign or beneficial to females. Furthermore, mtDNA haplotypes sampled from across a given species distribution are expected to differ in the number and identity of these 'male-harming' mutations they accumulate. Consequently, it is predicted that the genetic variation which delineates distinct mtDNA haplotypes of a given species should confer larger phenotypic effects on males than females (reflecting mtDNA mutations that are male-harming, but female-benign), or sexually antagonistic effects (reflecting mutations that are male-harming, but female-benefitting). These predictions have received support from recent work examining mitochondrial haplotypic effects on adult life-history traits in Drosophila melanogaster. Here, we explore whether similar signatures of male-bias or sexual antagonism extend to a key physiological trait-metabolic rate. We measured the effects of mitochondrial haplotypes on the amount of carbon dioxide produced by individual flies, controlling for mass and activity, across 13 strains of D. melanogaster that differed only in their mtDNA haplotype. The effects of mtDNA haplotype on metabolic rate were larger in males than females. Furthermore, we observed a negative intersexual correlation across the haplotypes for metabolic rate. Finally, we uncovered a male-specific negative correlation, across haplotypes, between metabolic rate and longevity. These results are consistent with the hypothesis that maternal mitochondrial inheritance has led to the accumulation of a sex-specific genetic load within the mitochondrial genome, which affects metabolic rate and that may have consequences for the evolution of sex differences in life history. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
| | - Ian Aitkenhead
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - David J Clancy
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
16
|
Tower J. Drosophila Flies in the Face of Aging. J Gerontol A Biol Sci Med Sci 2019; 74:1539-1541. [PMID: 31260514 PMCID: PMC7357449 DOI: 10.1093/gerona/glz159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles
| |
Collapse
|